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Although there are several systems that successfully generate construction steps for ruler and com-
pass construction problems, none of them provides readable synthetic correctness proofs for gener-
ated constructions. In the present work, we demonstrate how our triangle construction solver Ar-
goTriCS can cooperate with automated theorem provers for first order logic and coherent logic so
that it generates construction correctness proofs, that are both human-readable and formal (can be
checked by interactive theorem provers such as Coq or Isabelle/HOL). These proofs currently rely
on many high-level lemmas and our goal is to have them all formally shown from the basic axioms
of geometry.

1 Introduction

Geometry construction problems are usually solved in four phases:

1. Analysis: In this phase, the geometric figure to be constructed is analyzed. The specific constraints
that apply to this figure and the relationships between its elements are identified. By understanding
the requirements and constraints, the steps required to construct the desired figure can be deter-
mined.

2. Construction: Once the problem is analyzed, the sequence of ruler and compass construction steps
used to construct the figure is identified.

3. Proof : After the figure is constructed, it should be proved that it satisfies the properties and con-
ditions given by the specification. Proofs in ruler and compass constructions often involve using
geometric principles, such as the properties of angles, congruence, or similarity. A formal proof
can be used to demonstrate the validity of the construction and ensure that it meets the desired
criteria.

4. Discussion: The discussion phase involves reflection on the construction, its properties, and the
relevant insights. It is often discussed under which condition does the solution exist and whether
it is unique. Non-degeneracy conditions are also identified.

In our previous work we have described our system ArgoTriCS that can perform triangle construc-
tions both in Euclidean geometry [6] and in absolute and hyperbolic geometry [8]. Problems from the
Wernick’s list [10] are analyzed and in Euclidean setting ArgoTriCS manages to solve 66 out of 74 non-
isomorphic problems. Essentially it performs the problem analysis based on its internal set of definitions
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and lemmas, and finds a series of construction steps required to construct a triangle with a given set
of significant points (e.g., vertices, orthocenter, centroid, centers of inscribed and circumscribed circles
etc.). However it did not generate classic, readable, synthetic construction proofs. In her PhD thesis [7],
Marinković describes how theorem provers, based on algebraic methods such as Wu’s method [11] and
Gröbner basis method [1], and semi-synthetic methods such as area method [4], integrated within GLCL
tool [2] and OpenGeoProver [5], could be employed to check the construction correctness. The problem
with this approach is that generated proofs are not human-readable. Since the main usage scenario of
automated construction solver is in education, it is vital that students understand why some construction
is correct. Therefore, obtaining human-readable proofs is of a great importance.

In the current work, we describe how an automated system such as ArgoTriCS can be combined with
first-order logic and coherent logic provers so that each generated construction is accompanied by its
human-readable proof of correctness. This is a work in progress, and we will describe our approach,
prototype implementation, and preliminary results for a small set of selected problems.

2 Examples

Example 2.1. Consider constructing a triangle ABC given its vertex A, altitude foot Ha and circumcenter
O. ArgoTriCS finds the following construction, illustrated in Figure 1:

1. Construct the line l1 = AHa.

2. Construct the line l2 such that it is perpendicular to the line l1 and that it contains Ha.

3. Construct the circle c centered at O containing A.

4. Let B and C be the intersections of the line l2 and the circle c.

A

Ha

O

l1

l2

c

B C

Fig. 1: Construction of the triangle ABC given the points A, O, and Ha.

Proof. We need to show that A is the vertex of the constructed triangle ABC (which is trivial), that Ha is
its altitude foot and that O is its circumcenter. This proof is rather straightforward.
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By construction, the circle c contains all three vertices A, B, and C, so it must be the circumcircle of
the triangle ABC (since the circumcircle of a triangle is unique). The O is the center of c, so it must be
the circumcenter (since the center of any circle is unique).

By construction the line l2 contains the vertices B and C, so it must be equal to the side a of the
triangle ABC (since the triangle side through the points B and C is unique). By construction the line l1
contains A and is perpendicular to l2 = a, so it must be equal to the altitude ha (since there is a unique
altitude from the vertex A). Since by construction Ha belongs both to l2 = a and l1 = ha it must be the
altitude foot Ha (since it is the unique intersection of a and ha).

If we analyze the previous proof, we see that it essentially relies on several uniqueness lemmas and
that it merely reverses the chain of deduction steps used in the analysis phase.

In some cases, however, the proof is very different from the analysis.

Example 2.2. Consider constructing a triangle ABC given its vertex A, circumcenter O and centroid G.
The construction that ArgoTriCS finds is the following (see Figure 2):

1. Construct the point P1 such that −→AG : −→AP1 = 2 : 3.

2. Construct the point P2 such that −→OG : −−→OP2 = 1 : 3.

3. Construct the line l1 = AP2.

4. Construct the line l2 such that it is perpendicular to the line l1 and that it contains P1.

5. Construct the circle c centered at O containing A.

6. Let B and C be the intersections of the line l2 with the circle c.

A

G

O

P1

P2

l1

c

l2B C

Fig. 2: Construction of the triangle ABC given the points A, O, and G.

Please note that there is a simpler solution to this construction problem, but we wanted to discuss this
solution because the proof here is quite different from the construction.

Proof. We need to prove that A is the vertex of the triangle ABC (which is trivial), that G is its cen-
troid and that O is its circumcenter. The latter is very simple (similar to the previous proof), since by
construction all points A, B, and C lie on the circle c centered at O.
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The line l2 is equal to the triangle side a, since it contains the vertices B and C (and the triangle side
through the points B and C is unique). By construction l1 contains A and is perpendicular to l2 = a, so it
must be equal to the altitude ha (since the altitude from vertex A is unique).

Consider line l3 = OP1. We shall prove that it is parallel to the line l1 = ha. Since by construction it
holds that −→OG : −−→OP2 = 1 : 3, by the elementary properties of vector ratio it also holds that −→OG : −−→GP2 =
1 : 2. Similarly, it holds that −−→P1G : −→GA = 1 : 2. The angles OGP1 and OGP2 are opposite and therefore
congruent. Hence triangles OGP1 and P2GA are similar, and angles OP1G and GAP2 are always equal, so
the lines OP1 = l3 and AP2 = l1 = ha are parallel.

Since ha is perpendicular to l2 = a, so must be l3 = OP1. Therefore, the line l3 must be the perpendic-
ular bisector of the segment BC (since it is the unique line containing circumcenter O that is perpendicular
to a). Consequently, the point P1 must be equal to Ma – the midpoint of BC (as it is the unique inter-
section of the segment with its pependicular bisector). Finally, the point G must be the centroid of ABC
since the centroid is the unique point for which it holds that −→AG : −−→AMa = 2 : 3.

3 Automation

Our main goal is to obtain proofs such as the previous ones automatically, using coherent logic provers.

3.1 Problem Statement and Lemmas

The first step would be to make ArgoTriCS generate the problem statement, along with the construction
steps. For example, the problem statement for the first problem can be given as follows:

inc(A, l1)∧ inc(H ′
a, l1)∧

perp(l2, l1)∧ inc(H ′
a, l2)∧

circle(O′,A,c)∧
inc(B, l2)∧ inc(C, l2)∧ inc c(B,c)∧ inc c(C,c)∧B ̸=C =⇒
H ′

a = Ha ∧O′ = O

The predicate inc(P, l) denotes that the point P is incident to the line l i.e., P ∈ l, inc c(P,c) denotes
that the point P is incident to the circle c i.e., P ∈ c, circle(O,P,c) denotes that c is the circle centered
at the point O passing through the point P, and perp(l1, l2) denotes that lines l1 and l2 are perpendicular.
The point O is the real circumcenter of the triangle ABC (this is implicitly given by the lemmas that are
given to the prover along with the problem statement), and Ha is the real altitude foot. For simplicity
various non-degeneracy conditions are added to the problem statement (e.g., the conditions H ′

a ̸= A,
A ̸= B, A ̸=C, etc.) before it is given to the automated theorem prover.

Along with the problem statement, automated prover is given a series of carefully chosen lemmas,
that are treated as axioms. Most of those lemmas follow from the general geometric knowledge, but are
instantiated for the significant points, lines and circles of the triangle ABC. Each significant object is
denoted by a constant (e.g., bc for the side BC, O for the circumcenter, Ma for the midpoint of BC, ha

for the altitude from A, Ha for its foot, c◦ for the circumcircle etc.). Lemmas that encode properties of
those objects are used both in analysis (by the ArgoTriCS) and in proofs (by automated theorem provers).
Some of those lemmas are:

inc(B,bc) ∧ inc(C,bc)
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inc(A,ha) ∧ perp(ha,bc)
−→AG : −−→AMa = 2 : 3

inc c(A,c◦) ∧ inc c(B,c◦)∧ inc c(C,c◦)

However, proofs require additional lemmas that guarantee uniqueness of objects. For example:

(∀l)(inc(A, l)∧perp(l,bc) =⇒ l = ha)

(∀c)(inc c(A,c)∧ inc c(B,c)∧ inc c(C,c) =⇒ c = c◦)

Notice that uniqueness lemmas are given in instantiated way, meaning that they hold for some specific
objects. This choice was made in order to follow the implementation of ArgoTriCS, where most of the
knowledge is given in an instantiated way. However, the uniqueness axioms could be given also in more
general way.

Some general lemmas about properties of basic geometric predicates are also needed. For example:

(∀l1, l2)(perp(l1, l2) =⇒ perp(l2, l1))

(∀P1,P2)(∃l)(inc(P1, l) ∧ inc(P2, l))

All those lemmas are formulated as axioms and the problem statement is formulated as a conjecture
in TPTP format.1 That file is then given to some automated theorem prover. In our experiments we
used Vampire [9] and Larus [3]. Vampire is a very efficient, award winning FOL theorem prover. Its
main drawback is that it cannot generate readable proofs. We also used Larus [3] that is a coherent-logic
prover able to generate readable proofs and also formal proofs that can be checked by interactive theorem
provers such as Isabelle/HOL or Coq.

Our second example uses the notion of ratio of vectors. However neither Vampire nor Larus have
a native support for arithmetic calculations. Therefore we introduced separate predicates for ratios that
frequently occur in geometric constructions (e.g., 1 : 2, 1 : 3, 2 : 3) and added lemmas that connect those
ratios. For example:

(∀A,B,C)(ratio13(A,B,A,C) =⇒ ratio12(A,B,B,C))

The proof uses a result that follows from triangle similarity. We encoded this in the following lemma:

(∀A,M,B,X ,Y,ax,by)

(ratio21(A,M,M,B)∧ ratio21(X ,M,M,Y )∧
line(A,X ,ax)∧ line(B,Y,by) =⇒ para(ax,by))

Also, in Euclidean geometry there are clear connections between parallel and perpendicular lines.

(∀l1, l2,a) (perp(l1,a)∧para(l1, l2) =⇒ perp(l2,a))

3.2 Using Automated Provers

The conjecture of the construction problem considered in Example 2.1 can be formulated in TPTP format
in the following way:

1https://www.tptp.org/

https://www.tptp.org/
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fof(th_A_Ha_O, conjecture, ( ( inc(pA,ha1) & inc(pHa1,ha1)

& perp(ha1,a1) & inc(pHa1,a1) & inc_c(pA,cc1) & center(pOc1,cc1)

& inc_c(pB,cc1) & inc(pB,a1) & inc_c(pC,cc1) & inc(pC,a1) )

=> ( pHa = pHa1 & pOc = pOc1 ) ) ).

where pHa and pOc are defined by the axioms as the foot of the altitude from vertex A to side BC and
circumcenter of triangle ABC, respectively.

Larus successfully proved given conjecture as two separate statements, one for each of the facts in
the conclusion. Key fragment of generated readable proof is given below (all used geometry axioms are
listed, others are the ones implied by equality):

Axioms:

1. bc unique : ∀L (inc(pB,L)∧ inc(pC,L)⇒ L = bc )

2. haA : ∀H (perp(H,bc)∧ inc(pA,H)⇒ ha = H )

3. pHa def : ∀H1 (inc(H1,ha)∧ inc(H1,bc)⇒ H1 = pHa )

4. cc unique : ∀C (inc c(pA,C)∧ inc c(pB,C)∧ inc c(pC,C)⇒C = cc )

5. center unique : ∀C ∀C1 ∀C2 (center(C1,C)∧ center(C2,C)⇒C1 =C2 )

Example 3.1. th A Ha O0 :
inc(pA,ha1) ∧ inc(pHa1,ha1) ∧ perp(ha1,a1) ∧ inc(pHa1,a1) ∧ inc c(pA,cc1)
∧ center(pOc1,cc1) ∧ inc c(pB,cc1) ∧ inc(pB,a1) ∧ inc c(pC,cc1) ∧ inc(pC,a1)
⇒ pHa = pHa1

Proof:

1. pHa = pHa (by MP, using axiom eqnativeEqSub0; instantiation: A 7→ pHa, B 7→ pHa, X 7→ pHa)

2. a1 = bc (by MP, from inc(pB,a1), inc(pC,a1) using axiom bc unique; instantiation: L 7→ a1)

3. perp(ha1,bc) (by MP, from perp(ha1,a1), a1 = bc using axiom perpEqSub1; instantiation: A 7→ ha1, B 7→ a1, X 7→ bc)

4. ha = ha1 (by MP, from perp(ha1,bc), inc(pA,ha1) using axiom haA; instantiation: H 7→ ha1)

5. inc(pHa1,ha) (by MP, from inc(pHa1,ha1), ha = ha1 using axiom incEqSub1; instantiation: A 7→ pHa1, B 7→ ha1, X 7→ ha)

6. inc(pHa1,bc) (by MP, from inc(pHa1,a1), a1 = bc using axiom incEqSub1; instantiation: A 7→ pHa1, B 7→ a1, X 7→ bc)

7. pHa1 = pHa (by MP, from inc(pHa1,ha), inc(pHa1,bc) using axiom pHa def; instantiation: H1 7→ pHa1)

8. pHa = pHa1 (by MP, from pHa1 = pHa, pHa = pHa using axiom eqnativeEqSub0; instantiation: A 7→ pHa, B 7→ pHa1, X 7→
pHa)

9. Proved by assumption! (by QEDas)

Example 3.2. th A Ha O1 :
inc(pA,ha1) ∧ inc(pHa1,ha1) ∧ perp(ha1,a1) ∧ inc(pHa1,a1) ∧ inc c(pA,cc1)
∧ center(pOc1,cc1) ∧ inc c(pB,cc1) ∧ inc(pB,a1) ∧ inc c(pC,cc1) ∧ inc(pC,a1)
⇒ pOc = pOc1

Proof:

1. center(pOc,cc) (by MP, using axiom centerEqSub1; instantiation: A 7→ pOc, B 7→ cc, X 7→ cc)

2. cc1 = cc (by MP, from inc c(pA,cc1), inc c(pB,cc1), inc c(pC,cc1) using axiom cc unique; instantiation: C 7→ cc1)
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3. center(pOc1,cc) (by MP, from center(pOc1,cc1), cc1 = cc using axiom centerEqSub1; instantiation: A 7→ pOc1, B 7→ cc1, X 7→
cc)

4. pOc = pOc1 (by MP, from center(pOc,cc), center(pOc1,cc) using axiom center unique; instantiation: C 7→ cc, C1 7→ pOc, C2 7→
pOc1)

5. Proved by assumption! (by QEDas)

Correctness proof of the generated construction for the problem considered in Example 2.2 is given
in Appendix.

4 Results

We considered the subset of problems from Wernick’s corpus, over vertices of the triangle, midpoints
of triangle sides, feet of altitudes, centroid, circumcenter and orthocenter of the triangle. It consists
of 35 non-isomorphic location triangle problems. For each of these problems, we tried to prove the
correctness of constructions found by ArgoTriCS using FOL prover Vampire and coherent logic prover
Larus. Vampire succesfully proved 31 of these problems, while Larus proved 20 problems, and for
remaining ones it could not prove it in given timelimit.

5 Conclusion

Although this is a work-in-progress, we have managed to show that this approach is plausible and can
be used to automatically obtain readable proofs of correctness for geometric constructions. This is very
important in the context of mathematical education, where students need to know why a geometric state-
ment holds. In our previous work, we have described ArgoTriCS – a system that is able to perform
ruler and compass construction steps for almost all solvable problems in the Wernick’s corpus [6, 10].
The main step in the ArgoTriCS implementation was to formulate a good set of lemmas to be used for
analysing and finding the construction. This work shows that an identified set of lemmas is not sufficient
to generate correctness proofs, and that the proof phase requires an additional set of lemmas (mainly the
lemmas that guarantee uniqueness, but also some other equally important lemmas). However, once these
lemmas are identified, they can be passed to general-purpose theorem provers, which can then generate
fully synthetic proofs of correctness. Although the coherent logic solvers we have tested are not yet as
powerful as the FOL solvers such as Vampire, if they succeed in solving the given problem, they provide
us with human-readable proofs.

A very important issue is the correctness of the used lemmas. Indeed, if some lemmas are incorrect
(e.g., if a precondition or a non-degeneracy condition is missing), a contradiction may arise and the
theorem could be proved from this contradiction. We examined all the generated proofs, and all of them
were correct. To be completely sure that our lemmas are correct, we formalize them in Isabelle/HOL
and prove them using the axioms of geometry. Since Larus can output Isabelle/HOL proofs, we will
eventually have a system capable of generating proofs of construction that are fully mechanically verified
starting from the axioms.

In the present work we have not considered degenerate cases and the existence of constructed ob-
jects (we have simply assumed that everything is non-degenerate and that all constructed objects exist).
However, we plan to pay more attention to this issue and extend our tools to perform the final discussion
phase where they would automatically identify the necessary non-degeneracy conditions.
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Coherent logic prover, Larus, used in this research is currently unable to find all correctness proofs
fully automatically. We have worked around this by giving it hints in the form of lemmas. We plan to use
other coherent logic provers, and we are in contact with the Larus developers so that they can improve
their prover using the feedback they have received from our problems.

A Appendix

Larus cannot currently prove the whole theorem only if no guidance is provided. Therefore, we first
derive several lemmas and then use those lemmas to prove the main theorem. The first part of the
conjecture is easily proved:

Axioms:

1. cc unique : ∀C (inc c(pA,C)∧ inc c(pB,C)∧ inc c(pC,C)⇒C = cc )

2. center unique : ∀C ∀C1 ∀C2 (center(C1,C)∧ center(C2,C)⇒C1 =C2 )

3. bc unique : ∀L (inc(pB,L)∧ inc(pC,L)⇒ L = bc )

4. haA : ∀H (perp(H,bc)∧ inc(pA,H)⇒ ha = H )

5. inc line : ∀P1 ∀P2 ∀L (inc(P1,L)∧ inc(P2,L)∧P1 ̸= P2 ⇒ line(P1,P2,L) )

6. ex line : ∀P1 ∀P2 (∃L (line(P1,P2,L)) )

7. ratio21 para : ∀A ∀G ∀Ma ∀H ∀Oc ∀Lba ∀Lha (ratio21(A,G,G,Ma)∧ ratio21(H,G,G,Oc)∧
line(Oc,Ma,Lba)∧ line(A,H,Lha)⇒ para(Lba,Lha) )

8. perp para : ∀Lba ∀Lha ∀A (perp(Lha,A)∧ para(Lba,Lha)⇒ perp(Lba,A) )

9. perp unique : ∀P ∀L ∀L1 ∀L2 (perp(L1,L)∧ inc(P,L1)∧ perp(L2,L)∧ inc(P,L2)⇒ L1 = L2 )

10. pMa is interect bisa bc : ∀P (inc(P,bc)∧ inc(P,bisa)⇒ P = pMa )

Example A.1. th A O G 1:
ratio23(pA, pG1, pA, pMa1) ∧ ratio23(pH1, pG1, pH1, pOc1) ∧ inc(pA,ha1) ∧ inc(pH1,ha1)
∧ inc(pMa1,a1) ∧ perp(a1,ha1) ∧ center(pOc1,cc1) ∧ inc c(pA,cc1) ∧ inc c(pB,cc1)
∧ inc(pB,a1) ∧ inc c(pC,cc1) ∧ inc(pC,a1) ∧ pA ̸= pH1 =⇒ pOc1 = pOc

Proof:

1. cc1 = cc (by MP, from inc c(pA,cc1), inc c(pB,cc1), inc c(pC,cc1) using axiom cc unique; instantiation: C 7→ cc1)

2. center(pOc1,cc) (by MP, from center(pOc1,cc1), cc1 = cc using axiom centerEqSub1; instantiation: A 7→ pOc1, B 7→ cc1, X 7→
cc)

3. pOc1 = pOc (by MP, from center(pOc1,cc) using axiom center unique; instantiation: C 7→ cc, C1 7→ pOc1, C2 7→ pOc)

4. Proved by assumption! (by QEDas)

Then, the facts a1 = bc and ha1 = ha can be derived:

Example A.1. lm A O G 2:
ratio23(pA, pG1, pA, pMa1) ∧ ratio23(pH1, pG1, pH1, pOc1) ∧ inc(pA,ha1) ∧ inc(pH1,ha1)
∧ inc(pMa1,a1) ∧ perp(a1,ha1) ∧ center(pOc1,cc1) ∧ inc c(pA,cc1) ∧ inc c(pB,cc1)
∧ inc(pB,a1) ∧ inc c(pC,cc1) ∧ inc(pC,a1) ∧ pA ̸= pH1 =⇒ a1 = bc
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Proof:

1. a1 = bc (by MP, from inc(pB,a1), inc(pC,a1) using axiom bc unique; instantiation: L 7→ a1)

2. Proved by assumption! (by QEDas)

Example A.2. lm A O G 3:
ratio23(pA, pG1, pA, pMa1) ∧ ratio23(pH1, pG1, pH1, pOc1) ∧ inc(pA,ha1) ∧ inc(pH1,ha1)
∧ inc(pMa1,a1) ∧ perp(a1,ha1) ∧ center(pOc1,cc1) ∧ inc c(pA,cc1) ∧ inc c(pB,cc1)
∧ inc(pB,a1) ∧ inc c(pC,cc1) ∧ inc(pC,a1) ∧ pA ̸= pH1 =⇒ ha1 = ha

Proof:

1. a1 = bc (by MP, from inc(pB,a1), inc(pC,a1) using axiom bc unique; instantiation: L 7→ a1)

2. perp(bc,ha1) (by MP, from perp(a1,ha1), a1 = bc using axiom perpEqSub0; instantiation: A 7→ a1, B 7→ ha1, X 7→ bc)

3. ha = ha1 (by MP, from perp(bc,ha1), inc(pA,ha1) using axiom haA; instantiation: H 7→ ha1)

4. ha1 = ha (by MP, from ha = ha1 using axiom eq sym; instantiation: A 7→ ha, B 7→ ha1)

5. Proved by assumption! (by QEDas)

Now the conclusions of these lemmas can be added to the set of premises, and the next lemma can
be proved:

Example A.3. lm A O G 4 :
ratio23(pA, pG1, pA, pMa1) ∧ ratio23(pH1, pG1, pH1, pOc1) ∧ inc(pA,ha1) ∧ inc(pH1,ha1)
∧ inc(pMa1,a1) ∧ perp(a1,ha1) ∧ center(pOc1,cc1) ∧ inc c(pA,cc1) ∧ inc c(pB,cc1)
∧ inc(pB,a1) ∧ inc c(pC,cc1) ∧ inc(pC,a1) ∧ pA ̸= pH1 ∧ pOc1 = pOc ∧ a1 = bc ∧ ha1 = ha
=⇒ line(pOc1, pMa1,bisa)

Proof:

1. inc(pOc1,bisa) (by MP, from pOc1 = pOc using axiom incEqSub0; instantiation: A 7→ pOc, B 7→ bisa, X 7→ pOc1)

2. Let w be such that line(pOc1, pMa1,w) (by MP, using axiom ex line; instantiation: P1 7→ pOc1, P2 7→ pMa1)

3. line(pA, pH1,ha1) (by MP, from inc(pA,ha1), inc(pH1,ha1), pA ̸= pH1 using axiom inc line; instantiation: P1 7→ pA, P2 7→
pH1, L 7→ ha1)

4. para(w,ha1) (by MP, from ratio23(pA, pG1, pA, pMa1), ratio23(pH1, pG1, pH1, pOc1), line(pOc1, pMa1,w), line(pA, pH1,ha1)

using axiom ratio21 para; instantiation: A 7→ pA, G 7→ pG1, Ma 7→ pMa1, H 7→ pH1, Oc 7→ pOc1, Lba 7→ w, Lha 7→ ha1)

5. perp(ha1,bc) (by MP, from ha1 = ha using axiom perpEqSub0; instantiation: A 7→ ha, B 7→ bc, X 7→ ha1)

6. perp(w,bc) (by MP, from perp(ha1,bc), para(w,ha1) using axiom perp para; instantiation: Lba 7→ w, Lha 7→ ha1, A 7→ bc)

7. w = bisa (by MP, from perp(w,bc), line(pOc1, pMa1,w), inc(pOc1,bisa) using axiom perp unique; instantiation: P 7→ pOc1, L 7→
bc, L1 7→ w, L2 7→ bisa)

8. line(pOc1, pMa1,bisa) (by MP, from line(pOc1, pMa1,w), w = bisa using axiom lineEqSub2; instantiation: A 7→ pOc1, B 7→
pMa1, C 7→ w, X 7→ bisa)

9. Proved by assumption! (by QEDas)

Finally, with the conclusion of this lemma added to the premises, we can prove the final statament:



20 Towards Automated Readable Proofs of Ruler and Compass Constructions

Example A.2. th A O G 5:
ratio23(pA, pG1, pA, pMa1) ∧ ratio23(pH1, pG1, pH1, pOc1) ∧ inc(pA,ha1) ∧ inc(pH1,ha1) ∧

inc(pMa1,a1) ∧ perp(a1,ha1) ∧ center(pOc1,cc1) ∧ inc c(pA,cc1) ∧ inc c(pB,cc1) ∧ inc(pB,a1)
∧ inc c(pC,cc1) ∧ inc(pC,a1) ∧ pA ̸= pH1 ∧ pOc1 = pOc ∧ a1 = bc ∧ ha1 = ha ∧ pOc = pOc1 ∧
line(pOc1, pMa1,bisa) =⇒ pG = pG1

Proof:

1. inc(pMa1,bc) (by MP, from inc(pMa1,a1), a1 = bc using axiom incEqSub1; instantiation: A 7→ pMa1, B 7→ a1, X 7→ bc)

2. pMa1= pMa (by MP, from inc(pMa1,bc), line(pOc1, pMa1,bisa) using axiom pMa is interect bisa bc; instantiation: P 7→ pMa1)

3. ratio23(pA, pG1, pA, pMa) (by MP, from ratio23(pA, pG1, pA, pMa1), pMa1 = pMa using axiom ratio23EqSub3; instantia-

tion: A 7→ pA, B 7→ pG1, C 7→ pA, D 7→ pMa1, X 7→ pMa)

4. pG = pG1 (by MP, from ratio23(pA, pG1, pA, pMa) using axiom ratio23 Ma Gsat0; instantiation: X 7→ pG1)

5. Proved by assumption! (by QEDas)
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[3] Predrag Janičić & Julien Narboux (2021): Automated Generation of Illustrations for Synthetic Geometry
Proofs. In: Proceedings of the 13th International Conference on Automated Deduction in Geometry, ADG
2021, EPTCS 352, pp. 91–102, doi:10.4204/EPTCS.352.9.
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[7] Vesna Marinković (2015): Automated Solving of Construction Problems in Geometry. Ph.D. thesis, Univer-
sity of Belgrade.
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