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Morphisms in a monoidal category are usually interpreted as processes, and graphically depicted as
square boxes. In practice, we are faced with the problem of interpreting what non-square boxes ought
to represent in terms of the monoidal category and, more importantly, how should they be composed.
Examples of this situation include lenses or learners. We propose a description of these non-square
boxes, which we call open diagrams, using the monoidal bicategory of profunctors. A graphical
coend calculus can then be used to reason about open diagrams and their compositions.

1 Introduction

1.1 Open Diagrams

Morphisms in monoidal categories are interpreted as processes with inputs and outputs and generally
represented by square boxes. This interpretation, however, raises the question of how to represent a
process that does not consume all the inputs at the same time or a process that does not produce all the
outputs at the same time. For instance, consider a process that consumes an input, produces an output,
then consumes a second input and ends producing an output. Graphically, we have a clear idea of how
this process should be represented, even if it is not a morphism in the category.

A
X Y

B

Figure 1: A process with a non-standard shape. The input A is taken at the begin-
ning, then the output X is produced, strictly after that, the input Y is taken; finally,
the output B is produced.

Reasoning graphically, it seems clear, for instance, that we should be able to plug a morphism con-
necting the first output to the second input inside this process and get back an actual morphism of the
category.
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A B
f

Figure 2: It is possible to plug a morphism f : X → Y inside the previous process
(Figure 1), and, importantly, get back a morphism A→ B.

The particular shape depicted above has been studied by [29] under the name of (monoidal) optic;
it can be also called a monoidal lens; and it has applications in bidirectional data accessing [28, 5, 21]
or compositional game theory [13]. A multi-legged generalization has appeared also in quantum circuit
design [8] and quantum causality [20] as a notational convention, see [30]. It can be shown that boxes
of that particular shape should correspond to elements of a suitable coend (Figure 3, see also §1.2 and
[24, 29]). The intuition for this coend representation is to first consider a tuple of morphisms, and then
quotient out by the equivalence relation generated by sliding morphisms along connected wires.

f gA
X Y

B ∼ f gA
X Y

B

Figure 3: A box of this shape is meant to represent a pair of morphisms in a monoi-
dal category quotiented out by ”sliding a morphism” over the upper wire.

It has remained unclear, however, how this process should be carried in full generality and if it was
on solid ground. Are we being formal when we use these open or incomplete diagrams? What happens
with all the other possible shapes that one would want to consider in a monoidal category? In general, we
cannot assume that they are squares. For instance, the second of the shapes in Figure 4 has three inputs
and two outputs, but the first input cannot affect the last output; and the last input cannot affect the first
output.1

gA X Y Bf f

g

h

Figure 4: Some other shapes for boxes in a monoidal category.

This article presents the idea that incomplete diagrams should be interpreted as valid diagrams in
the monoidal bicategory of profunctors; and that compositions of incomplete diagrams correspond to
reductions that employ the monoidal bicategory structure. At the same time, this amounts to a graphical
presentation of coend calculus.

1This particular shape comes from a question by Nathaniel Virgo.
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1.2 Coend calculus

Coends are particular cases of colimits and coend calculus is a practical formalism that uses Yoneda
reductions to describe isomorphisms between them. Their dual counterparts are ends, and formalisms
for both interact nicely in a (Co)End calculus [22].

Definition 1.1. The coend
∫ X∈C P(X ,X) of a profunctor P : Cop×C→ Set is the coequalizer of the

action of morphisms on both arguments of the profunctor.

∫ X∈C
P(X ,X)∼= coeq

( ⊔
f : B→A P(A,B)

⊔
X∈C P(X ,X)

)
.

An element of the coend is an equivalence class of pairs [X ,x ∈ P(X ,X)] under the equivalence relation
generated by [X ,P( f , idX)(p)]∼ [Y,P(idY , f )(p)] for each f : X → Y .

Our main idea is to use these equivalence relations to deal with the quotienting arising in non-square
monoidal boxes.

f gA
X Y

B ∼ f gA
X Y

B

∫ M
C(A,M⊗X)×C(M⊗Y,B).

Figure 5: We can go back to Figure 3 to check how it coincides with the quotienting
arising from a coend.

1.3 Contributions

Our first contribution is a graphical calculus of shapes of open diagrams (§2), with semantics on the
monoidal bicategory of profunctors, and with an emphasis on representing monoidal structures. We
show how to compose and simplify shapes (§3). Our second contribution is a graphical calculus of open
diagrams, in terms of the category of pointed profunctors, and hinting at a pseudofunctorial analogue of
functor boxes [23] (§4).

As examples, we recast the multiple ways of composing monoidal lenses and other coend construc-
tions on the literature on optics (§2.3). We also study categories with feedback (§2.4).

2 Shapes of Open Diagrams

In the same sense that morphisms sharing the same domain and codomain are collected into a hom-set;
open diagrams sharing the same shape will be also collected into a set. Our first step is a graphical lan-
guage for shapes and a compositional interpretation that assigns a set to each shape (which we anticipate
in Figure 6).
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A BX Y ∼=
∫ M,N

C(A,M⊗X⊗N)×C(M⊗Y ⊗N,B),

I0

I1
O1

O2I2

∼=
∫ M,N

C(I0,M⊗N)×C(I1⊗M,O1)×C(N⊗ I2,O2).

Figure 6: The shapes of Figure 4, abstracted as string diagrams, define sets.

2.1 String Diagrams

Shapes are closed string diagrams in Prof, the monoidal bicategory of profunctors [22, §5]. Wires rep-
resent small categories (A,B,C, . . .); when unlabelled, they are understood to represent some fixed cat-
egory. Diagrams with input A and output B are profunctors Aop×B→ Set. Deformations are natural
transformations. Sequential composition of diagrams with matching wires composes two profunctors
P : Aop×B→ Set and Q : Bop×C→ Set into the profunctor (P�Q) : Aop×C→ Set given by

(P�Q)(A,C) :=
∫ B∈B

P(A,B)×Q(B,C).

Parallel composition of diagrams uses the cartesian product of categories and the terminal category
as unit. Laying two profunctors P1 : Aop

1 ×B1 → Set and P2 : Aop
2 ×B2 → Set in parallel yields the

profunctor (P1⊗P2) : (A1×A2)
op× (B1×B2)→ Set defined by

(P1⊗P2)(A1,A2,B1,B2) := P1(A1,B1)×P2(A2,B2).

As a consequence, closed string diagrams represent sets, as profunctors 1op×1→ Set.
The string diagrammatic calculus for monoidal bicategories has been studied by Bartlett [2] ex-

panding on a strictification result by Schommer-Pries [31]. It is similar to the graphical calculus of
monoidal categories, with the caveat that deformations correspond to invertible 2-cells instead of equal-
ities. Henceforward, the symbols (→) and (∼=) between diagrams will denote natural transformations
and natural isomorphisms, respectively. It can be also seen as a “sliced” version of surface diagrams.
Definition 2.1 (Input and output ports). Every object A∈C determines two profunctors via its contravari-
ant and covariant Yoneda embeddings, ( A ) := C(A,−) : 1op×C→ Set and ( A ) := C(−,A) : Cop×
1→ Set.
Definition 2.2 (Junctions and forks). Every monoidal category (C,⊗, I) has a canonical pseudomonoid
structure on the monoidal bicategory Prof given by ( ) := C(−⊗−,−) and ( ) := C(I,−), and also a
canonical pseudocomonoid structure given by ( ) := C(−,−⊗−) and ( ) := C(−, I).
Proposition 2.3. By definition, ( I )∼= ( ) and ( I )∼= ( ); moreover,

A

B
∼= A⊗B

A

B
∼= A⊗B

In general, Yoneda embeddings are pseudofunctorial.
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2.2 Copying and discarding

Shapes define sets in terms of coends, making them less practical for direct manipulation. However,
shapes can be reduced to more familiar descriptions in some particular cases. For instance, if C is
cartesian monoidal, the leftmost shape of Figure 7 reduces to a pair of morphisms C(I0× I1,O1) and
C(I0× I2,O2). This justifies our previous intuition, back in Figure 4, that the input I1 should not be able
to affect O2, while the input I2 should not be able to affect O1.

I0

I1
O1

O2I2

∼= I0

I1
O1

O2I2

∼=
I0

I1
O1

O2I2

I0

Figure 7: Simplifying a diagram.

Our second step is to justify some reductions like these in the cases of cartesian, cocartesian and
symmetric monoidal categories. Every object of the category of profunctors has already a canonical
pseudocomonoid structure lifted from Cat which is given by ( ) := C(−0,−1)×C(−0,−2) and ( ) :=
1, and also a pseudomonoid structure given by ( ) := C(−1,−0)×C(−2,−0), and ( ) := 1. These
two structures “copy and discard” representable and corepresentable functors, respectively.

Proposition 2.4 (Cartesian and cocartesian). A monoidal category is cartesian if and only if ( )∼= ( )
and ( ) ∼= ( ), i.e. the monoidal structure coincides with the canonical one. Dually, a monoidal
category is cocartesian if and only if ( )∼= ( ) and ( )∼= ( ).

Proof. The natural isomorphism C(X ,Y ⊗Z)∼= C(X ,Y )×C(X ,Z) is precisely the universal property of
the product; a similar reasoning holds for initial objects, terminal objects and coproducts.

Proposition 2.5 (Symmetric monoidal). If a monoidal category C is symmetric then its symmetric
pseudomonoid structure can be lifted from Cat to Prof. The braiding determines σ : ( ) ∼= ( ) and
σ∗ : ( )∼= ( ), dual 2-cells in the bicategory Prof that commute with unitors and associators.

2.3 Example: Lenses

We study lenses using the graphical calculus just described. This presents a new way of describing
reductions with coend calculus that also formalizes the intuition of lenses as diagrams with holes. Pro-
functor optics and lenses have been studied in functional programming [21, 24, 28, 5] for bidirectional
data accessing. The theory of optics uses coend calculus both to describe how optics compose and how
to reduce them in sufficiently well-behaved cases to tuples of morphisms. Categories of monoidal optics
and the informal interpretation of optics as diagrams with holes are described in [29].

Definition 2.6. A monoidal lens [24, 28, 29, “Optic” in Definition 2.0.1] from A,B ∈ C to X ,Y ∈ C is
an element of the following set.
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A
X Y

B ∼=
∫ M

C(A,M⊗X)×C(M⊗Y,B)

Cartesian lenses are examples of monoidal lenses that are especially important in applications [11,
13].

Proposition 2.7. In a cartesian category C, a lens (A,B)→ (X ,Y ) is given by a pair of morphisms
C(A,X) and C(A×Y,B). In a cocartesian category, lenses are called prisms [21] and they are given by
a pair of morphisms C(S,A+T ) and C(B,T ).

Proof. We write the proof for lenses, the proof for prisms is dual and can be obtained by mirroring the
diagrams. The coend derivation can be found, for instance, in [24].

A
X Y

B
∫ M

C(A,M×X)×C(M×Y,B)

∼= {( )∼= ( )} ∼= {Universal property of the product}

A
X Y

B
∫ M

C(A,M)×C(A,X)×C(M×Y,B)

∼= {Copy} ∼= {Yoneda lemma}

XA
A

B
Y

C(A,X)×C(A×Y,B)

2.4 Example: Feedback

Shapes do not need to be limited to a single category. For instance, we can make use of the opposite
category to introduce feedback, in the sense of the categories with feedback of [19]. Wires in the opposite
category will be marked with an arrow to distinguish them.

X Y
=

∫ M∈C
C(M⊗X ,M⊗Y ).

Figure 8: A shape with feedback, interpreted as a set.

Proposition 2.8 (see [33]). Profunctors form a compact closed bicategory. The dual of a category is its
opposite category.



Mario Román 71

3 Composing and Reducing Shapes

We have been focusing on the invertible transformations between shapes, but arguably the most interest-
ing case is that of non-invertible transformations. Our next step is to describe rules for composing and
reducing diagrams that translate to valid coend calculus reductions.
Definition 3.1 (Joining and splitting wires). Identities and composition define natural transformations
ηA : ( )→ ( A A ) and εA : ( A A )→ ( ). They determine an adjunction, as the following trans-
formations are identities.

( A )
η→ ( A A A )

ε→ ( A ); ( A )
ε→ ( A A A )

η→ ( A ).

In the same vein, junctions and forks have natural transformations ε⊗ : ( )→ ( ) and η⊗ : ( )→
( ). They determine an adjunction, as the following transformations are identities.

( )
η→ ( )

ε→ ( ); ( )
η→ ( )

ε→ ( ).

For instance, as we saw in the introduction (Figure 2), a lens (A,B)→ (X ,Y ) can be composed with
a morphism X → Y to obtain a morphism A→ B.

A
X Y

B

YX

(∫ M
C(A,M⊗X)×C(M⊗Y,B)

)
×C(X ,Y )

∼= {Isotopy} ∼= {Continuity}

A
X Y

B
X Y

∫ M
C(A,M⊗X)×C(X ,Y )×C(M⊗Y,B)

→ {εX} → {Composition along X}

A
Y

B
Y

∫ M
C(A,M⊗Y )×C(M⊗Y,B)

→ {εY} → {Composition along Y}

A B
∫ M,N

C(A,M⊗N)×C(M⊗N,B)

→ {ε⊗} → {Composition along M⊗N}

BA C(A,B)

Figure 9: Composing a lens with a morphism, formalizing Figure 2.

3.1 Example: Categories of Optics

Two lenses of types (A,B)→ (X ,Y ) and (X ,Y )→ (U,V ) can be composed with each other to form
a category of optics [29]. There is, however, another way of composing two lenses. When the base
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category is symmetric, a lens (A,Y )→ (X ,V ) can be composed with a lens (X ,B)→ (U,Y ) into a lens
(A,B)→ (U,Y ). We will observe that, even if Prof is symmetric, the reduction explicitly uses symmetry
on the base category C.

A
X Y

B X
U V

Y A
X V

Y X
U Y

B

∼= ∼=

A
X Y

B
X

U V
Y

A
X

U

B

X Y
V

Y

→ {εX} → {εX}

A
Y

B

U V
Y

A

U

B

Y
V

Y

→ {εY} → {εY}

A B

U V

A

U

B

V

→ {α} → {α}

A B
U V

A

U

B

V

→ {ε⊗} ∼= {σ , symmetry}

A
U V

B
A

U

B

V

→ {ε⊗}

A
U V

B

Figure 10: In parallel, two possible compositions of optics.

3.2 Example: from Lenses to Dynamical Systems

In [32, Definition 2.3.1], a discrete dynamical system, a Moore machine, is characterized to have the same
data as a lens (A,A)→ (X ,Y ). The following derivation is a conceptual justification of this coincidence: a
lens with suitable types can be made into a morphism of the free category with feedback [19], subsuming
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particular cases such as Moore machines.

X Y
AA

∫ M
C(A,M⊗X)×C(M⊗Y,A)

∼= {Isotopy} ∼= {Commutativity of (×)}

XY
A A

∫ M
C(M⊗Y,A)×C(A,M⊗X)

→ {εA} → {Composition along A}

Y X

∫ M
C(M⊗Y,M⊗X)

Figure 11: From lenses to dynamical systems.

4 Open Diagrams

Our final contribution is to justify how to obtain the diagrams that originally motivated this article (open
diagrams) by “looking inside” the shapes. So far, the element of a set described by a shape could be only
expressed as a derivation of the shape from the empty diagram. In this section, we show diagrams that
summarize these derivations and that represent specific elements of the shape.

f ,g→ f gA
M

X

M

Y
B

εM→ f g

X Y
A B

Figure 12: Open diagrams represent specific elements.

4.1 Open Diagrams

Open diagrams will be interpreted in Prof∗, the symmetric monoidal bicategory of pointed profunctors.
Its 0-cells are categories with a chosen object; its 1-cells from (A,X) to (B,Y ) are profunctors P : Aop×
B→ Set with a chosen point p ∈ P(X ,Y ); and its 2-cells are natural transformations preserving that
chosen point. The point will keep track of a specific element of the shape.

Proposition 4.1. Reductions on shapes can be lifted to reductions on open diagrams.

Proof. There exists a pseudofunctor U : Prof∗→ Prof that forgets about the specific point. It holds that
a ∈ A for every element (A,a) ∈ Prof∗((1,1),(1,1)). Natural transformations α : P→ Q can be lifted
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to α∗ : (P, p)→ (Q,α(p)) in a unique way, determining a discrete opfibration Prof∗((A,A),(B,B))→
Prof(A,B) for every pair of pointed categories (A,A) and (B,B).

Proposition 4.2. Diagrams on the base category can be lifted to open diagrams.

Proof. Let C be a small category. There exists a pseudofunctor C→ Prof∗ sending every object A ∈ C
to the 0-cell pair (C,A) and every morphism f ∈ C(A,B) to the 1-cell pair (homC, f ). Moreover, when
(C,⊗, I) is monoidal, the pseudofunctor is lax and oplax monoidal (weak pseudofunctor in [25]), with
oplaxators being left adjoint to laxators.

This can be called an op-ajax monoidal pseudofunctor, following the notion of ajax monoidal functor
from [12].

The graphical calculus for open diagrams can then be interpreted as the graphical calculus of pointed
profunctors enhanced with a pseudofunctorial box, in the same vein as the functor boxes of [23]. Similar
“internal diagrams” have been described before by [3] as a “graphical mnemonic notation”.

4.2 Example: Categories of Optics

The lens 〈g, f 〉 : (A,B)→ (X ,Y ) is depicted as the following open diagram.

f g

X Y
A B ∈ A

X Y
B

The quotienting that makes 〈g,(m⊗ idX) ◦ f 〉 = 〈g ◦ (m⊗ idY ), f 〉 is explicit in this graphical calculus.
The following two diagrams are equal in the category Prof∗: they represent the same set and the same
element within it.

f g

X Y
A B

m
= f g

X Y
A B

m

Let us repeat an important caveat: the same diagram, after a deformation, describes a different, although
isomorphic, set. A diagram describes a set only up to isomorphism. This raises a subtlety: we cannot
speak of equality between open diagrams with different shapes, for they belong to different sets. We
could however speak of equality between two open diagrams such that the shape of the first can be
deformed into the shape of the second. The deformation determines a particular isomorphism between
the sets defined by the shapes. Equality of elements on isomorphic sets is understood to be equality after
applying that isomorphism.

For instance, the following two elements, (λ ◦ f ) ∈ C(A,B⊗ I) and f ∈ C(A,B), are equal after the
deformation given by counitality of the pseudocomonoid structure. fA

B
∈

B
A

 {λ⊗}∼=

 f BA ∈ BA
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We will now use open diagrams to justify that both compositions from Example 3.1 determine a
category. Consider two pairs of lenses of suitable types.

f1 g1

X Y
A B f2 g2

U V
X Y ∈ A

X Y
B X

U V
Y

f ′1 g′1
X V

A Y f ′2 g′2
U Y

X B ∈ A
X V

Y X
U Y

B

We can use Proposition 4.1 to lift the two compositions in Example 3.1 to two deformations of open
diagrams that send the two pairs of lenses to the following two open diagrams, respectively.

f1

f2

A

U

B

V

g1

g2

f ′1
f ′2

A

U

B

V

g′1
g′2

Let us show that a category can be defined from the first composition. Consider three lenses oi for
i = 1,2,3. We have two ways of composing them, as o1 ◦ (o2 ◦ o3) or (o1 ◦ o2) ◦ o3, but they both give
rise to the same final diagram, thanks to associativity of the base monoidal category. The identity is the
diagram on the right.

f1

f2

f3
A4

A1 B1

B4

g1

g2

g3

A
AA

A

For the second composition, checking associativity amounts to the following equality. The identity is the
same as in the previous case.

f ′1
f ′2

f ′3

A1

A3

B3

B1

g′3
g′2

g′1
=

f ′1
f ′2

f ′3
A3

B3

B1

A1 g′3
g′2

g′1

The graphical calculus is hiding at the same time the details of two structures. The first is the quotient
relation given by the coend in the monoidal bicategory of profunctors; the second is the coherence of the
base monoidal category inside the pseudofunctorial box.

5 Related and Further Work

The graphical calculus for profunctors can be seen as a direction in which the graphical calculus for the
cartesian bicategory of relations [6, 12] can be categorified. A notion of cartesian bicategory generalizing
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relations is discussed in [7]. For a slightly different future direction, we could try to relate this work to
many of the interesting applications of compact closed bicategories (see [33]); such as resistor networks,
double-entry bookeeping [18] or higher linear algebra [17].

Certain shapes open diagrams have been described in the literature. Specifically, finite combs were
used as notation by [8, 20, 29]; the relation with lenses is described in [30]. Previous graphical calculi
for lenses and optics [16, 4] have elegantly captured some aspects of optics by working on the Kleisli or
Eilenberg-Moore categories of the Pastro-Street monoidal monad [27]. The present approach diverges
from previous formalisms on optics by focusing on the monoidal structure of the bicategory of profunc-
tors, which seems to be crucial for the case of optics while not considered by previous work (neither for
arbitrary profunctors nor for Tambara modules). It is more general than considering combs, as it can ex-
press arbitrary shapes in non-symmetric monoidal categories. In any case, it enables us to reason about
categories of optics themselves; the results on optics of [9] can be greatly simplified in this calculus.
We believe that it is closer to, and it provides a formal explanation to the diagrams with holes of [29,
Definition 2.0.1], which were missing from previous approaches.

Most of our first part can be repeated for arbitrary monoidal bicategories such as enriched profunctors
or spans. Multiple approaches to open systems (decorated cospans [10], structured cospans [1]) could
be related in this way to open diagrams, but we have not explored this possibility yet. Another potential
direction is to repeat this reasoning for the case of double categories and obtain a “tile” version of these
diagrams (see [26, 14]).

6 Conclusions

We have presented a way to study and compose processes in monoidal categories that do not necessarily
have the usual shape of a square box without losing the benefits of the usual language of monoidal cate-
gories. Direct applications seem to be circuit design, see [8], or the theory of optics [9]. This technique is
justified by the formalism of coend calculus [22] and string diagrams for monoidal bicategories [2]. We
also argue that the graphical representation of coend calculus is helpful to its understanding: contrasting
with usual presentations of coends that are usually centered around the Yoneda reductions, the graphical
approach seems to put more weight in the non-reversible transformations while making most applica-
tions of Yoneda lemma transparent. Regarding open diagrams, we can think of many other applications
that have not been described in this article: we could speak of multiple categories at the same time and
combine open diagrams of any of them using functors and adjunctions. This work has opened many
paths that we aim to further explore.

We have been working in the symmetric monoidal bicategory of profunctors for simplicity, but sim-
ilar results extend to the symmetric monoidal bicategory of V -profunctors for V a Bénabou cosmos
[22, §5]. We can also consider arbitrary monoidal bicategories and drop the requirements for symmetry,
copying or discarding. Finally, there is an important shortcoming to this approach that we leave as further
work: the present graphical calculus is an extremely good tool for coend calculus, but it remains to see
if it is so for (co)end calculus. In other words, ends “enter the picture” only as natural transformations
(see [34]), and this can feel limiting even if, after applying Yoneda embeddings, it usually suffices for
most applications. As it happens with diagrammatic presentations of regular logic [6, 12], the existential
quantifier plays a more prominent role. Diagrammatic approaches to obtaining the universal quantifier
in a situation like this go back to Peirce and are described by [15].
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