
David I. Spivak and Jamie Vicary (Eds.):

Applied Category Theory 2020 (ACT2020)

EPTCS 333, 2021, pp. 33–48, doi:10.4204/EPTCS.333.3

Symmetric Monoidal Categories with Attributes

Spencer Breiner

National Institute of Standards and Technology
Gaithersburg, MD, USA

Spencer.Breiner@nist.gov

John S. Nolan*

University of Maryland
College Park, MD, USA

jnolan13@terpmail.umd.edu

When designing plans in engineering, it is often necessary to consider attributes associated to objects,

e.g. the location of a robot. Our aim in this paper is to incorporate attributes into existing categorical

formalisms for planning, namely those based on symmetric monoidal categories and string diagrams.

To accomplish this, we define a notion of a “symmetric monoidal category with attributes.” This is a

symmetric monoidal category in which objects are equipped with retrievable information and where

the interactions between objects and information are governed by an “attribute structure.” We discuss

examples and semantics of such categories in the context of robotics to illustrate our definition.

1 Introduction

Symmetric monoidal categories (SMCs) and the related graphical syntax of string diagrams have recently

been used to great effect in representing and understanding plans and processes (see e.g. [4, 5]). In large

part, this is because the syntax of SMCs enables users to reasonably interpret objects in a SMC as

resources and morphisms in a SMC as processes.

Here we extend this interpretation to include a distinction between physical and informational re-

sources, entities and values or data, which behave quite differently. Our approach is inspired by the

relationship between classical and quantum information in categorical quantum mechanics [4]. We are

motivated by foundational concerns in a related paper [2], where we use this framework to link high-level

action planning and low-level path planning in the context of robotics.

As an example, consider the following equation (where the diagrams are to be read top-to-bottom),

which axiomatizes one of the operations of a robot arm:

MoveTo

⊲

robot location

robot

= MoveTo

robot location

robot

(1)

Here (and throughout the paper) solid lines represent entities and dashed lines represent data. The equa-

tion defines a post-condition of the operation: after executing the process MoveTo, the robot has moved

to the specified location. Given similar axioms for Pick and Place operations, we can use string diagrams

to prove that a sequence of operations is well-defined or validates a desired specification, as shown in

Figure 1. These specific examples are formalized in Subsection 2.3.

*Corresponding author.

http://dx.doi.org/10.4204/EPTCS.333.3

34 Symmetric Monoidal Categories with Attributes

⊳

MoveTo

Pick

robot ball

robot

=

⊳

⊲ ⊳

MoveTo

Pick

robot ball

robot

MoveTo

Place

robot goal

robot ball

=

MoveTo

⊲

Place

⊲

robot goal

robot ball

(a) (b)

Figure 1: (a) This equation guarantees that the preconditions of Pick are satisfied.

(b) This equation guarantees the desired specification (ball at goal).

A few questions arise when trying to formalize this. First, how are informational resources supposed

to behave in general? To model such resources, we borrow the notion of a data service from [9]; we

summarize this in Definition 1. Data services are algebraic structures (defined internally to SMCs) which

formalize the operations of filtering, copying, and deleting pieces of data.

Furthermore, what does it mean for an entity to have a datum as an attribute (e.g. in the way that the

robot above “has a location”)? We argue that this question can be answered by requiring that the data

service associated to the informational object “acts on” the other object in a suitable sense. To provide

more control over the behavior of these attributes, we define the notion of an attribute structure on a

SMC. These concepts are discussed in Subsection 2.1.

When considering the semantics of these categories, it is often the case that certain morphisms turn

out to be “partially defined.” This manifests itself through a partial order structure on hom-sets, or

more precisely an enrichment over Poset, the category of partially-ordered sets (posets) and monotone

increasing functions. Due to similarities between these partial orders across semantics, we find it useful

and illuminating to enrich the syntax categories over Poset as well. By doing so we are able to impose

extra conditions on these attribute structures that mimic the ways users expect informational resources to

behave. The details of this enrichment are spelled out in Subsection 2.2.

In our motivating example, we use these categories with attributes and their diagrams to coordinate

two semantic models at different levels of abstraction, based on the principle of functorial semantics.

First, we define a Boolean semantics based on the Planning Domain Definition Language (PDDL) [7];

a presentation of the categorical syntax can be used to generate a PDDL domain, and the solution to

a PDDL problem can be used to define an associated string diagram. Once a high-level plan has been

identified, a second mapping to a category of geometric semantics can be used to parameterize a path

planning algorithm. We give sketches of these categories and mappings in Section 3.

We seek to achieve two principal goals in this paper. First, we aim to develop rigorous foundations

for the forthcoming paper [2], which explores similar ideas with a greater focus on the engineering

than on the mathematics. Second, we seek to present interesting examples of categorical modeling in

engineering. It is our hope that the applications presented in this paper will motivate other researchers to

investigate the connections between category theory and engineering models.

S. Breiner and J. S. Nolan 35

2 Categories with Attributes

Our goal in this section is to develop a definition of a category with attributes – that is, a (symmetric

monoidal) category in which objects can have “information” (defined internally to the category) attached

to them in some way. We develop one notion of a category with attributes in Subsection 2.1. In Sub-

section 2.2, we adapt this notion to the case where the categories involved are Poset-enriched. This

additional structure allows us to impose conditions on the relationships between certain morphisms, al-

lowing us to connect categories with attributes to our intuition about partially-defined morphisms (e.g.

partial functions).

2.1 General Case

For a formal categorical notion of information, we borrow the definition of a data service from [9].1 This

definition is restated as follows. As hinted above, we will depict the underlying objects of data services

with dashed lines to contrast them with other objects.

Definition 1 ([9]). A data service in a SMC (C ,⊗, I) consists of

• An object D in C ;

• A multiplication morphism µ : D⊗D→ D;

• A comultiplication morphism δ : D→ D⊗D; and

• A counit morphism ε : D→ I.

The morphisms of a data service are depicted as follows:

µ :=

D D

D

; δ :=

D

D D

; ε :=

D

(2)

These morphisms are also required to satisfy several axioms:

• (V,µ) is a commutative semigroup object in C ;

• (V,δ ,ε) is a commutative comonoid object in C ;

• µ and δ satisfy the Frobenius laws:

D D

D

D D

=

D D

D

D D

=

DD

D

DD

(3)

1Readers familiar with Frobenius algebras will observe that a data service is the same as a special commutative Frobenius

algebra except for the fact that data services are not required to have units. Non-unitality can be unavoidable in certain applica-

tions; for example, every object in PartFn, the category of sets and partial functions, has a canonical data service structure, but

this structure typically does not admit a unit.

36 Symmetric Monoidal Categories with Attributes

• µ and δ satisfy the special law:

D

D D

D

= D (4)

When we have no reason to explicitly reference the morphisms µ , δ , and ε , we will refer to the data

service (D,µ ,δ ,ε) simply as D.

Some discussion of the intuition behind data services is in order. As mentioned above, an object with

a data service structure can be thought of as a value or datum. From this perspective, the comultiplication

morphism can be viewed as creating a copy of the input value (where the copy is indistinguishable from

the original), while the counit morphism can be viewed as deleting or forgetting about the input value.

Meanwhile, the multiplication morphism can be thought of as filtering for equality: given two values,

the multiplication morphism checks whether or not they’re the same and returns the common value of

both (if they’re the same) or nothing (if they aren’t). The Frobenius, special, semigroup, and comonoid

axioms formalize this intuition.

For any SMC C , we can define a category Data(C) of data services in C . The “obvious” definition

of a morphism of data services D→ D′ (i.e. a morphism D→ D′ in C that is both a semigroup homo-

morphism and a comonoid homomorphism) will turn out to be too restrictive for our eventual goals. In

this general case, we are unable to find any nontrivial useful ways to weaken this “obvious” definition,

so we opt for the trivial solution, allowing any morphism between the underlying objects of two data

services to be considered a “morphism of data services.” (Contrast this with the discussion in Subsection

2.2, where we are able to formulate acceptable conditions). This is recorded in the following definition.

Definition 2. Let C be a SMC. The category of data services in C , denoted Data(C), is the category

where:

• Objects are data services in C

• Data(C)(D,D′) = C (D,D′), i.e. morphisms in Data(C) are arbitrary morphisms between the

underlying objects of the domain / codomain.

There exists an obvious (fully faithful) forgetful functor U : Data(C)→ C .

In order to define categories with attributes, we still need to determine a proper definition for “at-

tributes” themselves. To an initial approximation, we consider an attribute of an object M to be a data

service D associated to D in some way. Given an instance of M, we should be able to retrieve the asso-

ciated instance of D. This notion can be formalized by the morphism γ : M→ M⊗D depicted in (5).2

Furthermore, we should be able to “filter attributes for equality,” checking whether or not the instance

of D associated to the instance of M agrees with some arbitrary instance of D. This is formalized by the

2An attribute is not determined by the pair (M,D), so our depiction here is lacking insofar as it does not represent the

specific choice of attribute for (M,D). Despite this shortcoming, the depiction here is still useful for brevity, and we have no

need to explicitly consider different attributes with the same D and M.

S. Breiner and J. S. Nolan 37

morphism φ : M⊗D→M depicted in (5).

γ := ⊲

M

M D

; φ := ⊲

M D

M

(5)

These morphisms should be expected to satisfy some compatibility conditions with the data service

structures on the object D. For example, we expect that retrieving a datum twice in a row should be

the same as retrieving the datum once and then copying the result. A collection of similar axioms are

presented in the following definition.

Definition 3. Let C be a SMC, let (D,µ ,δ ,ε) be a data service in C , and let M be any object of C . A

(right) data service action of D on M is a pair (γ ,φ) of morphisms γ : M→M⊗D and φ : M⊗D→M,

depicted as in (5), such that

• φ gives a (right) action of the semigroup object (V,µ) on E:

⊲

⊲

M D D

M

M

=
⊲

M D D

D

M

(6)

• γ gives a (right) action of the comonoid object (M,δ ,ε) on E:

⊲

⊲

M

M

M D D

=
⊲

M

D

M D D

and
⊲

M

M

D

= M (7)

• φ and γ satisfy modified Frobenius laws:

⊲

M D

D

M D

=
⊲

⊲

M D

M

D M

=
⊲

M D

D

M D

(8)

• φ and γ satisfy a modified special law:

⊲

⊲

M

M D

M

= M (9)

38 Symmetric Monoidal Categories with Attributes

Remarkably, a data service action (γ ,φ) is entirely determined by the comonoid action γ , as the

following proposition shows.3

Proposition 1. Let (D,µ ,δ ,ε) be a data service and let γ : M→M⊗D (depicted as above) be a (right)

action of the comonoid object (D,δ ,ε) on the object M. Then there exists a unique morphism φ : M⊗
D→M such that (γ ,φ) forms a data service action of D on M. This φ is defined as in (10).

φ :=
⊲

M D

D

D

M

(10)

The proof that such a φ is unique is fairly straightforward; in fact, one only needs to use the equality

between the first and third terms of (8) and the fact that D is a data service. A series of immediate

diagram chases then establishes all of the other laws of Definition 3 (provided that γ gives a comonoid

action of (D,δ ,ε) on M). In particular, the data service action axioms are overdetermined, so that some

of the less immediately intuitive laws (e.g. the equality between the first and second terms of (8)) follows

from the other assumptions

Given a data service action (γ ,φ) of some data service D on some object M, we can define several

other interesting morphisms. For example, because C is symmetric and D is a commutative semigroup

/ comonoid object, we obtain a pair of morphisms (γ ′,φ ′) giving a “left data service action” of D on M,

defined by (post- or pre-)composing γ and φ with the appropriate braiding. We depict these γ ′ and φ ′

with the (horizontal) mirror images of our usual notation for γ and φ (respectively); the morphisms γ ′

and φ ′ then satisfy the mirror images of the laws in Definition 3.

Furthermore, we can extend the “filtering” operation from data services to objects equipped with data

service actions. This enables us to take instances of two entities M and M′, each equipped with a data

service action by a common data service D, and ensure that the corresponding instances of D are equal.

We define this via the morphism χ : M⊗M′→M⊗M′) defined in (12).

χ := ⊲ ⊳

M M′

D

M M′

:=

⊲ ⊳

M M′

D D

M M′

D (11)

Our depiction of χ is a priori ambiguous, as it could easily be interpreted as referring to other

morphisms, for example:

⊲ ⊳

M M′

D

M M′

?
=

⊲

⊳

M M′

D

M M′

(12)

3This proposition is closely related to results obtained in [1] for Frobenius algebras. Note that the asymmetry of the data

service axioms prevents us from recovering γ from φ alone in a data service, as in [1].

S. Breiner and J. S. Nolan 39

However, there is no real ambiguity here, as in fact this equation (and other obvious equations arising

from our depiction) do hold, e.g. by Proposition 1. Proposition 1 can also be used to show that the

diagrams in Figure 1 (and other well-formed diagrams with the action morphisms displayed horizontally)

represent well-defined morphisms.

From this setup, the definition of a category with attributes (or equivalently an attribute structure on

a SMC) is straightforward.

Definition 4. An attribute structure (A ,E,V,γ) on a SMC C consists of:

• A category A , called the category of attributes;

• A functor E : A → C ;

• A functor V : A → Data(C);

• A natural transformation4 γ : E→ E⊗ (U ◦V)

such that:

• Each γA : E(A)→ E(A)⊗V(A) gives a action of the comonoid (V (A),δV (A),εV(A)) on E(A).

When we have an attribute structure on C in mind, we refer to C as a category with attributes.

An attribute structure on C be viewed as a “collection of distinguished attributes in C .” The naturality

condition on γ ensures that, given f : A→ A′ in A , the map V (f) allows us to “predict” the effects of

E(f) on the relevant informational objects. Note that we require no naturality condition on the φA maps

associated to each γA through Proposition 1. This is because we cannot anticipate that the “processing”

performed by V (f) will produce meaningful results when applied to an arbitrary input.

2.2 Poset-Enriched Case

When modeling attributes, we are often interested in SMCs which are enriched in Poset. This enriched

structure can be used to model the notion that a morphism or process is partially defined, i.e. that it could

fail to execute on certain inputs. Heuristically, morphisms f and g satisfy f ≤ g iff the results of f are

the same as those of g when both exist, and whenever f successfully executes given a certain input, so

too does g. We spell out the details of this enrichment for ease of reference.

Definition 5. A Poset-enrichment of a category C is an assignment of a partial order (uniformly denoted

≤) to each hom-set C (A,B) such that:

• If f ≤ f ′ and g≤ g′, and g◦ f and g′ ◦ f ′ exist, then g◦ f ≤ g′ ◦ f ′.

If (C ,⊗, I) is a SMC, we require furthermore:

• If f ≤ f ′ and g≤ g′, then f ⊗g≤ f ′⊗g′.

A Poset-enriched functor between Poset-enriched categories C ,D is a functor F : C →D such that the

associated functions C (A,B)→D(FA,FB) are all monotone increasing.

From this viewpoint, a certain condition on the data services in a Poset-enriched SMC seems de-

sirable. Namely, filtering two values for equality and then returning both values should yield the same

results as simply returning both values whenever the former operation is defined. This is best formalized

in the following axiom, which appears in [3].

4Recall U : Data(C)→ C is the forgetful functor.

40 Symmetric Monoidal Categories with Attributes

Definition 6. A data service D in a Poset-enriched SMC C is said to be well-behaved with respect to the

enrichment (for brevity, “well-behaved”) if it satisfies:

D D

D

D D

≤ D D . (13)

One is led to wonder whether or not an analogous property to that satisfied by well-behaved data

services holds for data service actions by such data services. This is indeed the case, as shown in the

following proposition.

Proposition 2. Let C be a Poset-enriched SMC, D a well-behaved data service in C , and M an object

of C together with a data service action by D. Then:

⊲

⊲

M D

M

M D

≤ M D (14)

We can also prove a useful proposition about the morphism χ described above.

Proposition 3. Let C be a Poset-enriched SMC, D a well-behaved data service in C , and M an object

of C together with a data service action by D. Then:

⊲ ⊳

M M′

D

M M′

≤ M M′ (15)

As indicated above, well-behaved data services enable us to create a useful variation on the category

Data(C) defined previously.

Definition 7. Let (C ,⊗, I,≤) be a Poset-enriched SMC. Define Data′(C), the category of well-behaved

data services in C , to be the category where:

• Objects are well-behaved data services in C , and

• Morphisms D→D′ are lax data service homomorphisms from D to D′; that is, morphisms f : D→
D′ satisfying the axioms (see [3]):

f

D

D′

D′ D′

≤
f f

D

D D

D′ D′

(16)

S. Breiner and J. S. Nolan 41

f

D

D′
≤

D

(17)

f

D D

D

D′

≤

f f

D D

D′ D′

D′

(18)

A morphism f in Data′(C) is deterministic if it is a (strong) comonoid homomorphism, i.e. if both

(16) and (17) are equalities.

The inequalities in Definition 7 are described in [3] as (some of) those which hold between relations

and (Set-based) monoids. That is, each object of the categories Rel or PartFn comes equipped with a

natural data service structure (with respect to the Cartesian product of sets as tensor product) such that the

inequalities described above hold for all morphisms f in the respective category. In fact, (16) is always

an equality in PartFn, though it’s only an inequality in Rel and other non-deterministic contexts. Since

we are using Poset-enrichments to describe partial definition of operations, requiring these inequalities

in Data′(C) helps us to accurately reflect the desired behavior.

Definition 8. A Poset-enriched attribute structure on a Poset-enriched SMC C is an attribute structure

(A ,E,V,γ) such that:

• A , E , and V are all Poset-enriched;

• V factors through the inclusion Data′(C) →֒ Data(C).

2.3 An Example

A key motivating example for our definition of categories with attributes is the modeling of planning

in robotics. This context provides a collection of excellent simple (and not-so-simple) examples of the

interaction of physical and informational resources. We walk through a toy example in this context in

the hopes of clarifying our definitions above. This example will be described in the non-enriched case,

though readers can easily extend it to the Poset-enriched case as desired.

It should be noted that the purpose of this example is to provide intuition for the rest of the paper and

inspiration for future research into these themes. As such, this example may need modifications before

being used in practical applications or being connected to the functorial semantics below.

Example 1. Suppose that we have a strict SMC C with:

• generator objects R (robot), B (ball), RB (robot holding ball), and L (location);

• morphisms µ ,δ ,ε such that (L,µ ,δ ,ε) is a data service;

• for each generator object X other than L, a morphism γX comprising an action of (L,δ ,ε) on X ;

• and morphisms MoveTo : R⊗ L→ R, MoveTo′ : RB⊗ L→ RB, Pick : R⊗B→ RB, and Place :

RB→ R⊗B.

42 Symmetric Monoidal Categories with Attributes

Suppose furthermore that the following tuple (A ,E,V,γ) defines a valid attribute structure on C . Let

A contain objects XL where X ∈ObC appears as the domain or codomain of one of MoveTo, MoveTo′,

Pick, or Place above. Furthermore, let A be generated by morphisms fL : XL→ YL where f is one of

MoveTo,MoveTo′,Pick, or Place, X is the domain of f , and Y is the codomain of f . Define E : A → C

by E(XL) = X and E(fL) = fL for all XL and fL in A .

The functor V is more complicated to define. Let V (XL) = L for all XL such that X is a generator

object of C , and let V ((X ⊗Y)L) = L⊗L when X and Y are both generator objects of C (here the data

service structure on L⊗L is defined in the obvious way). Define V on the generator morphisms by:

V (MoveTo) = ε⊗ idL (19)

V (MoveTo′) = ε⊗ idL (20)

V (Pick) = µ (21)

V (Place) = δ (22)

To define the requisite natural transformation γ , first note that, given actions γX and γY of the

comonoid L on X and Y respectively, we can define an action γX⊗Y of the comonoid L⊗ L on X ⊗Y

by

γX⊗Y :=
⊲

⊲

X

X L

Y

Y L

(23)

Use this approach to define γR⊗L,γRB⊗L, and γR⊗B. Then, for each XL ∈ Ob(A), let γXL
= γX . This

completes the tuple (A ,E,V,γ).

Viewing C as a category with attributes in this way enables us to perform useful reasoning about C .

For example, given the above attribute structure, we can derive (1) as well as both of the equations shown

in Figure 1. We can also show that Pick◦χR⊗B = Pick and χR⊗B ◦Place = Place, where χR⊗B is defined

using γR and γB as in (12).

Furthermore, this attribute structure allows us to analogize MoveTo to the “put” of a lens, with γR

serving as the corresponding “get.” From this perspective, we can formulate laws on MoveTo that admit

similar interpretations to the Put-Put, Put-Get, and Get-Put lens laws, albeit taking into account the

resource- and time-sensitive nature of these operations.

From this viewpoint, the coassociativity property of γR can be viewed as a novel “Get-Get” law,

controlling what happens when one retrieves an attribute twice in a row. Further research is necessary

to understand the connections between lenses and resource-sensitive situations like that described in this

example.

3 Semantics

The semantics of a category with attributes C typically manifests itself through a functor from C to some

“semantics category” Sem. Oftentimes, there also exists a forgetful functor Sem→ Set, allowing us to

define a composite functor S : C → Set. The category of elements el(S) of S also reflects information

about the semantics of C ; while Sem can be viewed as a category of state spaces and state space trans-

formations, el(S) can be viewed as a category of states and state update rules. This allows us to make

S. Breiner and J. S. Nolan 43

el(S) Set∗

C Sem Set

y

S

Figure 2: Schematic of the discussion at the beginning of Section 3. Special cases of interest are Sem=
BoolAlgop and Sem= Geom.

mathematical sense of intuitive terms like “instance of an entity” that were used above. See Figure 2 for

a depiction of this setup.

In this section, we examine the semantics of categories with attributes by way of two key examples

(Boolean and geometric semantics) relevant to applications in engineering. We also illustrate the above

construction involving categories of elements in the case of geometric semantics.

3.1 Boolean Semantics

The Planning Domain Definition Language (PDDL) is a standard encoding for “classical” planning prob-

lems involving collections of Boolean variables and discrete actions that operate on them [7]. It extends

the earlier STRIPS5 language with features including typing and object equality. PDDL aligns quite well

with the diagrammatic syntax presented earlier, providing both a graphical interface to define and report

PDDL problems and solutions, and an approach to string-diagram generation based on existing PDDL

solvers.

PDDL can be divided into three fundamental units: domains, problems and solutions. Domains

define the relevant (Boolean) features of the situation of interest, as well as the actions that manipulate

these features. A problem is posed relative to a domain; it specifies a collection of elements, their initial

state, and a desired goal state. A solution gives a sequence of applied actions which transform the initial

state into the goal.

Before proceeding we briefly recall a few facts about Boolean algebras [6], which will provide the

substance for our high-level semantics. The free Boolean algebra over a finite set of atomic statements S

is given by Bool(S) := 22S

; here we think of a map s : S→ 2 as a truth function defining a global state,

while a proposition defines a map q : 2S→ 2 picking out a subset of global states.

Any element of a Boolean algebra q ∈ B defines an associated quotient algebra B ։ B/q; logically

speaking, B/q represents the theory B extended by the axiom q. A homomorphism b : B→ B′ descends

to the quotient B/q if and only if b(q) =⊤, in which case we write b |= q.

A point of a Boolean algebra B (also called a valuation) is a homomorphism b : B→ 2. For a free,

finite algebra Bool(S) it is easy to show that this is equivalent to a truth function S→ 2. Stone duality

estabilishes a contravariant relationship between algebra homomorphisms and (continuous) functions

between points. Here, where everything is finite, the Stone topologies are discrete and every function

between points induces a homomorphism in the opposite direction.

A PDDL domain consists of two main elements, a set of predicates P and a set of actions A. Each

predicate has a list of variables which are (optionally) typed from a fixed set or hierarchy T , correspond-

ing to an arity function ar : P→ List(T). Given a set of typed variables tp : X → T , the collection of

5Stanford Research Institute Problem Solver

44 Symmetric Monoidal Categories with Attributes

atomic statements
{

p(x)
}

can be identified with the pullback Atom(P/X) := P×
List(T)

List(X). We write

P(X) for the free algebra over Atom(P/X), yielding a functor P : Set/T → BoolAlg.

A PDDL action a ∈ A consists of a set of typed parameters Xa along with pre- and post-conditions

qa
0,q

a
1 ∈ P(Xa). Because P(Xa) is free, this induces an associated homomorphism a : P(Xa)/qa

1 →
P(Xa)/qa

0. This is easiest to see by defining a dual function on points, regarded as truth functions

s : Atom(P/Xa)→ 2:

a(s) : p(x) 7→

{

¬s(p(x)) if p(x)∧qa
1 =⊥

s(p(x)) otherwise
(24)

In other words, we flip any bits that are inconsistent with the post-condition, and leave everything else

alone.

From the actions A, we construct a pair of categories B and C along with a span of functors C ←

B
I
→ el(Pt), where el(Pt) is the category of elements of the functor Pt : BoolAlgop → Set sending a

Boolean algebra to its set of points. Moreover, the functor B→ C is a “partial opfibration,” in that lifts

of arrows are unique if they exist.

Both B and C are free symmetric monoidal. In B, the objects are Boolean points, and we include

one generator as : s→ a(s) for each point s |= qa
0. By contrast, C is generated by the objects Xa (for

a ∈ A) and contains a generator morphism a : Xa→ Xa for each a ∈ A. The functor B→ C forgets about

the pre- and post-conditions that appear in B.

There is an obvious functor I : B→ el(Pt) sending as to the point function defined in (24). We note

that I does not preserve the monoidal structure because a global state over two collections X and Y will

include predicates with variables from both collections. However, I is oplax monoidal: a global state over

X and Y entails global states on X and Y individually, corresponding to a function I(X ⊗Y)→ IX × IY .

A PDDL problem is defined relative to a domain, and specifies a set of typed variables (called objects)

O. In addition, a problem provides initial and goal states, formulated as propositions q∗0,q
∗
1 ∈ P(O). We

can regard these as a pair of (category-theoretic) objects in B.

Finally, a PDDL solution is given as a sequence of (validly) applied actions which, when applied to

any initial state s0 |= q∗0, result in a final state s1 |= q∗1. Here an “applied action” for a state s ∈ P(O)
consists of an action a and a function j : Xa→ O. This induces a function j∗ : Pt(P(O))→ Pt(P(Xa)),
and for an application to be valid we should have j∗s |= qa

0.

Because P(O) is free, we can use the principle of minimal modification to lift the local transformation

a j∗s to a global map a
j
s : Pt(P(O))→ Pt(P(O)) satisfying j∗(a j

s(s)) |= qa
1; i.e., the new global state

satisfies the local post-condition for a. Given a sequence of applied actions (ai, ji) we can iteratively

construct a sequence of states si and, if each application is valid for the previous state, this will define a

string diagram in B.

We can relate our Boolean semantics and the attribute syntax introduced earlier by associating any

free attribute category with a PDDL domain. The types of the domain are the atomic entities and data

services of the syntax. Predicates are defined from the attributes. Given two attributes over a shared data

service, say with underlying comonoid actions φ : M→M⊗D and ψ : N→N⊗D, we introduce a binary

predicate Dφ ,ψ(M,N) indicating whether or not their data values agree. (Based on our semantic intuition

from before, Dφ ,ψ(M,N) should be true precisely when the χ morphism associated to these attributes is

defined.)

Actions of the PDDL domain correspond to generating morphisms of the syntax, and the equational

axioms attached to a morphism define the pre- and post-conditions of the action. For example, the

equation shown in (1) corresponds to a post-condition Lφ ,δ (R,L) on the MoveTo action, equating the

location attribute of the robot with the copy “attribute” of the target location.

S. Breiner and J. S. Nolan 45

3.2 Geometric Semantics

Here we describe a “geometric semantics category” Geom and its connections to categories with at-

tributes and modeling. The category Geom provides a lower-level semantic counterpart to the Boolean

approach outlined above. In addition, it yields a “physical” approach to understanding the behaviors

specified by a category with attributes. Informally, objects in Geom are physical objects together with

data values, while morphisms in Geom are (partially defined) paths of the physical objects and update

rules for the corresponding values.

Formally, an object X =({Xi},PX ,θX) in Geom consists of a sequence {Xi}
kX

i=1 of subsets of R3 where

each Xi is called a simple object, a topological space PX called the parameter space, and a continuous

function θX = (θX ,i) : PX → SE(3)kX , called the structure map,6 such that for all p ∈ PX , the sets θX ,i(p) ·

Ui are pairwise disjoint. In general, if X is an object in Geom, we will write {Xi}
kX

i=1 for the simple objects

of X , PX for the parameter space of X , and θX for the structure map of X . We use similar notation when

the object is instead called Y or anything else.

A good example object to keep in mind is a multi-jointed robot arm. Such an arm can be modeled

as a finite collection of rods, the positions of which vary based on parameters (e.g. Euler angles). The

condition imposed on the structure map ensures that, regardless of the parameters, no two rods ever

occupy the same point in space at once.

A morphism f : X → Y in Geom, where X and Y have the same simple objects (in the same order),

consists of a continuous partial function Φ f : PX→PY and a continuous partial function φ f : PX× [0,Tf]→
SE(3)kX (for some Tf ≥ 0), such that:

• For all p ∈ P and t ∈ [0,Tf], φ f (p, t) is defined if and only if Φ f (p) is defined;

• For all p ∈ P such that Φ f (p) is defined:

– φ f (p,0) = θX(p);

– φ f (p,Tf) = θY (Φ f (p));

– For all t ∈ [0,Tf], the sets πi(φ f (p, t)) ·Ui are pairwise disjoint.

If X and Y are two objects of Geom such that X and Y do not have the same sequence of simple objects,

then there are no morphisms between X and Y .

Morphisms f : X →Y and g : Y → Z, specified using the pattern established above, can be composed

as follows. We set Φg◦ f = Φg ◦Φ f (composition of partial functions) and define φg◦ f by:

φg◦ f (p, t) =

{

φ f (p, t) t ∈ [0,Tf] and Φg◦ f (p) is defined

φg(Φ f (p), t−Tf) t ∈ [Tf ,Tf +Tg] and Φg◦ f (p) is defined.

It is clear that identity morphisms exist and that composition is associative, so Geom is in fact a category.

In fact, Geom is a Poset-enriched category, where f ≤ g if and only if Tf = Tg and Φ f ≤Φg and φ f ≤ φg

as partial functions.

The category Geom admits a useful notion of “tensor product of objects,” defined as follows. Let

X ,Y ∈ Ob(Geom); then X ⊗Y is defined to be the object ({Xi}
kX

i=1⊔{Yj}
kY

j=1,PX ⊗PY ,(θX ×θY)|PX⊗PY
),

where PX ⊗PY is the subspace of PX ×PY given by the set:

{(px, py) ∈ PX ×PY : ∀i, j, (θX ,i(px) ·Xi)∩ (θY, j(py) ·Yj) = /0}.

6Here SE(3) is the group of rigid motions in R
3.

46 Symmetric Monoidal Categories with Attributes

In other words, PX⊗PY is the largest subset P of PX×PY for which ({Ui}
kX

i=1∪{Vj}
kY

j=1,P,(θX ×θY)|P) is

a valid object of Geom. It is not clear how to extend or adapt this notion to allow for “tensor products of

morphisms,” which would equip Geom with a symmetric monoidal structure or something of that sort.7

We can specify the geometric semantics of a given category with attributes C by defining a functor

F : C → Geom. (This F may be Poset-enriched if the attribute structure on C is.) In order to construct

such an F , we would need models of all the relevant objects and processes in C . Hence, instead of

outright defining any such F here, we describe properties F should satisfy.

We expect that F sends an entity A ∈ObC to an object F(A) ∈ Geom with simple objects consisting

of the component parts of some physical model of A, parameter space describing the possible states of A,

and structure map attaching to each state a physical configuration of the component parts. This approach

works even if A is a value; in this case, F(A) has no simple objects (kF(A) = 0) and so is described entirely

by its parameter space.

The functor F sends a morphism f : A → B to a physical model of the process specified by f .

Specifically, given a state p∈PF(A), the map ΦF(f) sends p to the state achieved by applying f to a system

in the state p (if such a state exists), while φF(f) describes the physical motion needed to accomplish this

change in state.

When A is a value / data service, the morphisms µA,δA,εA making A into a data service would

typically be sent to morphisms much like those of the canonical data service structures on objects of

PartFn. For example, ΦF(δA) might be the partial function PA→ PA×PA given by p 7→ (p, p); in this case,

we would have TF(δA) = 0 and φF(δA)(p,0) = ΦF(δA)(p) = (p, p). The image of the natural transformation

γ from the attribute structure could be defined in a similar way.

We can instantiate the discussion at the beginning of this section in the context of geometric semantics

as follows. We have a canonical functor Geom→ PartFn (the category of sets and partial functions)

defined by X 7→ PX and f 7→ Φ f . Composing this functor with the standard equivalence PartFn ≃ Set∗
(the category of pointed sets and point-preserving maps) and the forgetful functor Set∗→ Set yields a

forgetful functor G : Geom→ Set.

Given F and G as above, the functor S = F ◦G : Geom→ Set sends X ∈ObC to the parameter space

of some model of X and a morphism to its action on such parameter spaces. If we consider the state of

an object to be entirely determined by a point in its parameter space (and also allow the existence of an

“undefined” state for each object of C), then the category of elements el(S) consists of states of objects

in C and processes in C transforming the domain state into the codomain state.

4 Conclusion

In this work, we have presented a categorical interpretation of the notion of an “attribute” of an object. We

have also discussed example applications of this interpretation to the categorical modeling of robotics,

illustrating how categorical perspectives can be used for the benefit of engineering and other applied

fields.

Several interesting questions remain about categorical notions of “attributes.” For example, it appears

that several of the axioms for Poset-enriched categories with elements break down when considered with

respect to subprobabilistic semantics, e.g. semantics valued in the category SRel of [8], leading one to

wonder how the approach here might be modified for compatibility with such semantics. In addition, it

7The difficulty lies in the interchange law (f1⊗g1)◦ (f2⊗g2) = (f1 · f2)⊗ (g1 ◦g2); when morphisms represent paths (as

above), rather than paths up to some suitable notion of homotopy or reparametrization, this law does not hold for “obvious”

definitions of ⊗.

S. Breiner and J. S. Nolan 47

is sometimes useful to think of time as an attribute of an object, although there are enough differences

between time and the other attributes discussed here that it seems that a separate formalism might work

better for modeling time. We hope that future work in this area will be able to resolve some of these

questions.

Acknowledgments

The authors would like to thank Angeline Aguinaldo, Blake Pollard, Fred Proctor, and Eswaran Sub-

rahmanian for helpful comments and discussions. Thanks are also due to the anonymous reviewers for

comments that helped the authors improve and clarify aspects of this paper.

The second named author would also like to thank the organizers of the Applied Category Theory

2020 Adjoint School for providing an excellent environment in which to gain a deeper understanding

of category theory. In particular, special thanks are due to Paolo Perrone, whose references to cate-

gories of elements during meetings of the School helped the second author to realize the role that such

constructions played in the semantics of categories with attributes.

Disclaimer

This paper includes contributions from the U. S. National Institute of Standards and Technology, and

is not subject to copyright in the United States. Commercial products are identified in this article to

adequately specify the material. This does not imply recommendation or endorsement by the National

Institute of Standards and Technology, nor does it imply the materials identified are necessarily the best

available for the purpose.

References

[1] Lowell Abrams (1999): Modules, comodules, and cotensor products over Frobenius algebras. Journal of

Algebra 219(1), pp. 201–213, doi:10.1006/jabr.1999.7901.

[2] Angeline Aguinaldo, Spencer Breiner, John S Nolan & Blake S Pollard: Robot planning with string diagrams.

In preparation.

[3] Filippo Bonchi, Dusko Pavlovic & Paweł Sobociński (2017): Functorial semantics for relational theories.

arXiv preprint arXiv:1711.08699. Available at https://arxiv.org/abs/1711.08699.

[4] Bob Coecke & Aleks Kissinger (2017): Picturing quantum processes. Cambridge University Press,

doi:10.1017/9781316219317.

[5] Brendan Fong & David I. Spivak (2019): Seven Sketches in Compositionality: An Invitation to

Applied Category Theory. Cambridge University Press, doi:10.1017/9781108668804. Available at

https://math.mit.edu/~dspivak/teaching/sp18/7Sketches.pdf.

[6] Peter T Johnstone (1982): Stone spaces. Cambridge studies in advanced mathematics 3, Cambridge University

Press.

[7] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel

Weld & David Wilkins (1998): PDDL-the planning domain definition language. Technical Report

CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control. Available at

http://icaps-conference.org/ipc2008/deterministic/data/mcdermott-et-al-tr-1998.pdf.

[8] Prakash Panangaden (1998): Probabilistic relations. School of Computer Science Research Reports - Univer-

sity of Birmingham CSR, pp. 59–74.

http://dx.doi.org/10.1006/jabr.1999.7901
https://arxiv.org/abs/1711.08699
http://dx.doi.org/10.1017/9781316219317
http://dx.doi.org/10.1017/9781108668804
https://math.mit.edu/~dspivak/teaching/sp18/7Sketches.pdf
http://icaps-conference.org/ipc2008/deterministic/data/mcdermott-et-al-tr-1998.pdf

48 Symmetric Monoidal Categories with Attributes

[9] Dusko Pavlovic (2013): Monoidal computer I: Basic computability by string diagrams. Information and

computation 226, pp. 94–116, doi:10.1016/j.ic.2013.03.007.

http://dx.doi.org/10.1016/j.ic.2013.03.007

	1 Introduction
	2 Categories with Attributes
	2.1 General Case
	2.2 Poset-Enriched Case
	2.3 An Example

	3 Semantics
	3.1 Boolean Semantics
	3.2 Geometric Semantics

	4 Conclusion

