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We present simple models of trajectories in space, both in 2D and in 3D. The first examples, which
model bicircular moves in the same direction, are classical curves (epicycloids, etc.). Then, we
explore bicircular moves in reverse direction and tricircular moves in 2D and 3D, to explore complex
visualisations of extraplanetary movements. These moves are studied in a plane setting. Then, adding
increasing complexity, we explore them in a non planar setting (which is a closer model of the real
situation). The exploration is followed by using these approaches for creating mathematical art in 2D
and 3D printed objects, providing new ways of mathematical representations. Students’ activities are
organized around this exploration.

1 Introduction

All over the world, newspapers and TV news are full of reports about launching satellites, the Interna-
tional Space Station, the Chinese space station, Mars exploration and the Artemis project to establish a
permanent human presence on the Moon. Nowadays, the NASA offers the public to send their names
on a probe to be launched in 2024 and arrive to Encelade, an icy moon of Jupiter, in 2030. With such
an ubiquitous topic, students asked a lot of questions, about spacecrafts, their trajectories, their trajec-
tories, why these are curved and sometimes complicated, etc. Numerous dedicated websites are freely
accessible, showing representations of trajectories of extraplanetary objects. These are connected to the
students’ cultural background, on which it is worth to rely in order to attract students to mathematics,
and to show applications in real world [4]. This paper explores mathematical situations with a STEAM
approach visualising curves in 2D and 3D with various technologies to use the motivational fascination
of outer space from students to connect to mathematical modelling.

When asking about spacecrafts, they wish to understand the trajectories. Not all the news items
include graphs and maps of the trajectories, but they frequently do so and can be the source of ques-
tions, whence of mathematical activities. These are good reasons for mathematics educators to be part
of this atmosphere, showing complex real world applications of mathematics. Examples could be curves
describing trajectories or calculating the speed of objects in an accessible way by interactive visualiza-
tions and explanatory animations. Students have the opportunity to create and explore these trajectories
themselves by visualising them using mathematical modelling and certain technologies and we present
possible approaches in 2D and 3D.

According to the 1st Kepler’s law (see [8], p. 127), the orbit of a planet around the Sun is an ellipse,
with the Sun at one of the foci. As the foci are very close, actually both inside the Sun,1 in order to make

1Actually, in a system of two objects, both orbit their common center of gravity. The system Sun-Earth’s center of gravity is
inside the Sun, therefore considering the Earth as orbiting the Sun is acceptable. Of course, every other pair Sun-Planet presents
the same situation.
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the example as simple as possible, we consider an approximation of the orbits as coplanar concentric
circles. Kepler’s 2nd law is illustrated by figure 1, taken from [8] p. 129: the areas of the shaded sectors,
covered by the radius in equal times (i.e. it takes equal times to travel distances AB, CD and EF), are
equal.

Figure 1: Kepler’s 2nd law of planetary motion

In our simplified model, we consider motion with constant angular velocity on circular orbits. We
compute the velocities according to the year length of the planet, with Earth year equal to 1. Note that Ta-
ble 1 displays just the eight official planets acknowledged by the international astronomical organization.
According to the 3rd Kepler’s law, the orbital velocity is a function of the distance to the Sun.

Planet Distance to the Sun (km) Period (1=terrestrial year)
Mercury 57.91 106 km 0.2408
Venus 108.2 106 km 0.6152
Earth 149.6 106 km 1
Mars 227.9 106 km 1.8808

Jupiter 778.5 106 km 11.862
Saturn 1.434 109 km 29.457
Uranus 2.871 109 km 84.018
Neptune 4.495 109 km 164.78

Table 1: Some orbital data

Because of the huge differences between the distances and the hardware constraints2 (we mean
mostly the size of the screen and the number of available pixels), we will consider examples with Earth
and Mars only. The same activities can be done with the pair Venus-Earth, they will produce the same
family of curves. Note that in order to make the first examples easy, we use approximations less precise
than in Table 1.

The visualisations we explore in this paper are created by two softwares called GeoGebra and Maple
to utilise their respective strengths. We use GeoGebra,3 whose main characteristic is devoted to Dynamic
Geometry. For some applications, including automated determination of loci and envelopes, it can be
supplemented with the package GeoGebra-Discovery.4 A general analysis of the automated methods for

2A general study of constraints, either of the hardware or of the software can be found in [9], with some extension in [2].
3Freely downloadable from http://www.geogebra.org.
4Look for the last version, freely downloadable from https://github.com/kovzol/geogebra-discovery.

http://www.geogebra.org
https://github.com/kovzol/geogebra-discovery
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loci and envelopes is given in [6]. We will also use the Computer Algebra System Maple for its specific
animated affordances, which are different from those of GeoGebra.

Exploration of curves obtained as trajectories of points modeling moves in space, such as midpoint
or center of gravity of two planets, is described and analyzed in [3,5]. The present paper is a new contri-
bution, with more complex constructions. Its goal is to present mathematical situations with a STEAM5

approach, where plane curves, either algebraic or not, are presented and some of their properties explored
using technology. We see this kind of study as an opportunity to connect to the classical families of plane
curves in a motivating manner for students and can be used as a unifying frame for cases previously seen
as separate cases. Later, space curves given by similar parametric equations are explored, also modelling
spatial phenomenon. The ratio of the mean radii of two neighboring planets (such as Venus-Earth, or
Earth-Mars) is huge, and still more the ratio between the mean radius of the Earth orbit around the Sun
(about 149 Mkm) and the radius of the Moon’s orbit around the Earth (about 360,000 km), it is impos-
sible to represent both on a computer screen. Therefore, we chose to work with arbitrary6 coefficients,
whose variations provide different curves. We explore the composition of two circular movements in the
same direction (the general case in the Solar System). Figure 2 shows a simplified model of a spacecraft
flying to Mars, without explicit presentation of the orbiting direction around Mars.7

Figure 2: Trajectory from the Earth to the Mars orbit

We also consider the composition of 3 circular movements, inspired by lunar orbiters and observed
also from the Sun: they orbit the Moon, which orbits the Earth, which in its turn orbits the Sun. In
Subsection 2.2, we explore the composition of 3 circular movements, all in the same direction. In Sub-
section 2.3, we explore also models of a composition of movements, two in one direction and the 3rd

5STEAM = acronym for Science, Technology, Engineering, Arts and Mathematics.
6By arbitrary, we mean coefficients enabling a representation on the screen, not taken from the orbital data.
7Credit: NASA/JPL, https://marspedia.org/File:InSight_Trajectory.jpg

https://marspedia.org/File:InSight_Trajectory.jpg
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in reversed direction. The motivation for this is provided by the trajectories of spacecrafts to the Moon;
figure 3 shows a diagram of the trajectory of the Artemis 1 spacecraft, elliptic around the Earth, followed
by a transfer orbit made of arcs of ellipses, then elliptic around the Moon in reversed direction.8 The
geometric locus of the moving object around the Moon, when observed from the Sun, may be an epicy-
cloid, a hypocycloid or another already known curve. Here, more “exotic” curves are also explored and
plotted; in particular, rotational symmetries of order 7, 11, 13, etc. may be discovered. This provides an
opportunity for an interactive exploration of such symmetries.

Figure 3: Artemis orbit to the Moon and around (Credit: NASA)

Jablonski [7] says that “Mathematical modelling is characterized through its interplay of reality and
mathematics. It offers a way to integrate references to reality into the classroom and shows students
where in everyday life their mathematical knowledge can be applied.” Therefore, we started from real
world situations utilizing the amazement created by media reports. The first examples provide some
understanding of how the orbit of the Moon around the Sun looks like, but quickly we explored compo-
sitions of movements without a connection to reality. Changing the parameters (either ratio of radii or
ratio of angular velocities) induces important changes on the shape and topology of the curves. Tricir-
cular moves are inspired by, for example, lunar orbiters (which orbit the Moon, which orbits the Earth,
which in its turn orbits the Sun), or Mars orbiters. As already mentioned, figure 2 shows the trajectory
of Mars Orbiter, from start to arrival: at first ellipses around the Earth, then a transfer orbit (made of arcs
of ellipses), then elliptic orbits around Mars. This can be explained to students.

Instead of returning from models to the real world situation, which had to be understood, numerous
new directions are possible. As an example, curves of degree 8, obtained from a construction discon-
nected from the physical data, have been explored recently; see [6].

Finally, we explore artistic creation using these mathematical models. We obtain curves presenting
non usual symmetries and explore them using our software.

In the real world of the software may change. The exploration of the curves is an important incentive
to 3D print them. We quote once again Jablonski [7]: “The idea of involving real objects in mathematical
modelling leads to the question of how much the way in which a real object is introduced might influ-
ence the modelling processes of students. Despite its actual physical presence in reality, a real object
could be introduced through different representations and provided artefacts, e.g., newspaper articles,

8The trajectories of future Artemis missions will be different from this one, but based on the same principle.
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photographs, videos, 3D print replications or combinations. Potentially, the different representations of
the real object might lead to differences in the modelling activities of students and motivate a comparison
of them.”

2 Classical Curves and beyond

In all the examples we consider a planet (let us call it the Earth, orbiting the Sun at distance 1 (a reference
to 1 astronomical unit, 1 AU) at constant velocity, and completing 1 orbit in 1 year. The other coefficients
describe the mean radius of another planet and the length of its own year. The is described by the
following parametric presentation:

(x,y) = (cosu, sinu) , u ∈ R. (1)

For the animations with software, u ∈ [−0,2π] is enough with repetitive animation. We denote the pa-
rameter by u, as in GeoGebra t has a special role. The second planet is described by

(x,y) = r
(
cos

u
h
, sin

u
h

)
, u ∈ R, (2)

where r > 0 denotes the radius of the planet’s orbit and h encodes the length of its year.

2.1 Epicycloids in 2D and Extension towards 3D

Figure 4 shows a screenshot of a dedicated GeoGebra applet.9 The parameters can be changed with
slider bars. The figure on the left shows the trajectories in the plane containing the Sun, the planet and
its satellite. Here the satellite orbits the planet 12 times a year, almost modelling the Moon around the
Earth. The figure on the right shows a simulation when the Sun travels on a straight line; note that the 3
objects remain all the time in a plane which moves according to the Sun. For the 2D representation, the
orbits can be either plotted in a non-animated way using GeoGebra’s Locus command or to be animated
using the corresponding option of the slider bar. Nite that other way to animate the constructions are
available.

As already mentioned, the Sun is also mobile, it has its own orbit. Figure 4(a) shows a model where
the Sun moves along a segment of line. The planet and its satellite move in a plane containing the 3
objects (this plane is visible in blue). The commands are similar in 3D as in 2D. Note that the projection
on the plane is on display in the adjacent window. This is due to the total synchronisation of the 3D and
2D windows in GeoGebra. This task was an incitement to go to 3D printing.

A similar animation can be programmed with Maple. The code is easy: each object is defined in a
separate plot[animate] command, them all together they are displayed using the display command. The
Sun has two commands: one for plotting a large dot, the other one to plot the trajectory. An animated
gif can be obtained with a right-click on the output of the display command. A screenshot is shown in
figure 4(b).

c1 := spacecurve([cos(t) + 1/5*cos(12*t), sin(t) + 1/5*sin(12*t), t],
t = 0 .. 4*Pi, thickness = 3, labels = [x, y, z]):

sun := plots[animate](spacecurve, [[0, 0, t], t = 0 .. A], A = 0 .. 4*Pi,
thickness = 3, color = yellow)

sunplo := plots[animate](pointplot3d, [[0, 0, A]], A = 0 .. 4*Pi,

9See https://www.geogebra.org/m/ksyd6hat.

https://www.geogebra.org/m/ksyd6hat
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(a) GeoGebra (b) Maple

Figure 4: A satellite around a planet orbiting the Sun

color = orange, symbol = sphere)
planet := plots[animate](spacecurve, [[cos(t), sin(t), t], t = 0 .. A],
A = 0 .. 4*Pi, thickness = 3, color = navy)
sat := plots[animate](spacecurve, [[cos(t) + 1/5*cos(12*t), sin(t)

+ 1/5*sin(12*t), t], t = 0 .. A], A = 0 .. 4*Pi,
color = sienna, labels = [x, y, z]):

display(sun, planet, sat, sunplo)

2.2 Three Circular Movements with Constant Angular Velocity – Same Direction

Figure 5 shows snapshots of GeoGebra sessions based on the Locus command. Subfigure (c) is a snap-
shot of a GeoGebra applet10 with 2 parameters encoding the distances. A further step consists in adding
parameters to change the ratios of angular velocities.

(a) (b) (c)

Figure 5: Screenshots of a tricircular motion in the same direction

10See https://www.geogebra.org/m/sagpjzzb.

https://www.geogebra.org/m/sagpjzzb
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2.3 Three Circular Movements with Constant Angular Velocity – One in Reverse Direc-
tion

Figure 6 displays 3 curves obtained with the Locus command, in an applet11 where all the parameters
can vary. In what follows, we explore the symmetries of the obtained curves. These symmetries are often
of odd order, a situation which is not frequent in classroom.

(a) A 4-star (b) A strange star (c) A bat curve

Figure 6: Screenshots of a tricircular motion with the middle in reversed direction

We consider now the family of curves whose parametric equations are as follows:

(x,y,z) = (cosu,sinu)+
1
3

(cosau,sinau)+
1
2

(sinbu,ccosbu), (3)

where a,b encode the ratios of circular velocities. In the applet https://www.geogebra.org/m/jug
rcbx5, their increment is defined to be 1.

For a = b = 1, the curve is an ellipse. But there are other cases, maybe more interesting. Figure
7(a) has been obtained for (a,b) = (6,14) with the Curve command. It presents a 5-fold rotational
symmetry, i.e. it is invariant under a rotation whose center is the origin and of angle 2π/5. This has been
checked with a plot of the parametric equations for u ∈ [0,2π/5], the applying the automated command
for rotations. The colors have to be manually adapted to create visualisations that are easier to interpret
where each curve has a unique style. Part of GeoGebra’s algebraic display can be seen in figure 7(a) to
illustrate what has been done. The curve can also be plotted defining a variable point depending on the
parameter u, then applying the Locus command. The definition of a variable point provides a dynamic
plot of the curve, but both in this case and with the Locus command, the output is not a geometric object
on which a plane transformation can be applied.

Other cases have to be cautiously explored for symmetries. For example, the case (a,b) = (10,14)
shows a 3-fold symmetry (see figure 7(b). Experomentation will show that this also true for (a,b)= (7,14)
and (a,b) = (7,17).

2.4 Math Art Creation

The applet mentioned in the previous subsection has been opened, running animations for the parameters
a and b separately. Exploration has been preformed according the following steps:

• The entire curve is plotted, using Trace On;

• Analyzing the graphical display, the existence of rotational symmetry is conjectured;

11See https://www.geogebra.org/m/xgrx7ntx.

https://www.geogebra.org/m/jugrcbx5
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(a) 5-fold (b) 3-fold

Figure 7: Tricircular moves creating multicolor curves with rotational symmetries

• The rotational symmetry is checked by first reducing the plot to a subset of the interval chosen
for the parameter; we mean taking an interval of the form [0,2π/m], where m is te order of the
conjectured symmetry, and then using the automated command for a rotation about the origin with
angle 2π/m.

• Of course, this has to be checked afterwards by symbolic means, using a substitution.

Later, an experiment has been made, choosing an arbitrary number m, not the order of the rotational sym-
metry which has been discovered. The obtained multicolor plot does not describe a specific mathematical
situation. Some of the results are displayed in figure 8.

(a) (b) (c)

Figure 8: Some random math art creations

Discovering such creations has been greeted with enthusiasm by the audience of lectures delivered
by the authors, whose topics was linked to curves and math art.

3 Some More Remarks

The starting point of the study is STEAM oriented, namely using a scientific model from an item in
the news. Students may have prior interest in the domain, without having a strong knowledge. The
present topic offers an opportunity to collaborate between educators, between man and machine, of
course between students. The study output is multiple, and among the “rewards” we have:
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• Acquisition of new mathematical knowledge: classical curves (epicycloids, epitrochoids, etc.),
which are not part of the regular curriculum, have been discovered and studied. Epitrochoids are
members of a larger family of curves, which involves roses, epicycloids, etc. Activities as in this
work may be a nice incitement to explore other situations and to broaden horizons. The literature
describes generally the epitrochoids for integer values of the parameters, and our experimentations
showed also more general settings.

• Discovery of new curves; we mean curves which do not appear in the catalogues such as [10].

• Emphasis on the importance of the data precision (in space, contrary to most classrooms, nothing
is measured by integers) and of rounding. We considered non integer ratios of radii of orbits, and
of orbital angular velocity, approximations and rounding became an important issue. We could
discover that different precisions in the approximation yield very different output. This is probably
a central outcome of this work: students do not always believe that mastering errors is important,
and they believe that the answers provided by a numerical calculator are always accurate. Asking
them which answer is true among the cases that we studied with different rounding should lead at
least to some questioning.

• Development on new technological skills, which are part of the new mathematical knowledge [1].

• Emphasis on multidisciplinary tasks, whence development of STEAM skills.

Note that generally, modeling is intended to construct mathematical descriptions of a concrete situa-
tion. Then, the model is applied to enhance more understanding of the concrete situation. The process is
summarized in figure 9.

Figure 9: A classical diagram for a modelling process

In the present paper, we go in a totally different way in this case: modeling a concrete astronomical
situation (orbits), the activities provide more abstract curves without a physical meaning. Finally 3D
printing could provide both outcomes: a concrete object modeling planets and trajectories, and also
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some pieces of visual art, either in 2D or in 3D to apply constructivist as well as constructionist ideas.
This is summarized in figure 10.

Figure 10: A modelling process leading in other directions

We performed the same experiments and constructions using Maple. The characteristics of the work
CAS is slightly different.

• After a command line to define a parametric curve, an animate command has to be entered. Its
output is not immediately visible.

• A left-click on the graphical window is necessary, and it switches automatically to the row of
graphical buttons.

• Here too, the relevant values for the parameters (number of frames, speed, etc.), in order to obtain
a significant graphical output have to be experimentally looked for, using the buttons.

• Other modifications of the output may require changes in the written commands.

After having presented some of the applets to a certain audience, the authors decided to 3D print
part of them, together with some other cases. In parallel, tasks have been defined for groups of students,
either gifted High-School students having benefit of an extension of the curriculum, or undergraduates.
These students belong to two different countries. The tasks include the 3D printing of some examples.
The transfer of the CAS output to a 3D printer requested the translation of this output into a language
that the 3D printer understands. In our presentation, we will report on the math part and on the outcome
of the activities with students.

4 Acknowledgements

The first author was partially supported by the CEMJ Chair at JCT.



152 3D Space Trajectories, Art and 3D Printing

References
[1] M. Artigue (2002): Learning Mathematics in a CAS Environment: The Genesis of a Reflection about Instru-

mentation and the Dialectics between Technical and Conceptual Work. International Journal of Computers
for Mathematical Learning 7(3), pp. 245–274, doi:10.1023/A:1022103903080.

[2] T. Dana-Picard (2007): Motivating constraints of a pedagogy embedded Computer Algebra System. Interna-
tional Journal of Science and Mathematics Education 5(2), pp. 217–235, doi:10.1007/s10763-006-9052-9.

[3] T. Dana-Picard (2022): The loci of virtual points constructed with elementary models of planetary orbits. In:
Electronic Proceedings of the Asian Conference on Technology in Mathematics ACTM 2021, Mathematics
and Technology.

[4] T. Dana-Picard & S. Hershkovitz (2022): STEAM Education: technological skills, students’ cultural back-
ground and Covid-19 crisis. Open Education Studies 2(1), pp. 171–179, doi:10.1515/edu-2020-0121.

[5] T. Dana-Picard & S. Hershkovitz (2024): From Space to Maths and to Arts: Virtual Art in Space with
Planetary Orbits. to appear in Electronic Journal of Mathematics & Technology.

[6] T. Dana-Picard & T. Recio (2023): Dynamic construction of a family of octic curves as geometric loci. AIMS
Mathematics 8(8), pp. 19461–19476, doi:10.3934/math.2023993.

[7] S. Jablonski (2023): Is it all about the setting? – A comparison of mathematical modelling with real objects
and their representation. Educational Studies in Mathematics 113(2), doi:10.1007/s10649-023-10215-2.

[8] H. Karttunen, P. Kröger, H. Oja, M. Poutanen & K.J. Donner, editors (2008): Fundamental Astronomy.
Springer, doi:10.1007/978-3-662-53045-0.

[9] L. Trouche (2000): La parabole du gaucher et de la casserole à bec verseur: étude des processus
d’apprentissages dans un environnement de calculatrices symboliques. Educational Studies in Mathemat-
ics 41(3), pp. 239–264, doi:10.1023/A:1003939314034.

[10] R. Yates (1947): A Handbook on Curves and their Properties. J.W. Edwards, MI: Ann Arbor.

https://doi.org/10.1023/A:1022103903080
https://doi.org/10.1007/s10763-006-9052-9
https://doi.org/10.1515/edu-2020-0121
https://doi.org/10.3934/math.2023993
https://doi.org/10.1007/s10649-023-10215-2
https://doi.org/10.1007/978-3-662-53045-0
https://doi.org/10.1023/A:1003939314034

	Introduction
	Classical Curves and beyond
	Epicycloids in 2D and Extension towards 3D
	Three Circular Movements with Constant Angular Velocity – Same Direction
	Three Circular Movements with Constant Angular Velocity – One in Reverse Direction
	Math Art Creation

	Some More Remarks
	Acknowledgements

