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We consider certain decision problems for the free model of the theory of Cartesian monoids. We in-

troduce a model of computation based on the notion of a single stack one-way PDA due to Ginsburg,

Greibach and Harrison. This model allows us to solve problems such as:

(1) Given a finite set B of elements and an element F, is F a product of members of B?

(2) Is the submonoid generated by the finite set B infinite?

for certain fragments of the free Cartesian monoid. These fragments include the submonoid of right

invertible elements and so our results apply to the Thompson-Higman groups.

1 INTRODUCTION AND PRELIMINARIES

The notion of a Cartesian monoid has been rediscovered many times. A list of those just known to

me would include Jonsson-Tarski Algebras [6], Vagabond Groups [12], Cantor algebras [9], FP [1],

Cartesian Monoids [7], Freyd-Heller Monoids [3], TOPS [11], Thompson-Higman Monoids [2], and CP

Monoids [5]. The title of this paper has been pirated from Gray & Pardue; the reason for this will become

apparent presently.

The notion of Cartesian Monoid axiomatizes the idea of a monoid of functions on a set S supporting

a surjective pairing function S× S → S lifted pointwise to (S → S)× (S → S) → (S → S). So a Carte-

sian Monoid C = (M,∗, I,L,R,〈−〉) is a monoid (M,∗, I) together with elements L,R : M and a map

〈−〉 : M×M → M satisfying:

L∗ 〈F,G〉= F (left projection)

R∗ 〈F,G〉= G (right projection)

〈F,G〉 ∗H = 〈F ∗H,G∗H〉 (pointwise lifting)

〈L,R〉= I (surjectivity)

More generally, one could consider pairing functions which might not be surjective. In this case, the

fourth condition would be omitted. The authors of the most recent rediscovery call such structures

Categorical Quasiproduct Monoids (CQP) [4, Section 2.4]. We are happy to credit them with directing

our attention to them.

Here it will be useful to review some properties of the free Cartesian Monoid CM. The four conditions

have the equivalent rewrite system

(1) L∗ 〈X ,Y〉 X

(2) R∗ 〈X ,Y〉 Y

(3) 〈X ,Y 〉 ∗Z 〈X ∗Z,Y ∗Z〉

(4) I ∗X X

(5) X ∗ I X
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(6) 〈L∗X ,R∗X〉 X

(7) 〈L,R〉 I

modulo the associativity axioms. This rewrite system is equivalent to the conditions in the sense that

the smallest associative congruence containing the rules as identities is the congruence generated by the

conditions (axioms). We denote the monotone, reflexive, transitive closure of by . Here monotone

means replacing subexpressions by their rewrites.

Theorem 1 (See [11]). (1) Every pair of equivalent expressions have a common rewrite.

(2) Every sequence of rewrites eventually terminates in a unique normal form.

(3) All of the last three rewrites can be done at the end.

Corollary. The word problem for CM is solvable.

The normal forms of Cartesian monoid expressions have a pleasing shape. They can be described as

binary trees built up from 〈−〉 with strings of L’s and R’s at the leaves. These strings are built up by ∗
with I as the empty string. We call these strings the shifts of the normal form. Normal forms that use

only the rewrites (1)–(5) have a similar shape.

Now in [11] we proved the following.

Theorem 2. If F and G have distinct normal forms then there exist H and K s.t. H ∗F ∗K = L and

H ∗G∗K = R in CM.

This is the “simplicity” rediscovered in Birget [2].

2 CQ IS ALMOST SIMPLE

Let CQ be the free Categorical Quasiproduct Monoid. Clearly there exists a homomorphism from CQ

onto the free Cartesian Monoid. First, we add to Theorem 2 for the case of CQ.

Lemma 1. If F0 = F1 in CM but the (1)–(5) normal forms of F0 and F1 are distinct, say U0,U1 resp., then

there exist H, K such that for i = 0 or i = 1 we have:

H ∗Ui ∗K 5,6,7 I

H ∗U1−i ∗K 5,6,7 〈L,R〉

Proof. By induction on the sum of the lengths of U0 and U1.

Basis. since the Ui are both in (1)–(5) normal form, they cannot both be shifts. Thus the shortest case

has the form Ui = I and U1−i = 〈U,V 〉. Now 〈U,V 〉 5,6,7 I. Thus U 5,6,7 L and V 5,6,7 R, and we are

done, or U 5,6,7 LX and V 5,6,7 RX where X must be a shift since U1−i is normal w.r.t. (1)–(5). But

then X = I and we are done again.

Induction Step. In case that one of the Ui is a shift is as in the basis case. Thus we can assume both

Ui begin with 〈−〉. Let U0 = 〈V0,V1〉 and U1 = 〈W0,W1〉. Then there exists a j s.t. Vj 6=Wj. In case j = 0

we have L∗U0 (1) V0 and L∗U1 (1) W0 and the induction hypothesis can be applied to V0 and

W0. The case j = 1 is similar.

Proposition 1. The homomorphism from CQ onto the free Cartesian Monoid is unique and the only

non-trivial homomorphism of CQ.
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Proof. If F and G are not equivalent in CM then there exist H and K as in Theorem 2. By Theorem 1

there exists a common rewrite which can be obtained by rewriting with all of the (5)–(7) rewrites at the

end. Thus there exist U, V s.t.:

H ∗F ∗H 1,2,3,4 U 5,6,7 L

H ∗G∗H 1,2,3,4 V 5,6,7 R

Now if X ∗ I occur in either U or V it can be eliminated by X ∗ I X , since X cannot contain 〈−〉. Now,

neither U nor V can contain 〈X , I〉, 〈I,X〉 or 〈L,R〉 since this would prevent rewriting to L or R. This

holds for any rewrite of U or V by (6). Thus only the rewrite (6) is used. Hence there exist X ,Y such

that U = X ∗L and V = Y ∗R (reverse rewrite (3) multiple times). But then I = L∗ 〈I, I〉=U ∗ 〈I, I〉= X

and I = R∗ 〈I, I〉=V ∗ 〈I, I〉= Y . So if F and G are identified by a homomorphism of CQ then so are X

and Y . But then by Lemma 1 the homomorphism identifies I and 〈L,R〉. Thus the homomorphism is a

homomorphism of CM. This is impossible by [11, Section 3].

3 G.G.H. PDA’S

Now we would like to introduce a model for computing with CQ expressions which will allow us to

prove many questions about CQ multiplication decidable. We cannot expect too much since it is obvious

that the existential theory of CQ is undecidable [11, Section 9]. For what follows we shall refer to (1)–(5)

normal form as CQ normal form.

If F is in CQ normal form, then the shift S which when read from left to right describes the position of

the leaf of the tree of F where the shift S′ resides, then the CQ normal form of S∗F is S′, but for no initial

segment S′′ of S is the normal form of S′′ ∗F a shift. Our model is the G.G.H. notion [4] of a one-way

single stack pushdown automata. These are non-deterministic PDAs which can scan the current stack by

a two way NDFA before reading the top most stack symbol, executing a stack operation, changing state

and reading the next input. The input alphabet consists of CQ expressions F in normal form taken from

a given finite set, and input from left to right.

When the initial contents of the stack are the string S, with top-to-bottom corresponding to right-to-

left, and the input is F1,Ft , then we want the contents of the stack to be the normal form of F1 ∗ · · · ∗Ft .

However, this may not be a shift. In this case we terminate the computation in failure. The PDA operates

as follows:

(1) It reads the input F .

(2) It reads the stack to determine if it has the form S′ ∗S where the normal form of S∗F is a shift S′′.

If not the computation fails.

(3) If (2) succeeds it pops S from the stack and pushes S′′ onto the stack.

Here we note that in (2) there are only finitely many S to check so this can be implemented in

a deterministic G.G.H. Now G.G.H. proved that the sets accepted by G.G.H. PDAs are closed under

intersection and union but not complement. The deterministic one are closed under complement but not

intersection.

Theorem 3. Let B be a finite set of CQ expressions. Then it is decidable if F is a product of members

of B.

Proof. We assume that all expression is in CQ normal form. First, let S1, . . . ,Sn be the complete list of

shifts s.t. Si ∗F equals a shift Si, but no initial segment of Si (right to left) does.
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We construct deterministic G.G.H. machines Mi,Ni, for i = 1, . . . ,n, so that Mi accepts all inputs

F1, . . . ,Fk s.t. Si ∗F1 ∗ . . .∗Fk = Si. For each i = 1, . . . ,n let S′′i be Si with its last L or R (from right to left)

deleted. Then Ni is constructed to accept all inputs F1, . . . ,Fk s.t. the CQ normal form of S′′i ∗F1 ∗ ...∗Fk

is not a shift. Here we use closure of deterministic machines under complements. Now by the work of

G.G.H. [4] there exists a non-deterministic G.G.H. machine M which accepts the intersection of the sets

of inputs accepted by the all machines Mi and Ni for i = 1, . . . ,n. Now the decision theorems of G.G.H.

do not apply to non-deterministic G.G.H. PDAs. However, the method of La Torre [13] does apply. The

machine M can be represented in Rabin’s theory WS2S [8] and tested for emptiness.

Many CQ decision problems can be solved with this method. For example, it is decidable whether

the set of CQ distinct products of members of B is infinite. This will be seen in the next section.

4 MORE APPLICATIONS OF G.G.H. PDA’S

There is a well-known duality between rooted binary trees with n leaves and triangulations of an n-gon. In

the CQ case the leaves come equipped with shifts. These shifts control the results of further composition.

The nice geometrical questions about tiling the plane with n-gons are analogous to questions about

covering Cantor Space by normal CQ expressions.

Definition 1. Let B be a finite set of CQ normal forms. We say that B covers Cantor space if there exists

an infinite sequence F1, . . . ,Fn, . . . of members of B s.t. for each shift S there exists an n s.t. the normal

form of S∗F1 ∗ . . . ∗Fn is not a shift.

As an example, the set {〈I, I〉} covers Cantor space but {〈R,L〉} does not.

Definition 2. A shift S is said to be bad for B if for any sequence F1, . . . ,Fn of members of B the CQ

normal form of S∗F1 ∗ ...∗Fn is a shift.

For example, R ∗R is bad for {〈L,R ∗R〉}. First we observe that the set of bad B shifts is recursive

uniformly in B. This can be seen by constructing a deterministic G.G.H. one-way stack machine which,

if started with S in its stack, accepts all inputs if and only if S is bad. The construction of the machine

is uniform in S, so that the set of S which are bad is definable in Rabin’s theory WS2S by LaTorre’s

method. To recall, the input alphabet is the set B and the machine runs as follows. With input symbol F

the machine reads the top of the current stack looking for a minimal S s.t. the normal form of S∗F is a

shift. This can be done by a DFSA. Having found such an S, the machine pops S and pushes the normal

form of S∗F . Otherwise, the machine rejects the entire input.

Before considering coverings, we settle an algebraic question.

Theorem 4. It is decidable whether the submonoid generated by B is infinite.

Proof. Of course, if B contains a shift then the submonoid generated by B is infinite, so we can assume

this is not the case. First, we say that an S bad for B is extenuative if for each n there exists F1, . . . ,Fk

in B s.t. the CQ normal form of S ∗F1 ∗ ... ∗Fk has length at least n. Now it is decidable whether S is

extenuative. First decide whether S is bad for B. Now consider the set of natural numbers encoded as

strings of Ls and the input language B+{L}.

Design a deterministic G.G.H. PDA with S initially in its stack and which accepts an input W if and

only if W has the form F1 . . .FkL . . .L (with n occurrences of L), and where after reading F1 . . .Fk the stack

has length at least n.

Now the set of words L...L s.t. F1, . . . ,FkL...L is accepted by the machine is the result of applying

a sequential transducer to the set of words F1, . . . ,FkL . . .L accepted. Thus by [4, Theorem 2.4] we
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can construct a non-deterministic G.G.H PDA which accepts exactly this set of words L...L. Thus by

La Torre’s method we can decide if this set is all strings of Ls.

Next pick an initial member F of B and one of its shifts S. We construct a G.G.H. nondeterministic

PDA as follows. The input alphabet consists of B plus a new letter @ (we could have used L as above).

On inputs of the form F1...Fk@m the machine proceeds as above except when the current stack is @pS′

and the input is Fi s.t. the CQ normal form of S′ ∗Fi is not a shift. In this case, the machine guesses

a minimal length shift S′′ s.t. the normal form S′′ ∗ S′ ∗Fi is a shift, say S+, and updates the stack to

@p+1S+. The machine accepts if in the final stack the number of @ is not less than m.

By G.G.H. Theorem 2.4 the set of @m s.t. there is a F1, . . . ,Fk@m accepted by the machine is accepted

by a non-deterministic G.G.H PDA. Now it is decidable if this set is all @m. We distinguish two cases.

Case 1. The set is all @m. Then there are arbitrarily large CQ normal form generated by B and

submonoid generated by B is infinite.

Case 2. The set of all @m is finite for all F in B and S. Then every infinite sequence F1, . . . ,Fn, . . .

of members of B must have an initial segments F1, . . . ,Fk s.t. all the shifts of the CQ normal form of

F1 ∗ . . . ∗Fk are bad. So by Konig’s lemma there exists a finite tree of such finite sequences s.t. every

path has an initial segment in this tree. Now search until such a finite tree T is found. Now suppose that

the CQ normal form of F1 ∗ ... ∗Fk has a bad shift S which is extenuative. Now F1, . . . ,Fk has an initial

segment in T say F1, . . . ,Fp. So F1 ∗ . . . ∗Fp has a bad shift with the same property. Now the submonoid

generated by B will be finite if and only if no such extenuative shift exists. Thus it suffices to test all the

shifts of products in the tree for extenuativeness.

Theorem 5. It is decidable whether B covers Cantor space.

Proof. Given B it is impossible to cover Cantor space if there is a bad shift i.e. a shift s.t. for all

F1 . . .Fn : B the normal form of S ∗F1 ∗ . . . ∗Fn is a shift. This is decidable by previous argument. Now

if no bad shift exists then for every shift S there exits F1...Fn : B s.t. the normal form of S ∗F1 ∗ . . . ∗Fn

is not a shift. Thus B can cover Cantor space by repeatedly applying the F1 ∗ ...∗Fn as shifts S appear in

the normal form of previous applications.

We conclude with an amusing observation.

5 GIGSAW PUZZLES

A gigsaw puzzle is a patern matching problem where each variable occurs at most once and solutions

come from a fixed set of CQ expressions all of which must be used. Here we show the problem is NP

complete.

We encode the satisfiability problem. We assume that we are given a conjunctive normal form (con-

junction of disjunctions; we regard x∨ x∨ y as distinct from x∨ y). We suppose that the variables are

x1, . . . ,xn. For each variable xi we construct two gadgets Gi and Hi by

Gi = 〈〈I, I〉,〈〈I, I〉,〈...
︸ ︷︷ ︸

〈L,〈〈I, I〉,〈...〈〈I, I〉
︸ ︷︷ ︸

, I〉...〉〉〉...〉〉〉

i−1 occurrences n− i+1 occurrences

Hi = 〈〈I, I〉,〈〈I, I〉,〈...
︸ ︷︷ ︸

〈R,〈〈I, I〉,〈...〈〈I, I〉
︸ ︷︷ ︸

, I〉...〉〉〉...〉〉〉

i−1 occurrences n− i+1 occurrences
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Now suppose that we have a conjunct C of the form

xa(1)

∨

. . .
∨

xa(k)

∨

¬xb(1)

∨

...
∨

¬xb(m)

We replace each of the k+m variable occurrences by a new variable yi and we construct a product C# of

terms

L∗Ra(i) ∗ yi ∗ 〈I,〈I, I〉〉 if i < k+1

L∗Rb(k−i) ∗ yi ∗ 〈〈I, I〉, I〉 if k < i

and the identity C# = I. Now assume that xi occurs m times. We introduce m new variables z1, . . . ,zm

and define the term B in m stages as follows

B1 = L∗ z1

B j+1 = B j ∗ z j ∗ 〈〈L,〈I, I〉〉,〈〈I, I〉,R〉〉

B = Bm

and we add the identity B∗〈I, I〉= I. This is a total number of identities equal to the number of conjuncts

plus the number of variables. Then the identities are solvable using the gadgets if and only if the original

conjunction is satisfiable.

6 WHAT NEXT?

It is interesting to see if these methods can be extended to the free Cartesian monoid. The questions one

wants to ask about the corresponding non-deterministic G.G.H. machines do not seem to be answerable in

any straightforward manner. However, we can make some direct applications. Let RI be the submonoid

of right invertible elements of CM. Here, we let B be a finite subset of RI and F an element of RI, all in

(1)–(7) normal form.

Lemma 2. If F is in the submonoid generated by B then there exists F1, . . . ,Fn in B s.t.

F1 ∗ · · · ∗Fn 1,2,3,4,5 F

except for F = I.

Proof. First recall the characterization of the elements in RI given in [11]. F is in RI if and only if no shift

of F is a final segment (left to right) of another shift of F . Now suppose that F1 ∗ ...∗Fn 1,2,3,4,5,6,7 F .

By Theorem 1 (3) there exists G s.t. F1 ∗ ... ∗Fn 1,2,3,4,5 G 5,6,7 F . Note that in the rewrite from G to

F all the applications of (6) are to cancel a shift. Now let J be the kernel of the unique homomorphism

of CQ on CM. J is precisely the set of all H in CQ s.t. H = I in CM. Now consider the shape of G. The

binary tree of G begins with the tree of F but where a shift S of F would occur is the CQ normal form

of a member of J ∗S. Note that such an S is not I since F is in RI, but there is the trivial case when the

member of J is I.

Now each member H of J has the following structure. Each leaf of the binary tree of H can be

described by a sequence of Ls and Rs read from right to left. The corresponding shift S has the property

that the normal form of S∗H is precisely S, and no final segment (left to right) S′′ of S′ has the property

that S′′ ∗H equals a shift in CQ. Now let H be the member of J for S a shift of F . We have for each shift S′
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of H s.t. if S is in position S′′, then S′ ∗S′′ ∗G = S′ ∗S in CQ. Now, for each i = 1, ...,n, S′′ ∗S′ ∗F1 ∗ ...∗Fi

equals a shift in CQ. However, since all the Fj are in RI there is a unique shortest S′ ∗S with this property

s.t. S′ ∗S′′ ∗G = S′ ∗S in CQ. But if H is not trivial then there are at least two such. Thus H is trivial.

Hence G = F .

Corollary. Theorems 3, 4 and 5 apply to RI, and thus to the Thompson-Higman groups.
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