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We study structural restrictions on biautomata such as, e.g., acyclicity, permutation-freeness, strongly
permutation-freeness, and orderability, to mention a few. We compare the obtained language fami-
lies with those induced by deterministic finite automata with the same property. In some cases, it is
shown that there is no difference in characterization between deterministic finite automata and biau-
tomata as for the permutation-freeness, but there are also other cases, where it makes a big difference
whether one considers deterministic finite automata or biautomata. This is, for instance, the case
when comparing strongly permutation-freeness, which results in the family of definite language for
deterministic finite automata, while biautomata induce the family of finite and co-finite languages.
The obtained results nicely fall into the known landscape on classical language families.

1 Introduction

The finite automaton is one of the first and most intensely investigated computational model in theo-
retical computer science, see, e.g., [15]. Its systematic study led to a rich and unified theory of regular
subfamilies such as, for example, finite languages (are accepted by acyclic finite automata—here, ex-
cept for non-accepting sink states, self-loops on states count as cycles), ordered languages (where the
transitions of the accepting automata preserve an order on the state set), and star-free languages or non-
counting languages (which can be described by regular like expressions using only union, concatenation,
and complement or equivalently by permutation-free finite automata), to mention a few. Relations be-
tween several subregular language families, such as those mentioned above, are summarized in [6]. In
particular, an extensive study of star-free regular languages can be found in [14]. Even nowadays the
study of subregular language families from different perspectives such as, for instance, algebra, logic,
descriptional, or computational complexity, is a vivid area of research.

Recently, an alternative automaton model to the deterministic finite automaton (DFA), the so called
biautomaton (DBiA) [12] was introduced. Roughly speaking, a biautomaton consists of a deterministic
finite control, a read-only input tape, and two reading heads, one reading the input from left to right
(forward transitions), and the other head reading the input from right to left (backward transitions).
Similar two-head finite automata models were introduced, e.g., in [5, 13, 17]. An input word is accepted
by a biautomaton, if there is an accepting computation starting the heads on the two ends of the word
meeting somewhere in an accepting state. Although the choice of reading a symbol by either head is
nondeterministic, a deterministic outcome of the computation of the biautomaton is enforced by two
properties: (i) The heads read input symbols independently, i.e., if one head reads a symbol and the
other reads another, the resulting state does not depend on the order in which the heads read these single
letters. (ii) If in a state of the finite control one head accepts a symbol, then this letter is accepted in this
state by the other head as well. Later we call the former property the �-property and the latter one the
F-property. In [12] and a series of forthcoming papers [7, 8, 10, 11] it was shown that biautomata share
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a lot of properties with ordinary finite automata. For instance, as minimal DFAs, also minimal DBiAs
are unique up to isomorphism [1, 12].

Now the question arises, which structural characterizations of subregular language families of DFAs
carry over to biautomata. Let us give an example which involves partially ordered automata. A DFA
with state set Q and input alphabet Σ is partially ordered, if there is a (partial) order ≤ on Q such that
q ≤ δ (q,a), for every q ∈ Q and a ∈ Σ. In [4] it was shown that partially ordered DFAs characterize
the family of R-trivial regular languages, that is, a regular language L is R-trivial if for its syntactic
monoid ML, the assumption sML = tML implies s = t, for all s, t ∈ML. For the definition of the syntactic
monoid of a regular language we refer to [1]. Adapting the definition of being partially ordered literally
to DBiAs results in a characterization of the family of J -trivial regular languages [11, 12]—originally
the authors of [12] speak of acyclic biautomata instead, since loops are not considered as cycles there;
we think that the term partially ordered is more suitable in this context. Here a regular language L is
J -trivial if for its syntactic monoid ML, the assumption MLsML = MLtML implies s = t, for all s, t ∈ML.
Note that a language is J -trivial regular if and only if it is piecewise testable [19]. A language L⊆ Σ∗ is
piecewise testable if it is a finite Boolean combination of languages of the form Σ∗a1Σ∗a2Σ∗ . . .Σ∗anΣ∗,
where ai ∈ Σ for 1 ≤ i ≤ n. We can also ask whether a transfer of conditions can be done the other
way around from DBiAs to DFAs. This is not that obvious, since structural properties on DBiAs may
involve conditions on the forward and backward transitions. For instance, in [7] it was shown that
biautomata, where for every state and every input letter the forward and the backward transition go to
the same state, characterize the family of commutative regular languages. A regular language L ⊆ Σ∗

is commutative if for all words u,v ∈ Σ∗ and letters a,b ∈ Σ we have uabv ∈ L if and only if ubav ∈ L.
Obviously, this condition can be used also to give a structural characterization of commutative regular
languages on DFAs, namely that for every state q and letters a,b ∈ Σ the finite state device satisfies
δ (δ (q,a),b) = δ (δ (q,b),a). This is the starting point of our investigations.

We study structural properties of DFAs appropriately adapted to DBiAs, since up to our knowledge
most classical properties from the literature on finite automata were not studied for DBiAs yet. Our
investigation is started in Section 3 with automata which transition functions induce permutations on
the state set. Originally permutation DFAs were introduced in [20]. We show that both types of finite
state machines, permutation DFAs and permutation DBiAs are equally powerful. Thus, an alternative
characterization of the family of p-regular languages in terms of DBiAs is obtained. Next we take a
closer look on quite the opposite of permutation automata, namely on permutation-free devices—see
Section 4. A special case of a permutation-free automaton is an acyclic (expect for sink states) one.
It is easy to see that acyclic DFAs as well as DBiAs characterize the family of finite languages. An
important subregular language family, which can be obtained from finite languages by finitely many
applications of concatenation, union, and complementation with respect to the underlying alphabet, is
the class of star-free languages. It obeys a variety of different characterizations [14], one of them are
permutation-free DFAs. We show that permutation-free DBiAs characterize the star-free languages, too.
For strongly permutation-free automata, which are automata that are permutation-free and where also
the identity permutation is forbidden, we find the first significant difference of DFAs and DBiAs. While
for DFAs this property characterizes the family of definite languages, DBiAs describe only finite or
co-finite languages. A language L ⊆ Σ∗ is definite [16] if and only if L = L1 ∪Σ∗L2, for some finite
languages L1 and L2. Moreover, we find a relation between strongly permutation-free automata, and
automata where all states are almost-equivalent—the notion of almost-equivalence was introduced in [2].
Then in Section 5 we continue our investigation with another important subfamily of star-free languages,
namely ordered languages [18]. A DFA with state set Q and input alphabet Σ is ordered if there is a
total order ≤ on the state set Q such that p ≤ q implies δ (p,a) ≤ δ (q,a), for every p,q ∈ Q and a ∈ Σ.
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Automata type
Property DFAs DBiAs
permutation p-regular p-regular
permutation-free star-free star-free
ordered ordered FIN∪ co-FIN⊂ · ⊂ ORD
partially ordered R-trivial J -trivial
strongly permutation-free definite finite and co-finite
acyclic; self-loops are cycles finite finite
non-exiting prefix-free circumfix-free
non-returning strict superset of suffix-free strict subset of non-returning DFAs

Table 1: Comparison of the results on structural properties on DFAs and DBiAs and their induced lan-
guage families (shading represents results obtained in this paper); here FIN refers to the family of finite
languages, co-FIN to the family of co-finite languages, and ORD to the family of ordered languages.

The family of ordered languages lies strictly in-between the family of finite and the family of star-free
languages. Appropriately adapting this definition to biautomata results in a language class, which we
call the family of bi-ordered languages, that is a proper superset of the family of finite and co-finite
languages and a strict subset of the family of ordered languages. Moreover, it is shown that there is a
subtle difference whether the order condition is applied to automata in general or to minimal devices
only. In the next to last section we take a closer look on non-exiting and non-returning machines. It is
well known that non-exiting DFAs characterize the family of prefix-free languages, while non-returning
automata are related to suffix-free languages. We show that every biautomaton which is non-exiting
must also be non-returning (unless it accepts the empty language), and that non-exiting minimal DBiAs
characterize the family of circumfix-free languages. For non-returning minimal DBiAs we prove that the
induced language family is a strict subset of the family of non-returning minimal DFAs languages. The
obtained results are summarized in Table 1. In the last section we briefly discuss our findings and give
some hints on future research directions on the subject under consideration.

2 Preliminaries

A deterministic finite automaton (DFA) is a quintuple A = (Q,Σ,δ ,q0,F), where Q is the finite set of
states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states,
and δ : Q× Σ→ Q is the transition function. As usual, the transition function δ can be recursively
extended to δ : Q×Σ∗→Q. The language accepted by A is defined as L(A) = {w ∈ Σ∗ | δ (q0,w) ∈ F }.

A deterministic biautomaton (DBiA) is a sixtuple A = (Q,Σ, ·,◦,q0,F), where Q, Σ, q0, and F are
defined as for DFAs, and where · and ◦ are mappings from Q×Σ to Q, called the forward and backward
transition function, respectively. It is common in the literature on biautomata to use an infix notation
for these functions, i.e., writing q ·a and q◦a instead of ·(q,a) and ◦(q,a). Similar as for the transition
function of a DFA, the forward transition function · can be extended to · : Q×Σ∗→ Q by q ·λ = q and
q ·av = (q ·a) ·v, for all states q ∈Q, symbols a ∈ Σ, and words v ∈ Σ∗. Here λ refers to the empty word.
The extension of the backward transition function ◦ to ◦ : Q×Σ∗→ Q is defined as follows: q ◦λ = q
and q◦va = (q◦a)◦v, for all states q ∈Q, symbols a ∈ Σ, and words v ∈ Σ∗. Notice that ◦ consumes the
input from right to left, hence the name backward transition function.
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The DBiA A accepts a word w ∈ Σ∗ if there are words ui,vi ∈ Σ∗, for 1 ≤ i ≤ k, such that w can be
written as w = u1u2 . . .ukvk . . .v2v1, and

((. . .((((q0 ·u1)◦ v1) ·u2)◦ v2) . . .) ·uk)◦ vk ∈ F.

The language accepted by A is L(A) = {w ∈ Σ∗ | A accepts w}.
The DBiA A has the �-property, if (q · a) ◦ b = (q ◦ b) · a, for all a,b ∈ Σ, and q ∈ Q, and it has the

F-property, if for all q ∈Q and a ∈ Σ it is q ·a ∈ F if and only if q◦a ∈ F . The biautomata as introduced
in [12] always had to satisfy both these properties, while in [7, 8] also biautomata that lack one or both
of these properties, as well as nondeterministic biautomata were studied. Throughout the current paper,
when writing of biautomata, or DBiAs, we always mean deterministic biautomata that satisfy both the
�-property, and the F-property, i.e., the model as introduced in [12]. For such biautomata the following
it is known from the literature [7, 12]:

• (q ·u)◦ v = (q◦ v) ·u, for all states q ∈ Q and words u,v ∈ Σ∗,

• (q ·u)◦ vw ∈ F if and only if (q ·uv)◦w ∈ F , for all states q ∈ Q and words u,v,w ∈ Σ∗.

From this one can conclude that for all words ui,vi ∈ Σ∗, with 1≤ i≤ k, it is

((. . .((((q0 ·u1)◦ v1) ·u2)◦ v2) . . .) ·uk)◦ vk ∈ F

if and only if
q0 ·u1u2 . . .ukvk . . .v2v1 ∈ F.

Therefore, the language accepted by a DBiA A can as well be defined as L(A) = {w ∈ Σ∗ | q0 ·w ∈ F }.
Let A be DFA or a DBiA with state set Q. We say that a state q ∈ Q is a sink state if and only if

all outgoing transition (regardless whether they are forward or backward transitions) are self-loops only.
Note, that in particular, one can distinguish between accepting and non-accepting sink states.

In the following we define the two DFAs contained in a DBiA, which accept the language, and the
reversal of the language accepted by the biautomaton. Let A = (Q,Σ, ·,◦,q0,F) be a DBiA. We denote
by Qfwd the set of all states reachable from q0 by only using forward transitions, and denote the set of
states reachable by only using backward transitions by Qbwd, i.e.,

Qfwd = {q ∈ Q | ∃u ∈ Σ
∗ : q0 ·u = q} and Qbwd = {q ∈ Q | ∃v ∈ Σ

∗ : q0 ◦ v = q}.

Now we define the DFA Afwd = (Qfwd,Σ,δfwd,q0,Ffwd), with Ffwd = Qfwd∩F , and δfwd(q,a) = q ·a, for
all states q∈Qfwd and symbols a∈ Σ. Similarly, we define the DFA Abwd = (Qbwd,Σ,δbwd,q0,Fbwd), with
Fbwd = Qbwd∩F , and δbwd(q,a) = q◦a, for all q ∈ Q and a ∈ Σ. One readily sees that L(Afwd) = L(A).
Moreover, since q ◦ uv = (q ◦ v) ◦ u, one can also see L(Abwd) = L(A)R. It is shown in [9] that if A is a
minimal biautomaton, then the two DFAs Afwd and Abwd are minimal, too.

3 Permutation Automata

First we study automata where every input induces a permutation on the state set. Such finite automata
were defined in [20]. A DFA A = (Q,Σ,δ ,q0,F) is a permutation DFA if δ (p,a) = δ (q,a) implies p = q,
for all p,q∈Q and a∈ Σ. A regular language is p-regular if it is accepted by a permutation DFA. We give
a similar definition for biautomata: a biautomaton A = (Q,Σ, ·,◦,q0,F) is a permutation biautomaton if
for all p,q ∈ Q and a ∈ Σ we have that p ·a = q ·a implies p = q, and also p◦a = q◦a implies p = q.
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We will see that a language is p-regular if and only if it is accepted by a permutation biautomaton.
Before we can show this, we describe a useful technique to construct a biautomaton from finite automata.
In [12] a construction of a biautomaton from a given DFA A is described, that uses a cross-product
construction of A with the power-set automaton of the reversal of A. In the following we describe how a
biautomaton can be constructed from two arbitrary DFAs accepting a regular language and its reversal.

Let L⊆Σ∗ be a regular language, and for i∈{1,2} let Ai =(Qi,Σ,δi,q
(i)
0 ,Fi) be DFAs with L(A1)=L,

and L(A2) = LR. Further, for all states p ∈ Q1 let up be some word with δ1(q
(1)
0 ,up) = p, and similarly

for q ∈ Q2 let vq be a word with δ2(q
(2)
0 ,vq) = q. Then define the automaton BA1×A2 = (Q,Σ, ·,◦,q0,F)

with state set Q = Q1×Q2, initial state q0 = (q(1)0 ,q(2)0 ), accepting states F = {(p,q) ∈ Q | upvR
q ∈ L},

and where for all (p,q) ∈ Q and a ∈ Σ we have (p,q) · a = (δ1(p,a), q), and (p,q)◦ a = ( p, δ2(q,a)).
The following lemma proves the correctness of this construction.

Lemma 1 For i∈{1,2} let Ai =(Qi,Σ,δi,q
(i)
0 ,Fi) be DFAs with L(A1)=L, and L(A2)=LR. Then BA1×A2

is a deterministic biautomaton, such that L(BA1×A2) = L.

Besides its usefulness for our result on permutation biautomata, this construction is also of relevance
from a descriptional complexity point of view. Using the construction from [12] on an n-state DFA yields
a biautomaton with n ·2n states. In fact, a precise analysis in [10] that uses a similar construction as in [12]
proves a tight bound of n ·2n−2(n−1) states for converting an n-state DFA into an equivalent biautoma-
ton. However, this bound only takes into account the state complexity of the original language L, but not
the state complexity of LR. If the state complexity of LR much smaller than 2n then the bound from [10]
is far off the number of states of the minimal biautomaton for L. Using our construction, we can deduce
an upper bound of n ·m for the number of states of a biautomaton for the language L, if n is the state
complexity of L, and m is the state complexity of LR.

Now we show our result on permutation automata.

Theorem 2 A language is p-regular if and only if it is accepted by some permutation biautomaton.

Proof : If A is a permutation biautomaton, then Afwd is a permutation DFA, hence L(A) is p-regular.
For the reverse implication let L be some p-regular language over the alphabet Σ. Then LR is p-regular,
too [20], so there are permutation DFAs Ai = (Qi,Σ,δi,q

(i)
0 ,Fi), for i = 1,2, that L = L(A1), and LR =

L(A2). Using the cross-product construction from Lemma 1, we obtain the biautomaton B = BA1×A2 .
Recall that the states of B are of the form (p,q), with p ∈ Q1 and q ∈ Q2, and the transitions are defined
such that (p,q) · a = (δ1(p,a),q), and (p,q) ◦ a = (p,δ2(q,a)), for all states (p,q) and symbols a ∈ Σ.
We will show in the following that B is a permutation automaton. Therefore let (p,q) and (p′,q′) be two
states of B, and a ∈ Σ. If (p,q) ·a = (p′,q′) ·a then (δ (p,a),q) = (δ (p′,a),q′), which implies δ (p,a) =
δ (p′,a) and q = q′. Since A1 is a permutation DFA, we also obtain p = p′, hence (p,q) = (p′,q′).
With a similar reasoning, using the permutation property of A2, we see that also (p,q) ◦ a = (p′,q′) ◦ a
implies (p,q) = (p′,q′), therefore B is a permutation biautomaton.

4 Permutation-Free Automata

An important subregular language family is the class of star-free languages. A language is star-free
if it can be obtained from finite languages by finitely many applications of concatenation, union, and
complementation with respect to the underlying alphabet. For the class of finite languages we have the
following obvious theorem, which we state without proof.
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Theorem 3 A language is finite (co-finite, respectively) if and only if its minimal biautomaton is acyclic
except for non-accepting (accepting, respectively) sink states; self-loops count as cycles.

The class of star-free languages obeys a variety of different characterizations [14], one of them being
the following: a regular language is star-free if its minimal DFA is permutation-free. A DFA A =
(Q,Σ,δ ,q0,F) is permutation-free if there is no word w ∈ Σ∗ such that the mapping q 7→ δ (q,w), for
all q ∈ Q, induces a non-trivial permutation, i.e., a permutation different from the identity permutation,
on some set P ⊆ Q. Now the question arises whether a similar condition for biautomata also yields a
characterization of the star-free languages. We feel that the following definition of permutation-freeness
is a natural extension from the corresponding definition for DFAs. We say that a biautomaton A =
(Q,Σ, ·,◦,q0,F) is permutation-free if there are no words u,v ∈ Σ∗, such that the mapping q 7→ (q ·u)◦ v
induces a non-trivial permutation on some set of states P ⊆ Q. It turns out that with this definition,
permutation-free biautomata indeed characterize the star-free languages. We will later discuss some
other possible definitions. Before we show our result on permutation-free biautomata, we prove the
following lemma which helps us to relate permutations in biautomata to permutations in DFAs.

Lemma 4 Let Q be a finite set and π1,π2 : Q→Q be two mappings satisfying π1(π2(q)) = π2(π1(q)) for
all q ∈Q. If there exists a subset P⊆Q such that the mapping π : P→ P defined by π(p) = π2(π1(p)) is
a non-trivial permutation on P, then there exists a subset P′ ⊆Q and an integer d ≥ 1 such that πd

1 or πd
2

is a non-trivial permutation on P′.

Proof : Consider the sequence of sets π0
1 (P),π

1
1 (P),π

2
1 (P), . . . ⊆ Q. Since Q is a finite set, the number

of different sets π
j

1(P), for j ≥ 0, is finite. Thus, there must be integers m,d ≥ 1 such that the sets
π0

1 (P),π
1
1 (P), . . .π

m+d−1
1 (P) are pairwise distinct, and π

m+d
1 (P) = πm

1 (P). Since π = π1π2 = π2π1 is a
permutation on P, we obtain

P = π
m+d(P) = π

m+d
2 (πm+d

1 (P)) = π
d
2 (π

m
2 (π

m
1 (P))) = π

d
2 (P),

which shows that πd
2 is a permutation on P. It follows that also πd

1 must be a permutation on P. If one
of these is a non-trivial permutation we are done. Therefore assume that both πd

1 and πd
2 are the identity

permutation on P. In this case it must be d ≥ 2 because otherwise the permutation π = π1π2 would
be trivial. Then the two sets P and π1(P) are different, so there is an element q ∈ P with π1(q) 6= q.
On the other hand q must satisfy πd

1 (q) = q. Therefore the mapping π1 is a permutation on the set
P′ = {π0

1 (p),π1
1 (p), . . . ,πd−1

1 (p)}, and it is non-trivial because π0
1 (p) = p 6= π1

1 (p).

Now we can show the following characterization of star-free languages in terms of permutation-free
biautomata.

Theorem 5 A language is star-free if and only if its minimal biautomaton is permutation-free.

Proof : Clearly, if A is a minimal biautomaton that is permutation-free, then also the contained minimal
DFA Afwd is permutation-free, too. Therefore the language L(A) is star-free.

For proving the reverse implication let A = (Q,Σ, ·,◦,q0,F) be a minimal biautomaton that is not
permutation-free. Then there are words u,v ∈ Σ∗, and a set of states P ⊆ Q, with |P| ≥ 2, such that
the mapping π : Q→ Q defined as π(q) = (q · u) ◦ v induces a non-trivial permutation on P. Notice
that the �-property of the biautomaton A implies π(q) = π1(π2(q)) = π2(π1(q)), for π1(q) = q · u, and
π2(q) = q ◦ v. Therefore we can use Lemma 4, and obtain an integer d ≥ 1 such that πd

1 or πd
2 induces

a non-trivial permutation on some subset P′ ⊆ Q. If πd
1 is non-trivial, then the word ud induces a non-

trivial permutation in the minimal DFA Afwd, which in turn means that the language L(A) is not star-free.
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q0 q1 q2

q3 q4 q5

q6 q7 q8

a, b a

b

a, b a

b

a, b a

b

b

a

a, b

b

a a, b

b

a

a, b

Figure 1: The permutation-free biautomaton A that has a word-cycle and a graph-cycle.

Otherwise, the mapping πd
2 is non-trivial, and the word vd induces a non-trivial permutation on the

minimal DFA Abwd, which means that the language L(A)R is not star-free. Since the class of star-free
languages is closed under reversal, we again conclude that the language L(A) cannot be star-free in this
case.

In the above definition of permutation-free biautomata, from all states in the permutation induced by
the word uv, the prefix u must be read with forward transitions and the suffix v with backward transitions.
One could also think of other kinds of permutations in biautomata, and we shortly discuss two different
such notions in the following. Since a permutation is composed of cycles, we describe the types of
cycles. Let P = {p0, p1, . . . , pk−1} be some set of states of a biautomaton A and w be some non-empty
word over the input alphabet of A.
• We say that w induces a word-cycle on P if for 0≤ i≤ k−1 we have p(i+1) mod k = (pi ·ui)◦vi, for

some words ui and vi, with uivi = w.

• We say that w induces a graph-cycle on P if w = a1a2 . . .an and we have

p(i+1) mod k = (. . .((pi •i,1 a1)•i,2 a2) . . .)•i,n an,

for 0≤ i≤ k−1, where •i, j ∈ {·,◦}, for 1≤ j ≤ n. The intuition behind the definition of a graph-
cycle is that the word w specifies the sequence of transitions (regardless whether they are forward
or backward transitions) that are taken during the course of the computation.

Notice that if a biautomaton has a permutation as defined before Theorem 5, then it also has a word-
cycle, and also a graph-cycle. Hence, if a language is accepted by a biautomaton that has no word-cycle
or by a biautomaton that has no graph-cycle, then it is star-free. However, the converse is not true, as the
following example shows.
Example 6 Let A = (Q,Σ, ·,◦,q0,F) be the minimal DBiA for the language L = {aab,bab}∗. The bi-
automaton A is depicted in Figure 1—solid arrows denote forward transitions by ·, and dashed arrows
denote backward transitions by ◦. By inspecting the DFA Afwd, consisting of the states q0,q1,q2, and the
non-accepting sink state, which is not shown, one can see that Afwd is permutation-free. Therefore the
language L is star-free, and also the biautomaton A must be permutation-free. However, the word ab
induces a word-cycle on the states q0, q1, and q6 because q0 ◦ab = q6, (q6 ·a)◦b = q1, and q1 ·ab = q0.
Further, the word ab also induces a graph-cycle on the states q0, q4, and q3 because (q0 · a) ◦ b = q4,
(q4 ·a) ·b = q3, and (q3 ◦a)◦b = q0.
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4.1 Strongly Permutation-Free Automata

A permutation-free automaton does not contain any non-trivial permutation, but it may contain the iden-
tity permutation. We may also forbid the identity permutation, which leads to the following definitions.
A DFA A = (Q,Σ,δ ,q0,F) is strongly permutation-free if there is no non-empty word w ∈ Σ+, such that
the mapping q 7→ δ (q,w) induces a permutation on some set P⊆Q, with |P| ≥ 2. Similarly, a biautoma-
ton A = (Q,Σ, ·,◦,q0,F) is strongly permutation-free if there are no words u,v ∈ Σ∗, with uv ∈ Σ+, such
that the mapping q 7→ (q ·u)◦ v induces a permutation on some set P⊆ Q, with |P| ≥ 2. In these defini-
tions we require the words w and uv to be non-empty because the empty-word always induces the identity
permutation on all sets of states. Further we only consider subsets P ⊆ Q with |P| ≥ 2 because every
DFA and every biautomaton must contain a (maybe identity) permutation on a set P ⊆ Q with |P| ≥ 1,
since by the pigeon hole principle there is a state which is repeatedly visited by only reading the letter a
long enough.

Before we study which languages are accepted by strongly permutation-free automata, we give some
further definitions which turn out to be related to strongly permutation-freeness. Let A = (Q,Σ,δ ,q0,F)
be a DFA, and w ∈ Σ+ some non-empty word. A state q ∈ Q is called a w-attractor in A, if for all
states p ∈ Q there is an integer k > 0 such that δ (p,wk) = q. For a biautomaton A = (Q,Σ, ·,◦,q0,F)
and words u,v ∈ Σ∗, with |uv| ≥ 1, we denote by πu,v the mapping p 7→ (p · u) ◦ v. Now a state q ∈ Q
is a (u,v)-attractor in A if for all p ∈ Q there is an integer k > 0 such that πk

u,v(p) = q. Notice that due
to the �-property of A the condition πk

u,v(p) = q can also be written as (p · uk) ◦ vk = q. Next we recall
the definition of almost-equivalence. Two languages L1 and L2 are almost-equivalent (L1 ∼ L2) if their
symmetric difference L14L2 = (L1 \L2)∪ (L2 \L1) is finite. This notion naturally transfers to states as
follows. For a state q of some DFA or biautomaton A we denote by LA(q) the language accepted by the
automaton qA which is obtained from A by making state q its initial state. The language LA(q) is also
called the right language of q. Now two states p and q of a DFA or biautomaton A are almost-equivalent
(p ∼ q) if their right languages LA(p) and LA(q) are almost-equivalent. We write p ≡ q, if p and q
are equivalent, i.e., if LA(p) = LA(q). Our next theorem connects the notions of almost-equivalence,
w-attractors, and strongly permutation-freeness for DFAs, and shows that these conditions can be used to
characterize the class of definite languages—a language L over an alphabet Σ is definite if there are finite
languages L1 and L2 over Σ such that L = L1∪Σ∗L2. Interestingly the relation between definite languages
and almost-equivalence was already studied in [16], long before the notion of almost-equivalence became
popular in [2]—in [16] the used form of equivalence was not called “almost-equivalence,” but simply
“equivalent.” Moreover, the relation between definite languages and strongly permutation-free automata
was independently shown in [3]—compare also with [14, Exercise 28 of Chapter 4 and Exercise 13 of
Chapter 5].

Theorem 7 Let A = (Q,Σ,δ ,q0,F) be some minimal DFA, then the following statements are equivalent:

1. All states in Q are pairwise almost-equivalent.

2. For all words w ∈ Σ+, there is a w-attractor in A.

3. A is strongly permutation-free.

4. L(A) is a definite language.

Now we turn to biautomata, where we will see that the equivalences between the first three conditions
of Theorem 7 also hold in the setting of biautomata. However, we will see that the language class related
to these conditions is different. Before we come to this result we recall the following lemma from [9]:
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Lemma 8 Let A = (Q,Σ, ·,◦,q0,F) and A′ = (Q′,Σ, ·′,◦′,q′0,F ′) be two biautomata, and let p ∈ Q
and q ∈ Q′. Then p ∼ q if and only if (p · u) ◦ v ∼ (q ·′ u) ◦′ v, for all words u,v ∈ Σ∗. Moreover, p ∼ q
implies (p ·u)◦ v≡ (q ·′ u)◦′ v, for all words u,v ∈ Σ∗ with |uv| ≥ k = |Q×Q′|.

The two automata A and A′ in Lemma 8 need not be different, so this lemma can also be used for
states p and q in one biautomaton A. Further, if this biautomaton A is minimal, then it does not contain
a pair of different, but equivalent states. In this case the states p and q are almost-equivalent if and only
if for all long enough words uv ∈ Σ∗ the two states (p ·u)◦ v and (q ·u)◦ v are the same state. We obtain
the following corollary.

Corollary 9 Let A = (Q,Σ, ·,◦,q0,F) be a minimal biautomaton, and k = |Q×Q|. Two states p,q ∈ Q
are almost-equivalent if and only if for all words u,v ∈ Σ∗, with |uv| ≥ k, it is (p ·u)◦ v = (q ·u)◦ v.

Now we are ready for our result on strongly permutation-free biautomata.

Theorem 10 Let A = (Q,Σ, ·,◦,q0,F) be some minimal biautomaton, then the following statements are
equivalent:

1. All states in Q are pairwise almost-equivalent.

2. There is a state s ∈ Q that is a (u,v)-attractor in A, for all u,v ∈ Σ∗ with |uv| ≥ 1.

3. A is strongly permutation-free.

4. L(A) is a finite or co-finite language.

Proof : Let A = (Q,Σ, ·,◦,q0,F) be a minimal biautomaton. First assume L(A) is a finite language, and
let ` be the length of a longest word in L(A). Then the right language LA(q) of every state q ∈Q is finite,
so all states in Q are pairwise almost-equivalent. Since L(A) is finite, and A is minimal, the biautomaton
has a non-accepting sink state s, with s ·a = s◦a = s for all a ∈ Σ. Moreover, from any state q ∈ Q the
automaton always reaches this sink state s after reading at most ` symbols. Therefore, the state s is a
(u,v)-attractor in A, for all words u,v ∈ Σ∗ with |uv| ≥ 1. It also follows that the only permutation that is
possible in A is the identity permutation on the singleton set {s}, hence A is strongly permutation-free.
The case where L(A) is a co-finite language is similar. The only differences are that the sink state s is an
accepting state, and the integer ` must be the length of the longest word that is not in L(A). This shows
that statement 4 implies all other statements, and it remains to prove the other directions.

Assume that all states in Q are pairwise almost-equivalent, and let k be the integer from Corollary 9.
If the length of every word in L(A) is less than k then L(A) is a finite language, so assume that there is a
word w ∈ L(A) with |w| ≥ k. We show that in this case language L(A) contains every word of length at
least k, and thus, is co-finite. Since |w| ≥ k, we can write w as w=w1w2, with |w2|= k. Because w∈ L(A)
we have (q0 ·w1) ◦w2 ∈ F . Now let u ∈ Σ≥k, and consider the states p = (q0 ·w1) and q = (q0 · u).
Since all states are almost-equivalent, and the word w2 has length k, we can use Corollary 9 to obtain
(p ·λ )◦w2 = (q ·λ )◦w2. Hence the state q◦w2 = (q0 ·u)◦w2 is accepting. By the �-property of A we
have (q0 ·u)◦w2 = (q0 ◦w2) ·u, and another application of Corollary 9 on the almost-equivalent states q0
and q0 ◦w2 we obtain q0 ·u = (q0 ◦w2) ·u, because |u| ≥ k. This shows that the word u is accepted by A,
hence L(A) is co-finite. This shows that statements 1 and 4 are equivalent.

Next assume there is a state s∈Q that is a (u,v)-attractor for all words u,v∈ Σ∗ with |uv| ≥ 1. Then A
must be strongly permutation-free, which can be seen as follows. Assume that there are words u,v ∈ Σ∗

with |uv| ≥ 1 such that the mapping π : q 7→ (q ·u)◦ v is a permutation on some set P⊆ Q, with |P| ≥ 2.
Then it must be

∣∣π i(P)
∣∣= |P| ≥ 2, for all i≥ 0. But since s is a (u,v)-attractor, there is an integer m≥ 0
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q0 q1 q2
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Figure 2: The minimal DFA A for the language Σ∗abΣ∗ over the alphabet Σ = {a,b}. The states of A1
can be ordered by q0 ≤ q1 ≤ q2.

such that (q ·um)◦vm = s, for all states q ∈Q. Then |πm(P)|= 1, which is a contradiction, therefore A is
strongly permutation-free.

Now it is sufficient to show that statement 3 implies statement 1. Therefore let A be strongly
permutation-free, and assume for the sake of contradiction, that there are two states p,q ∈Q with p � q.
Corollary 9 now implies that there are words u,v∈Σ∗, with |uv| ≥ |Q×Q|, such that (p ·u)◦v 6=(q ·u)◦v.
Since the number of steps in the computations (p · u) ◦ v and (q · u) ◦ v is at least |Q×Q|, the words u
and v can be written as u = u1u2u3 and v = v3v2v1 such that

(p ·u1)◦ v1 = p1, (p1 ·u2)◦ v2 = p1, (p1 ·u3)◦ v3 = (p ·u)◦ v,

(q ·u1)◦ v1 = q1, (q1 ·u2)◦ v2 = q1, (q1 ·u3)◦ v3 = (q ·u)◦ v.

But then the mapping π : r 7→ (r ·u2)◦v2 is a permutation (the identity permutation) on the states {p1,q1}.
Since A is strongly permutation-free, it follows p1 = q1, and in turn (p ·u)◦v= (q ·u)◦v. This contradicts
the assumption p � q, and concludes our proof.

5 Ordered Automata

We now study automata where one can find an order on the state set that is compatible with the tran-
sitions of the automaton. Ordered DFAs and their accepted languages were studied in [18]. A DFA
A = (Q,Σ,δ ,q0,F) is ordered if there exists some total order≤ on the state set Q such that p≤ q implies
δ (p,a)≤ δ (q,a), for all states p,q∈Q and symbols a∈Σ. Similarly, a biautomaton A= (Q,Σ, ·,◦,q0,F)
is ordered if there is a total order ≤ on Q such that p≤ q implies p ·a≤ q ·a as well as p◦a≤ q◦a, for
all states p,q ∈ Q and symbols a ∈ Σ. A regular language is ordered if it is accepted by some ordered
DFA, and it is bi-ordered if it is accepted by an ordered biautomaton. Moreover, a language is strictly
ordered if its minimal DFA is ordered, and it is strictly bi-ordered if its minimal biautomaton is ordered.

The next two results show that the class of bi-ordered languages is located between the class of
ordered languages and the class of finite and co-finite languages.

Theorem 11 The class of bi-ordered languages is strictly contained in the class of ordered languages.

Proof : If L is a bi-ordered language, then it is accepted by some ordered DBiA A. Then of course the
automaton Afwd is an ordered DFA. Therefore any bi-ordered language is an ordered language. The
strictness of this inclusion is witnessed by the language Σ∗abΣ∗ over the alphabet Σ = {a,b}, which is
accepted by the ordered DFA A from Figure 2.

Next let us argue, why no biautomaton for the language Σ∗abΣ∗ can be ordered. Therefore consider
some biautomaton B = (Q,Σ, ·,◦,q0,F) with L(B) = Σ∗abΣ∗. In the following we use the notation [u.v],
for u,v ∈ Σ∗, to describe the state (q0 · u) ◦ v of B. Of course, different word pairs [u.v] and [u′.v′] may
describe the same state. First note that the three states [λ .λ ], [a.λ ], and [λ .b] must be pairwise distinct,
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because every one of these states leads to an accepting state on a different input string. Assume there
is some order ≤ on the state set Q that is compatible with the transition functions of B. There are six
different possibilities to order the three above mentioned states:

[λ .λ ]≤ [a.λ ]≤ [λ .b], [a.λ ]≤ [λ .λ ]≤ [λ .b], [λ .b]≤ [a.λ ]≤ [λ .λ ],

[λ .λ ]≤ [λ .b]≤ [a.λ ], [a.λ ]≤ [λ .b]≤ [λ .λ ], [λ .b]≤ [λ .λ ]≤ [a.λ ].

If [λ .λ ] ≤ [a.λ ] ≤ [λ .b] then it must be [λ .bi] ≤ [a.bi] ≤ [λ .bi+1], for all i ≥ 0. Since the number
of states in Q is finite, there must be integers j > k ≥ 0 for which [λ .bk] = [λ .b j]. It then follows that
[λ .bk] = [a.bk] = [λ .bk+1]. This is a contradiction because [a.bk] describes an accepting state, while [λ .bk]
and [λ .bk+1] describe non-accepting states.

If [λ .λ ] ≤ [λ .b] ≤ [a.λ ] then we obtain [ai.λ ] ≤ [ai.b] ≤ [ai+1.λ ] for all i ≥ 0. Similar to the case
above we get a contradiction: because Q is finite there is an integer k≥ 0 with [ak.λ ] = [ak.b] = [ak+1.λ ],
but the state [ak.b] is accepting while the other two states are non-accepting.

Next consider the case [a.λ ] ≤ [λ .λ ] ≤ [λ .b]. By reading symbol a with a forward transition we
obtain [a.λ ] ≤ [a.b] from the second inequality, and by reading b with a backward transition, the first
inequality implies [a.b] ≤ [λ .b]. Note that both times [a.b] describes the same state because B has the
�-property. Further, this state must be different from the three states [a.λ ], [λ .λ ], and [λ .b] because it is
an accepting state, and the others are not. Now there are two possibilities for the placement of state [a.b]
in the order:

[a.λ ]≤ [a.b]≤ [λ .λ ]≤ [λ .b] or [a.λ ]≤ [λ .λ ]≤ [a.b]≤ [λ .b].

The first case implies [ai+1.λ ]≤ [ai+1.b]≤ [ai.λ ], for all i≥ 0, which leads to the contradictory equation
[ak+1.λ ] = [ak+1.b] = [ak.λ ], for some k ≥ 0. The second case implies [λ .bi] ≤ [a.bi+1] ≤ [λ .bi+1], for
all i≥ 0, and to the contradiction [λ .bk] = [a.bk+1] = [λ .bk+1], for some k ≥ 0.

With similar argumentation, the remaining three cases [a.λ ]≤ [λ .b]≤ [λ .λ ], [λ .b]≤ [a.λ ]≤ [λ .λ ],
and [λ .b] ≤ [λ .λ ] ≤ [a.λ ] lead to contradictions—we omit the details. This shows that there is no
order of the state set Q that is compatible with the transition functions of B. Therefore, the ordered
language Σ∗abΣ∗ is not a bi-ordered language.

In the proof of the following result we use the lexicographic order <lex of words, which is defined as
follows. Let Σ be an alphabet of size k and fix some order a1,a2, . . . ,ak of the symbols from Σ. For two
words w1,w2 ∈ Σ∗ let w1 <lex w2 if and only if either w1 is a prefix of w2, or w1 = uaiw′1 and w2 = ua jw′2,
for some words u,w′1,w

′
2 ∈ Σ∗ and symbols ai,a j ∈ Σ, with i < j.

Theorem 12 The class of finite and co-finite languages is strictly contained in the class of bi-ordered
languages.

Proof : Let L be some finite language over the alphabet Σ and let ` be the length of the longest word
in L. We construct an ordered biautomaton for L as follows. Let A = (Q,Σ, ·,◦,q0,F) be the biautomaton
with state set Q = {(u,v) | u,v ∈ Σ∗, |uv| ≤ `} ∪ {s}, initial state q0 = (λ ,λ ), set of accepting states
F = {(u,v) ∈ Q | uv ∈ L}, and where the transition functions · and ◦ are defined as follows: for all
symbols a ∈ Σ let s ·a = s◦a = s, and for all states (u,v) ∈ Q let

(u,v) ·a =

{
(ua,v) if |uav| ≤ `,
s otherwise,

(u,v)◦a =

{
(u,av) if |uav| ≤ `,
s otherwise.

One readily sees that A has both the �-property, and the F-property. Now let us define the order≤ on Q as
follows. First of all let (u,v)≤ s, for all (u,v) ∈ Q, so the non-accepting sink state is the largest element
of Q. Next, for two different states (u1,v1) and (u2,v2) let (u1,v1)≤ (u2,v2) if and only if
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• |u1v1|< |u2v2|, or

• |u1v1|= |u2v2|, and |u1|< |u2|, or

• |u1v1|= |u2v2|, |u1|= |u2|, and u1 <lex u2, or

• |u1v1|= |u2v2|, u1 = u2, and v1 <lex v2.

Notice that if none of the four cases above holds, then (u1,v1) = (u2,v2). It remains to show that the
transitions of A respect the order ≤. Since state s goes to itself on every symbol, because it is the largest
element, we have (u,v) · a ≤ s · a, and (u,v) ◦ a ≤ s ◦ a. Next let (u1,v1) and (u2,v2) be two different
states of A with (u1,v1) ≤ (u2,v2). Then it must be |u1v1| ≤ |u2v2| ≤ `. If |u2v2| = `, then (u2,v2) goes
to the sink state s on both the forward, and the backward a-transition. Since s is the largest element we
obtain (u1,v1) ·a ≤ (u2,v2) ·a, and (u1,v1)◦a ≤ (u2,v2)◦a. Therefore, in the following argumentation
we assume that |u2,v2| < `, so that we have (u1,v1) · a = (u1a,v1) and (u2,v2) · a = (u2a,v2), as well
as (u1,v1) ◦ a = (u1,av1) and (u2,v2) ◦ a = (u2,av2). Now we have to show (u1a,v1) ≤ (u2a,v2) and
(u1,av1)≤ (u2,av2), for which we distinguish four cases.

• If |u1v1|< |u2v2| then clearly |u1av1|< |u2av2|, from which we conclude (u1a,v1)≤ (u2a,v2), and
(u1,av1)≤ (u2,av2).

• If |u1v1| = |u2v2|, and |u1| < |u2|, then also |u1a| < |u2a|. Again, we can conclude (u1a,v1) ≤
(u2a,v2), and (u1,av1)≤ (u2,av2).

• Next assume |u1v1| = |u2v2|, |u1| = |u2|, and u1 <lex u2. Since u1 and u2 are of same length, the
fact u1 <lex u2 implies u1a <lex u2a. Thus, we get (u1a,v1)≤ (u2a,v2), and (u1,av1)≤ (u2,av2).

• Finally let |u1v1|= |u2v2|, |u1|= |u2|, u1 = u2, and v1 <lex v2. From v1 <lex v2 follows av1 <lex av2,
so we obtain (u1a,v1)≤ (u2a,v2), and (u1,av1)≤ (u2,av2).

This shows that the biautomaton A is an ordered biautomaton.
In case of a co-finite language L⊆ Σ∗ we first take its complement Σ∗ \L, which is finite, and apply

the above given construction. Then we obtain an ordered biautomata A. Finally, exchanging accepting
and non-accepting states—this is the ordinary complementation construction known for DFAs applied to
DBiAs—results in an ordered biautomata for the language L.

Finally, strictness of the inclusion is witnessed by the infinite and not co-finite language a∗+b, which
is accepted by the bi-ordered biautomaton from Figure 3.

Notice that the language Σ∗abΣ∗ from the proof of Theorem 11 is even a strictly ordered language,
since its minimal DFA A from Figure 2 is ordered. As we have seen, this language is not a bi-ordered
language, therefore the class of bi-ordered languages does not even contain all strictly ordered languages.
On the other hand, if a language is strictly bi-ordered, i.e., if its minimal biautomaton B is ordered, then
also the minimal DFA Bfwd is ordered. Therefore, the class of strictly bi-ordered languages is contained
in the classes of strictly ordered languages. We summarize our findings in the following corollary.

q0 q1 q2 q3
a

b

a b

a, b
a, b

Figure 3: A bi-ordered biautomaton with order q0 ≤ q1 ≤ q2 ≤ q3 for the language a∗+b.
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Corollary 13 The class of strictly bi-ordered languages is proper subset of the class of strictly ordered
languages.

Concerning the relation between bi-ordered languages and strictly ordered languages, we can see
that these are incomparable to each other. We have seen that the strictly ordered language Σ∗abΣ∗ is not
bi-ordered. On the other hand, we know that every finite language is bi-ordered. But one can see that the
minimal DFA for the finite language {ab} is not ordered—the reader is invited convince himself of this
fact. A proof of a more general result, saying that a single word language is strictly ordered if and only
if the word is of the form ai for some alphabet symbol a and integer i≥ 0, can be found in [18].

Corollary 14 The classes of bi-ordered languages and of strictly ordered languages are incomparable
to each other.

Moreover, with a similar argumentation as above we obtain:

Corollary 15 The class strictly bi-ordered languages is a proper subset of the class of bi-ordered lan-
guages.

6 Non-Exiting and Non-Returning Automata

In this last section we study so called non-exiting automata and non-returning automata. A biautomaton
or finite automaton A is non-exiting if all outgoing transitions from accepting states go to a non-accepting
sink state, and it is non-returning if the initial state does not have any ingoing transitions. We say that A
is exiting if it is not non-exiting, and it is returning if it is not non-returning.

In the DFA case non-exiting automata are known to characterize the class of prefix-free languages,
while non-returning automata are related to suffix-free languages. However this latter relation is not
a characterization: it is true that every DFA that accepts a (non-empty) suffix-free language must be
non-returning, but the reverse implication does not hold.

Concerning the situation for biautomata, we first show that every biautomaton which is non-exiting
must also be non-returning (unless it accepts the empty language).

Lemma 16 Let A be a biautomaton with L(A) 6= /0. If A is non-exiting, then A is non-returning.

Proof : We prove the contraposition of the lemma. Assume A = (Q,Σ, ·,◦,q0,F) is a returning biau-
tomaton. Then there must be words u,v ∈ Σ∗, with |uv| ≥ 1, such that (q0 · u) ◦ v = q0. It follows that
(q0 · un) ◦ vn = (q0 ◦ vn) · un = q0, for all n ≥ 0. Since the number of states in A is finite, there are inte-
gers i, j ≥ 0 and x,y≥ 1 such that q0 ·ui = q0 ·ui+x and q0 ◦ v j = q0 ◦ v j+y. We obtain q0 = (q0 ·ui+x)◦ vi

and q0 = (q0 ◦ v j+y) · u j. Now let w ∈ L(A), i.e., q0 ·w ∈ F . From our considerations above we get
((q0 ·ui)◦ vi) ·w ∈ F and

((q0 ·ui)◦ vi) ·w = ((q0 ·ui+x)◦ vi) ·w = (((q0 ·ui)◦ vi) ·w) ·ux ∈ F.

Recall that |uv| ≥ 1. If |u| ≥ 1, then we see that A is exiting because the accepting state ((q0 ·ui+x)◦vi) ·w
cannot go to a non-accepting sink state on every input symbol. If |u|= 0 then it must be |v| ≥ 1. Now a
similar argumentation gives ((q0 ◦ v j) ·u j) ·w ∈ F and

((q0 ◦ v j) ·u j) ·w = ((q0 ◦ v j+y) ·u j) ·w = (((q0 ◦ v j) ·u j) ·w)◦ vy ∈ F.

Here the accepting state ((q0 ◦ v j) · u j) ·w cannot go to a non-accepting sink state on every alphabet
symbol, which shows that A is exiting.
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The converse of Lemma 16 is not true which can easily be seen by the minimal biautomaton for
the language {a,aa}. Since the language is finite, there cannot be a cycle q0 = (q0 · u) ◦ v, hence the
biautomaton is non-returning. However, since both states q0 ·a and (q0 ·a) ·a are accepting, the automaton
cannot be non-exiting.

Now we study the classes of languages accepted by biautomaton that are non-exiting or non-returning.
While minimal non-exiting DFAs characterize the class of prefix-free languages, we show in the follow-
ing that minimal non-exiting biautomata characterize a different language class, namely the class of
circumfix-free languages. A word v ∈ Σ∗ is a circumfix of a word w ∈ Σ∗, if w = w1w2w3 and v = w1w3,
for some words w1,w2,w3 ∈ Σ∗. A language L is called circumfix-free if there are no two different
words w,v ∈ L, such that v is a circumfix of w. Notice that prefixes and suffixes of a word are also cir-
cumfixes (where one “side” is λ ). Therefore the class of circumfix-free languages is contained in both
the classes of prefix-free languages and suffix-free languages.

Theorem 17 A regular language is circumfix-free if and only if its minimal biautomaton is non-exiting.

Proof : Let A = (Q,Σ, ·,◦,q0,F) be a minimal biautomaton and L = L(A). First assume that A is exiting,
i.e., there is an accepting state q ∈ F and a non-empty word w ∈ Σ+ such that q ·w ∈ F . Since q must be
reachable from the initial state of A, there are words u,v ∈ Σ∗ with (q0 ·u)◦ v = q. Then both words uv
and uwv belong to L(A), but uv is a circumfix of w. Therefore, if L(A) is circumfix-free then A must be
non-exiting.

For the reverse implication notice that whenever there are two different words w and w′ in L(A)
such that w′ is a circumfix of w, then w = w1w2w3 and w′ = w1w3, with w1,w3 ∈ Σ∗ and w2 ∈ Σ+

(because w 6= w′). It follows (q0 ·w1) ◦w3 ∈ F and ((q0 ·w1) ◦w3) ·w2 ∈ F , and since w2 6= λ the
automaton A must be exiting. Thus, if A is non-exiting then L(A) must be circumfix-free.

Now we consider languages accepted non-returning biautomata. If a minimal biautomaton A is non-
returning then clearly the contained minimal DFA Afwd is non-returning, too. Therefore the class of
languages accepted by minimal non-returning biautomata is contained in the class of languages accepted
by minimal non-returning DFAs. Moreover, this inclusion is strict because the minimal DFA for the
language ab∗ is non-returning, while the minimal biautomaton for that language is not (it has a backward
transition loop for symbol b on its initial state). Therefore we have the following result.

Theorem 18 The class of languages accepted by minimal non-returning biautomata is strictly contained
in the class of languages accepted by minimal non-returning deterministic finite automata.

7 Conclusions

We continued the study of structural properties on biautomata started in [7, 11, 12]. Our focus was on the
effect of classical properties of deterministic finite automata such as, e.g., permutation-freeness, strongly
permutation-freeness, and orderability, on biautomata. It is shown that this approach on structurally
restricting the recently introduced biautomata model was worth looking at. A comparison of the induced
language families on structurally restricted deterministic automata and biautomata is given in Table 1.
Future research on the subject under consideration may consist on some further properties such as, e.g.,
biautomata where all states are final or all are initial. In the case of ordinary deterministic finite automata
the family of prefix-closed languages is obtained by the former property, while the latter gives the family
of suffix-closed languages. Moreover, it would be also interesting to study, which structural properties
can be successfully applied to nondeterministic biautomata, as introduced in [8].
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RAIRO–Informatique théorique et Applications / Theoretical Informatics and Applications 43(1), pp. 69–94.
doi:10.1051/ita:2007061

[3] J. Brzozowski & B. Liu (2021): Syntactic Complexity of Finite/Cofinite, Definite, and Reverse Definite Lan-
guages. arXiv:1203.2873v1 [cs.FL].

[4] J. A. Brzozowski & F. E. Fitch (1980): Languages of R-Trivial Monoids. Journal of Computer and System
Sciences 20(1), pp. 32–49. doi:10.1016/0022-0000(80)90003-3

[5] J.-M. Champarnaud, J.-P. Dubernard, H. Jeanne & L. Mignot (2013): Two-Sided Derivatives for Regular
Expressions and for Hairpin Expressions. In A. H. Dediu, C. Martı́n-Vide & B. Truthe, editors: Proc. of the
7th International Conference on Language and Automata Theory and Applications, LNCS 7810, Springer,
Bilbao, Spain, pp. 202–213. doi:10.1007/978-3-642-37064-9 19

[6] I. M. Havel (1969): The theory of regular events II. Kybernetika 6, pp. 520–544.

[7] M. Holzer & S. Jakobi (2013): Minimization and Characterizations for Biautomata. In S. Bensch, F. Drewes,
R. Freund & F. Otto, editors: Proc. of the 5th International Workshop on Non-Classical Models of Automata
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