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The concept of Deterministic Finite Cover Automata (DFCA) was introduced at WIA ’98, as a more
compact representation than Deterministic Finite Automata (DFA) for finite languages. In some
cases representing a finite language, Nondeterministic Finite Automata (NFA) may significantly re-
duce the number of states used. The combined power of the succinctness of the representation of
finite languages using both cover languages and non-determinism has been suggested, but never sys-
tematically studied. In the present paper, for nondeterministic finite cover automata (NFCA) and
l -nondeterministic finite cover automaton (l -NFCA), we show that minimization can be as hard as
minimizing NFAs for regular languages, even in the case of NFCAs using unary alphabets. More-
over, we show how we can adapt the methods used to reduce, or minimize the size of NFAs/DFCAs/l -
DFCAs, for simplifying NFCAs/l -NFCAs.

1 Introduction

The race to find more compact representation for finite languages was started in 1959, when Michael O.
Rabin and Dana Scott introduced the notion of Nondeterministic Finite Automata, and showed that the
equivalent Deterministic Finite Automaton can be, in termsof number of states, exponential larger than
the NFA. Since, it was proved in [25] that we can obtain a polynomial algorithm for minimizing DFAs,
and in [16] was proved that anO(nlogn) algorithm exists. In the meantime, several heuristic approaches
have been proposed to reduce the size of NFAs [2, 18], but it was proved by Jiang and Ravikumar [19]
that NFA minimization problems are hard; even in case of regular languages over a one letter alphabet,
the minimization is NP-complete [10, 19].

On the other hand, in case of finite languages, we can obtain minimizing algorithms [22, 26] that are
in the order ofO(n), wheren is the number of states of the original DFA. In [4, 6, 21] it hasbeen shown
that using Deterministic Finite Cover Automata to represent finite languages, we have minimization
algorithms as efficient as the best known algorithm for minimizing DFAs for regular languages.

The study of the state complexity of operations on regular languages was initiated by Maslov in 1970
[22, 23], but has not become a subject of systematic study until 1992 [27]. The special case of state
complexity of operations on finite languages was studied in [5].

Nondeterministic state complexity of regular languages was also subject of interest, for example in
[12, 13, 14, 15]. To find lower bounds for the nondeterministic state complexity of regular languages,
the fooling set technique, or the extended fooling set technique may be used [3, 9, 10].

In this paper we show that NFCA state complexity for a finite languageL can be exponentially lower
than NFA or DFCA state complexity of the same language. We modify the fooling set technique for cover
automata, to help us prove lower bounds for NFCA state complexity in section 3. We also show that the
(extended) fooling set technique is not optimal, as we have minimal NFCAs with arbitrary number of
states, and the largest fooling set has constant size. In section 4 we show that minimizing NFCAs is
hard, and in section 5 we show that heuristic approaches for minimizing DFAs or NFAs need a special
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treatment when applied to NFCAs, as many results valid for the DFCAs are no longer true for NFCAs.
In section 6, we formulate a few open problems and future research directions.

2 Notations and definitions

The number of elements of a setT is denoted by #T. In caseΣ is an alphabet, i.e, finite non-empty
set, the free monoid generated byΣ is Σ∗, and it is the set of all words overΣ. The length of a word
w= w1w2 . . .wn, n≥ 0, wi ∈ Σ, 1≤ i ≤ n, is |w|= n. The set of words of length equal tol is Σl , the set
of words of length less than or equal tol is denoted byΣ≤l . In a similar fashion, we defineΣ≥l , Σ<l , or
Σ>l . A finite automaton is a structureA= (Q,Σ,δ ,q0,F), whereQ is a finite non-empty set called the
set of states,Σ is an alphabet,q0 ∈ Q, F ⊆ Q is the set of final states, andδ is the transition function. For
delta, we distinguish the following cases:

• if δ : Q×Σ ◦
−→ Q, the automaton is deterministic; in caseδ is always defined, the automaton is

complete, otherwise it is incomplete;

• if δ : Q×Σ −→ 2Q, the automaton is non-deterministic.

The language accepted by an automaton is defined by:L(A) = {w ∈ Σ∗ | δ ({q0},w)∩F 6= /0}, where
δ (S,w) is defined as follows:

δ (S,ε) = S,

δ (S,wa) =
⋃

q∈δ (S,w)
δ ({q},a).

Of course,δ ({q},a) = {δ (q,a)} in case the automaton is deterministic, andδ ({q},a) = δ (q,a), in case
the automaton is non-deterministic.

Definition 1 Let L be a finite language, and l be the length of the longest word w in L, i.e., l= max{|w| |
w∈ L}1. If L is a finite language, L′ is a cover language for L if L′∩Σ≤l = L.

A cover automaton for a finite language L is an automaton that recognizes a cover language, L′, for
L. An l-NFCA A is a cover automaton for the language L(A)∩Σ≤l .

One could plainly see that any automaton that recognizesL is also a cover automaton.
The level of a states∈ Q in a cover automatonA= (Q,Σ,δ ,q0,F) is the length of the shortest word

that can reach the states, i.e., levelA(s) = min{|w| | s∈ δ (q0,w)}.
Let us denote byxA(s) the smallest wordw, according to quasi-lexicographical order, such that

s∈ δ (q0,w), see [6] for a similar definition in case of DFCA. Obviously,levelA(s) = |xA(s)|.
For a regular languageL, ≡L denotes the Myhil-Nerode equivalence of words [17].
The similarity relation induced by a finite languageL is defined as follows[6]:x ∼L y, if for all

w ∈ Σ≤l−max{|x|,|y|}, xw ∈ L iff yw∈ L. A dissimilar sequence for a finite languageL is a sequence
x1, . . . ,xn such thatxi 6∼L x j , for all 1≤ i, j ≤ n andi 6= j.

Now, we need to define the similarity for states in an NFCA, since it was the main notion used for
DFCA minimization.

Definition 2 In an NFCA A= (Q,Σ,δ ,q0,F), two states p,q∈Q are similar, written s∼A q, if δ (p,w)∩
F 6= /0 iff δ (q,w)∩F 6= /0, for all w ∈ Σ≤l−max{level(p),level(q)} .

1 We use the convention thatmax/0= 0.
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In case the NFCAA is understood, we may omit the subscriptA, i.e., we writep ∼ q instead of
p∼A q, also we can writelevel(p) instead oflevelA(p).

We consider only non-trivial NFCAs forL, i.e., NFCAs such thatlevel(p)≤ l for all statesp. In case
level(p)> l , p can be eliminated, and the resulting NFA is still a NFCA forL. In this case, ifp∼ q, then
eitherp,q∈ F, or p,q∈ Q\F, because|ε | ≤ l −max{level(p), level(q)}.

Deterministic state complexity of a regular languageL is defined as the number of states of the
minimal deterministic automaton recognizingL, and it is denoted bysc(L):

sc(L) = min{#Q | A= (Q,Σ,δ ,qo,F), deterministic, complete, andL = L(A)}.

Non-deterministic state complexity of a regular languageL is defined as the number of states of the
minimal non-deterministic automaton recognizingL, and it is denoted bynsc(L):

nsc(L) = min{#Q | A= (Q,Σ,δ ,qo,F), non-deterministic andL = L(A)}.

For finite languagesL, we can also define deterministic cover state complexitycsc(L) and non-
deterministic cover state complexityncsc(L):

csc(L) = min{#Q | A= (Q,Σ,δ ,qo,F), deterministic, complete, and

L = L(A)∩Σ≤l},

ncsc(L) = min{#Q | A= (Q,Σ,δ ,qo,F), non-deterministic, and

L = L(A)∩Σ≤l}.

Obviously,ncsc(L) ≤ nsc(L) ≤ sc(L), but alsoncsc(L) ≤ csc(L) ≤ sc(L). Thus, non-deterministic
finite cover automata can be considered to be one of the most compact representation of finite languages.

3 Lower-bounds and Compression Ratio for NFCAs

We start this section analyzing few examples where nondeterminism, or the use of cover language, reduce
the state complexity. Let us first analyze the type of languages where non-determinism, combined with
cover properties, reduce significantly the state complexity.

We choose the languageLFm,n = {a,b}≤ma{a,b}n−2, wherem,n∈N. In Figure 1 we can see an NFA
recognizingL with m+n states. We must note that the longest word in the language hasm+n−1 letters.
Let us analyze if the automaton in Figure 1 is minimal. The fooling set technique, introduced in [7] and
[8], and used to prove the lower-bound for state complexity of NFAs, is stated in [3, 7] as follows:

Lemma 1 Let L⊆ Σ∗ be a regular language, and suppose there exists a set of pairsS= {(xi ,yi) | 1≤
i ≤ n}, with the following properties:

1. If xiyi ∈ L, for 1≤ i ≤ n and xiy j /∈ L, for all 1≤ i, j ≤ n, i 6= j, then nsc(L)≥ n. The set S is called
a fooling setfor L.

2. If xiyi ∈ L, for 1 ≤ i ≤ n and for1 ≤ i, j ≤ n, if i 6= j, implies either xiy j /∈ L or x jyi /∈ L, then
nsc(L)≥ n. The set S is calledan extended fooling setfor L.

Now consider the following set of pairs of words:S = {(bmabj ,bn−2− j) | 0 ≤ j ≤ n− 2} ∪
{(ai ,bm−iabn−2) | 0≤ i ≤ m}= {(xk,yk) | 1≤ k≤ m+n}.

For (xk,yk) ∈ S, we have that
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1. xkyk = bmabj bn−2− j = bmabn−2 ∈ L, or

2. xkyk = aibm−iabn−2 ∈ L.

Let us examine for each 1≤ k,h≤ m+n, k 6= h if the wordsxkyh andxhyk are also inL. We have the
following possibilities:

1. Case I

(a) xkyh = bmabibn−2− j /∈ L, and

(b) xhyk = bmabjbn−2−i /∈ L.

2. Case II

(a) xkyh = aibm− jabn−2 ∈ L, if i < j, but

(b) xhyk = a jbm−iabn−2 /∈ L, if i < j (because|a jbm−iabn−2|= m+n−1+ j − i > m+n−1).

3. Case III

(a) xkyh = bmabj bm−iabn−2 /∈ L (because|bmabjbm−iabn−2| = m+1+ j +m+1+n−2> m+
n−1), or

(b) xhyk = aibn−2− j ∈ L if n−2− j +1+ i > n, or xhyk = aibn−2− j /∈ L n−2− j +1+ i < n.

From the statement 2. of Lemma 1, it follows that the NFA is minimal. We must note the following:

1. we cannot use the weak form 1 to prove the lower-bound;

2. when proving the lower-bound, we concatenate words to obtain a word of length greater than the
maximum length of the words in the language, and that’s whyxiy j is rejected. Since in case of
cover automata such words will be automatically rejected, there is no doubt that any fooling set
type technique we may use to prove the lower-bound for NFCAs must consider the length, and we
should ignore the cases when the length exceeds the maximal one.

Hence, the fooling set technique introduced in [7] and [8], and used to prove the lower-bound for
state complexity of NFAs, can be modified to prove a lower-bound for minimal NFCAs, and it can be
formulated for cover languages as an adaptation of Theorem 1in [10].

Lemma 2 Let L⊆ Σ≤l be a finite language such that the longest word in L has the length l, and suppose
there exists a set of pairs S= {xi ,yi) | 1≤ i ≤ n}, with the following properties:

1. If xiyi ∈ L for 1 ≤ i ≤ n and for1 ≤ i, j ≤ n, i 6= j, and xiy j ∈ Σ≤l , we have that xiy j /∈ L, then
ncsc(L) ≥ n.

The set S is calleda fooling setfor L.

2. If xiyi ∈ L, for 1 ≤ i ≤ n and for1 ≤ i, j ≤ n, if i 6= j, implies either xiy j ∈ Σ≤l and xiy j /∈ L, or
x jyi ∈ Σ≤l and xjyi /∈ L for all, then ncsc(L) ≥ n.

The set S is calledan extended fooling setfor L.

Proof Assume there exists an NFCAA=(Q,Σ,δ ,q0,F), with mstates acceptingL. For eachi, 1≤ i ≤ n,
xiyi ∈ L, therefore we must have a statesi ∈ δ (q0,xi) andδ (si ,yi)∩F 6= /0. In other words, there exists a
state fi ∈ F and fi ∈ δ (si ,yi).

1. We claimsi /∈ δ (q0,x j) for all j 6= i. If si ∈ δ (q0,x j), then fi ∈ δ (si ,yi)⊆ δ (q0,x jyi), and because
|x jyi | ≤ l , it follows thatx jyi ∈ L, a contradiction.
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2. We consider the functionf : {1, . . . ,n} −→ Q defined byf (i) = si , si as above. We claim thatf
is injective. If f (i) = f ( j), thenδ ( f (i),yi) = δ ( f ( j),yi), alsoδ ( f ( j),y j ) = δ ( f (i),y j ). Because
δ ( f (i),yi)∩F 6= /0, we also have thatδ ( f ( j),yi)∩F 6= /0, and because|xiy j | ≤ l , it follows that
xiy j ∈ L, a contradiction. If|x jyi | ≤ l , using the same reasoning, will follow thatx jyi ∈ L. In both
cases we have a contradiction, thusQ must have at leastn elements.�

For the example above, we discover that we cannot have more than one pair of the form
(ai ,bm−iabn−2), thus, applying the extended fooling set technique for NFCAs, the minimum number
of states in a minimal NFCA is at leastn− 2+ 1+ 1 = n. This proves that the NFCA presented in
Figure 2 is minimal.

It is easy to check that any two distinct wordsw1,w2 ∈ Σ≤n−1, w1 6= w2, are not similar with respect
to ∼L. It follows that for the language presented in Figure 1,csc(L) ≥ 2n−1. One can also verify that
for two distinct wordsuay andwax, if |y| 6= |x|, |x|, |y| ≤ n− 2, they are distinguishable; also, in case
|x| = |y| ≤ n− 2, the wordan−2−|x| will distinguish between all the words for which|u| < n− 2− |x|
or |w| < n− 2− |x|, thus the number of states in the minimal DFA is even larger than csc(L). In case
m= 2 andn= 4, the minimal DFCA is presented in Figure 3. A simple computation shows us that the
corresponding minimal DFA has 15 states.
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✟
✠0

☛
✡

✟
✠−1 ✛a,b

❄a,b
❍❍❍❍❥

a
✲a ☛

✡
✟
✠1

☛
✡

✟
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❄
a

☛
✡

✟
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a
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✡
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✟
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✟
✠n−1

✎
✍

☞
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Figure 1: An NFA withm+n states for the languageLFm,n = {a,b}≤ma{a,b}n−2.
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✡
✟
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✟
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✎
✍

☞
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Figure 2: An NFCA withn states for the languageLFm,n = {a,b}≤ma{a,b}n−2, that is the same as the
one in Figure 1. In casem= 2 andn= 4, the language is the same as the one described in Figure 3.
An equivalent minimal NFA hasm+n states.

This language example shows that NFCAs may be a much more compact representation for finite
languages than NFAs, or even DFCAs, and motivates the study of such objects. In terms of compression,
clearly the number of states in the NFCA is exponentially smaller than the number of states in the DFA,
and in some cases, even exponentially smaller than in an NFA.

Let’s setΣ = {a}, l > k≥ 2, and choose the following language:

Ll ,k = a(Σ≤l −{(ak)n | n≥ 0}). (1)

In Figure 4, the NFCAAk accepts the languageLl ,k, thereforencsc(Ll ,k) ≤ csc(Ll ,k) ≤ sc(Ll ,k) ≤

min(l +1,k+1) = k+1. It is known [7, 13, 24] that the automatonAk is minimal NFA for
⋃

l∈N

Ll ,k, if k is
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Figure 3: A minimal DFCA with 8 states for the languageLF2,4 = {a,b}≤2a{a,b}2, l = 5.
The equivalent minimal DFA has 15 states.
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Figure 4: An NFA/NFCAAk for Ll ,k.

a prime number. However, this may not be a minimal NFCA, as illustrated by the example in Figure 5,
whereA7 is not minimal forL9,7, even if it is minimal NFA for the cover language.

We apply the extended fooling set technique for the languageLl ,k. Because the alphabet is unary, all
the words in an extended fooling setSare powers ofa: S⊇ {(ai1,a j1),(ai2,a j2),(ai3,a j3), . . . ,(air ,a jr )},
for somer ∈ N. A simple computation shows that ifi1, . . . , ir > 1, andi1+ j2 = z12k+1 andi1+ j3 =
z13k+ 1 for somez12,z13 ∈ N, then i2 + j3 6= z23k+ 1 andi3 + j2 6= z32k+ 1, for anyz23,z32 ∈ N. It
follows thatr ≤ 3.

Let A be an NFA acceptingL ⊇ Lk, and we can consider that it is already in Chrobak normal form,
as it is ultimately periodic. Thus, for eachL, nsc(L) ≥ p1+ . . . ps, wherepi are primes, and each cycle
haspki

i states, 1≤ i ≤ s. Now, let us prove thatAk is minimal for some languageLl ,k, l ≥ k.
Assume there exists an automatonB= (QB,Σ,δB,q0,B,FB) with mstates,m≤ k+1 such thatL(B) =

Ll ,k. It follows that the languageL(B) will contain words with a lengthx+hy for x,y≤ k, and allh∈N.
For h large enough, one of these words will be of length multiple ofk plus 1, therefore, for large enough
l , i.e., greater than somel0, Ll ,k 6= L(B). Thus, the number of states inB is at leastk. Ak is also a minimal
NFCA for languagesLl ,k, l ≥ l0, hence it follows that Theorem 7 in [10] is also valid for cover automata:

Theorem 1 There is a sequence of languages(Ll ,k)k≥2 such that the nondeterministic cover complexity
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✠
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Figure 5: A minimal NFCA forL9,7, left, and a minimal NFA for a cover language, right.
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of Ll ,k is at least k, but the extended fooling set for Ll ,k is of size c, where c is a constant.

Now, we are ready to check how hard is to obtain this minimal representation of a finite language.

4 Minimization Complexity

In this section we show that minimizing NFCAs is hard, and we’ll show it with the exact same arguments
from [11], used to prove that minimizing NFAs is hard. We willdescribe the construction from [8,
11], showing that we can also use it with only a minor additionfor cover NFAs. To keep the paper
self contained, we include a complete description, and emphasize the changes required for the cover
automata, rather than just presenting the differences.

Let us consider a logical formulaF ∈ 3SAT, in the conjunctive normal form, i.e.,F =
m
∧

i=1

Ci, where

each clauseCi , 1≤ i ≤ m, is defined using variablesx1, . . . ,xn, Ci = u1∨u2∨u3, and eachu j , 1≤ j ≤ 3
are eitherxi or ¬xi. Let p1, p2, . . . , pn be distinct prime numbers such thatp1 < p2 < .. . < pn. We set
k=∏n

i=1 pi , and using Chinese Remainder Theorem [20]2, it follows that the functionf :Zk −→∏n
i=1Zpi

is bijective. We need to define a languageLF and a natural numberl such thatLF = {a}∗, if and only if
F is unsatisfiable, therefore, the finite languageLF ∩Σ≤l has{a}∗ as a cover language. We can construct
an automatonBi in O(pn) in a similar fashion as we build automataAk that recognizes the language
L(Bi) = {an | nmodpi /∈ {0,1}}. Let B be an automaton recognizing

⋃n
i=1L(Bi). It is clear that it can

be constructed inO(n· pn) time. For each clauseCi such thata1,a2,a3 is an assignment of its variables
for which Ci is not satisfied, we defineLCi = ∩3

i=1{an | nmodpi = ai}. An automatonCi acceptingLCi

can be constructed inO(p3
n) time3. SettingLF =

⋃m
i=1LCi ∪ L(B), it follows that LF = {a}∗ iff F is

satisfiable. Moreover,LF is a cyclic language with period at mostk, thus settingl = k, we have that
LF ∩{a}≤l has{a}∗ as a cover language iffF is satisfiable. Since according to [1], primality test can be
done in polynomial time, we can find the firstn prime numbers in polynomial time, which means that
our NFA construction can also be done in polynomial time. IfF is unsatisfiable, thenncsc(L) = 1, if F
is satisfiable, then the minimal period ofLF is l

2, according to [7, 8], and the minimal number of states
in an NFA is at least equal to the largest prime number dividing its period, which ispn. Using the same
argument as in [11], it follows that the existence of a polynomial algorithm to decide ifncsc(L) = o(n)
implies thatnsc(L) = o(n), therefore we can solve 3SATin polynomial time, i.e.,P=NP. Consequently,
we proved that

Theorem 2 Minimizing either NFCAs or l-NFCAs is at least NP-hard.

5 Reducing the Number of States of NFCAs

Assume the DFAA = (Q,Σ,δ ,q0,F) is minimal for L, and the minimal NFA isA′ = (Q′,Σ,δ ′,q0,F),
whereQ′ = Q−{d}, δ ′(s, p) = δ (s, p), if δ (s, p∈ Q′) andδ ′(s, p) = /0 if δ (s, p) = d. In other words,
the minimal NFA is the same as the DFA, except that we delete the dead state. We may have a minimal
DFCA asA, andA′ as a minimal NFA, but not as a minimal NFCA, as illustrated byA7 andL9,7.

We need to investigate if classical methods to reduce the number of states in an NFA or DFA/DFCA
can also be applied to NFCAs, thus, we first analyze the state merging technique. For NFAs, we dis-
tinguish between two main ways of merging states: (1) a weak method, where two states are merged

2Theorem I.3.3, page 21
3Using Cartesian product construction, for example.
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by simply collapsing one into the other, and consolidate alltheir input and output transitions, and (2), a
strong method, where one state is merged into another one by redirecting its input transitions toward the
other state, and completely deleting it and all its output transitions. The same methods are considered for
NFCAs.

Definition 3 Let A= (Q,Σ,δ ,q0,F) be a NFCA for the finite language L.

1. We say that the state q isweakly mergiblein state p if the automaton A′ = (Q′,Σ,δ ′,q0,F ′), where
Q′ = Q−{q}, F′ = F ∩Q′, and

δ (s,a) =







δ (s,a), if δ (s,a) ⊆ Q′ and s6= p,
(δ (s,a)\{q})∪{p}, if q ∈ δ (s,a) and s6= p,
(δ (s,a)∪δ (q,a))\{q}, if s= p

is also a NFCA for L. In this case we write pw q.

2. We say that the state q isstrongly mergiblein state p, if the automaton A′ = (Q′,Σ,δ ′,q0,F ′),
where Q′ = Q−{q}, F ′ = F ∩Q′, and

δ (s,a) =
{

δ (s,a), if δ (s,a) ⊆ Q′

(δ (s,a)\{q})∪{p}, if q ∈ δ (s,a),

is also a NFCA for L. In this case we write p- q.

In casepw q, (LL
pLR

p∪LL
pLR

q ∪LL
qLR

p∪LL
qLR

q)∩Σ≤l ⊆ L and in casep- q, LL
qLR

q ∩Σ≤l ⊆ (LL
pLR

p∪LL
qLR

p)∩

Σ≤l ⊆ L, where fors∈ Q LL
s = {w∈ Σ∗ | s∈ δ (q0,w)} andLR

s = {w∈ Σ∗ | δ (s,w)∩F 6= /0}.
For the case of DFCAs, ifA is a DFCA forL and two states are similar with respect to the similarity

relation induced byA, then all the words reaching these states are similar. Moreover, if two words of
minimal length reach two distinct states in a DFCA, and the words are similar with respect toL, then the
states in the DFCA must be similar with respect to the similarity relation induced byA. These results
are used for DFCA minimization, and we need to verify if they can be used in case of NFCAs. In the
following lemmata we show that the corresponding results are no longer true.

Lemma 3 Let A= (Q,Σ,δ ,q0,F) be a NFCA for the finite language L. It is possible that xA(s)∼L xA(q),
but s and q are not mergible.

Proof For the automaton in Figure 5, left,xA(3) = xA(1), but the states 1 and 3 are not mergible, as the
resulting automaton would not rejecta7.

Lemma 4 Let A= (Q,Σ,δ ,q0,F) be a NFCA for the finite language L, and p,q∈Q, p 6= q. It is possible
to have x,y∈ Σ∗, p∈ δ (q0,x), q∈ δ (q0,y), p∼ q, and x6∼L y.

Proof Consider the languageL = L(A)∩{a,b}≤14, whereA is depicted in Figure 5.
We have that:

• aa 6∼L ba, becauseaaa /∈ L, butbaa∈ L;

• 2∈ δ (0,ba), 7∈ δ (0,aa), and

• 2 ∼A 7, becauseδ (2,a2k) = {2} ⊆ F, δ (2,a2k+1) = {1} ∩ F = /0, δ (7,a2k) = {7} ⊆ F,
δ (7,a2k+1) = {6}∩F = /0, andδ (2,w) = δ (7,w) = /0, for all w∈ Σ∗−{a}∗.�

Let us verify the case when two statesp,q are similar, or we can distinguish between them.
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Figure 6: An example wherep∼A q, x 6∼L y, but p∈ δ (q0,x) andq∈ δ (q0,y), aa 6∼L ba, 2∈ δ (0,ba),
7∈ δ (0,aa), and 2∼A 7.

Lemma 5 Let A= (Q,Σ,δ ,q0,F) be a NFCA for the finite language L, p,q ∈ Q, p 6= q, and either
p,q∈ F, or p,q /∈ F. Assume r∈ δ (p,a) and s∈ δ (q,a).

1. If r ∼A s, for all possible choices of r and s, then p∼A q.

2. The converse is false, i.e., we may have r6∼A s, for some r and s, and p∼A q.

Proof Assumep 6∼A q, and letw ∈ Σ≤l−max{level(p),level(q)} ∩Σ+. Because eitherp,q ∈ F, or p,q /∈ F,
we have thatδ (p,aw)∩F 6= /0 andδ (q,aw)∩F = /0, or δ (p,aw)∩F = /0, andδ (q,aw)∩F 6= /0. If
δ (p,aw)∩F 6= /0 andδ (q,aw)∩F = /0, it follows that we have two statesr ∈ δ (p,a) ands∈ δ (q,a)
such thatδ (r,w)∩F 6= /0, andδ (s,w)∩F = /0. This proves that the first implication is true. For the
second implication, consider the automaton depicted in Figure 5 with l = 14, and the following states
p,q, r,s: p= q= 0, r = 1, s= 3, and the letterb. We have thatp∼ q, 1,3∈ δ (p,b) = δ (q,b) = δ (0,b),
but r 6∼ s, becauseδ (1,a)∩F = /0 andδ (3,a)∩F = {4} 6= /0.�

This result contrasts with the one for the deterministic case for cover automata, and the main reason
is the nondeterminism, not the fact that we work with cover languages.

Next, we would like to verify if similar states can be merged in case of NFCAs, also to check which
type of merge works. In case we have two similar states, we canstrongly merge them as shown below.
In the case of DFCAs, if two states are similar, these can be merged. We must ensure that the same result
is also true for NFCAs, and the next theorem shows it.

Theorem 3 Let A= (Q,Σ,δ ,q0,F) be an NFCA for L, and p,q∈ Q such that p6= q, and p∼ q. Then
we have

1. if levelA(p)≤ levelA(q), then p- q.

2. It is possible that p6w q.

Proof For the first part, letA′ be the automaton obtained fromA by strongly mergingq in p. We need
to show thatA′ is a cover NFCA forL. Let w= w1 . . .wn be a word inΣ≤l , n∈ N andwi ∈ Σ for all i,
1≤ i ≤ n. We now prove thatw∈ L iff δ ′(q0,w)∩F ′ 6= /0.

If we can find the states{q0,q1, . . . ,qn} such thatq1 ∈ δ (q0,w1), q2 ∈ δ (q1,w2), . . . , qn ∈
δ (qn−1,wn), qn ∈ F andq /∈ {q0,q1, . . . ,qn}, thenq1 ∈ δ ′(q0,w1), q2 ∈ δ ′(q1,w2), . . . ,qn ∈ δ ′(qn−1,wn),
qn ∈ F ′, i.e.,δ ′(q0,w)∩F ′ 6= /0. Assumeq= q j , and j is the smallest with this property. Ifj = n, then
q ∈ F, which implies p ∈ F , thenq1 ∈ δ ′(q0,w1), q2 ∈ δ ′(q1,w2), . . . , qn ∈ δ ′(p,wn), which means
δ ′(q0,w)∩F ′ 6= /0.
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Figure 7: Example for weakly merging failure and similar states.
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Figure 8: Example for strongly merging similar states for the example presented in Figure 7.

Assume the statements hold for|w j . . .wn| < l ′ for l ′ < l − |w| (l − |w1...w j | ≤ l − level(q)),
and consider the case when|w j−1w j . . .wn| = l ′. If for every non-empty prefix ofw j+1 . . .wn,
w j−1 . . .wh, q /∈ δ (p,w j−1 . . .wh), thenδ (p,w j+1 . . .wn) ∈ F −{q} iff δ (q,w j+1 . . .wn) ∈ F −{q} , i.e.,
δ ′(p,w j+1 . . .wn)∩F ′ 6= /0 iff δ (q,w j+1 . . .wn)∩F 6= /0.

Otherwise, leth be the smallest number such thatq∈ δ (q,w j+1 . . .wh. Then|wh+1 . . .wn| < l ′ (and
p∈ δ ′(p,w j . . .wh)). By induction hypothesis,δ ′(p,wh+1 . . .wn)∩F ′ 6= /0 iff δ (q,wh+1 . . .wn)∩F 6= /0.
Therefore,δ (p,w j+1 . . .whwh+1 . . .wn)∩F ′ 6= /0 iff δ (q,w j+1 . . .whwh+1 . . .wn)∩F 6= /0, proving the first
part. For the second part, consider the automaton in Figure 7as a NFCA forL = {a2,a4}. We have that
l = 4 and 3∼ 5, becauselevel(3) = 3, andδ (3,ε)∩F = δ (5,ε)∩F = /0 δ (3,a)∩F = {4}, δ (5,a)∩F =
{6}. We cannot weakly merge state 3 with state 5, as we would recognize a3 /∈ L. In Figure 8 we have
the result for strongly merging state 3 in state 5.

We can observe that strongly merging states does not add words in the language, while weakly
merging may add words. Because any DFCA is also a NFCA, then some smaller automata can be
obtained from larger ones without using state merging technique, and the following lemma presents such
a case. Also, the automaton in Figure 2 is obtained from automaton in Figure 1 by strongly merging
states 0, . . .−m+1 into state−m.

Lemma 6 Let A=(Q,Σ,δ ,q0,F) be an NFCA for L, and consider the reduced sub-automaton generated
by state p, A= (QR,Σ,δR, p,F), i.e., QR contains only reachable and useful states, andδR is the induced
transition function. Ifδ (s,a)∩QR = /0, for all s∈ (Q\QR), we can find two regular languages L1,L2

such that

• Lp = (L1∪L2)∩Σ≤l−level(p), and

• nsc(L1)+nsc(L2)< #QR+1,

then A is not minimal.

Proof Let Ai = (Qi ,Σ,δi ,q0,i ,Fi), i = 1,2 be two NFAs forL1 andL2, andLp = (L1∪L2)∩Σ≤l−level(p).
We define the automatonB= ((Q\QR)∪{p}∪Q1∪Q2,Σ,δB,q0,FB) as follows:F = (F \QR)∪F1∪
F2, in casep /∈ F, andF = (F \QR)∪F1 ∪ F2 ∪ {p} in casep ∈ F. For the transition function, we
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haveδB(s,a) = δ (s,a) if s∈ (Q\QR), δB(s,a) = δi(s,a) if s∈ Qi , i = 1,2, andδB(p,a) = δ1(q0,1,a)∪
δ2(q0,2,a)∪ δ (p,a) \QR, if p /∈ δ (p,a), andδB(p,a) = δ1(q0,1,a)∪ δ2(q0,2,a)∪ δ (p,a) \QR∪{p}, if
p∈ δ (p,a). Obviously, the automatonB recognizes the cover language forL, and its state complexity is
lower.

This technique was used to produce the minimal NFCA forL9,7 in Figure 5.

6 Conclusion

In this paper we showed that NFCAs are a more compact representation of finite languages than both
NFAs and DFCAs, therefore it is a subject worth investigating. We presented a lower-bound technique
for state complexity of NFCAs, and proved its limitations. We showed that minimizing NFCAs has
at least the same level of difficulty as minimizing general NFAs, and that extra information about the
maximum length of the words in the language does not help reducing the time complexity. We checked
if some of the results involving reducing the size of automata for NFAs and DFCAs are still valid for
NFCAs, and showed that most of them are no longer valid. However, the method of strong merging states
still works in case of NFCAs, and we showed that there are alsoother methods that could be investigated.

As future research, below is a list of problems we consider worth investigating:

1. check if the bipartite graph lower-bound technique can beapplied for NFCAs;

2. find bounds for nondeterministic cover state complexity;

3. investigate the problem of magic numbers for NFCAs. In this case, we can relate either to DFCAs,
or DFAs.
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