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We introduce two generalizations of synchronizability tacanata with transitions weighted in an
arbitrary semirind = (K, +,-,0,1). (or equivalently, to finite sets of matriceskii*".) Let us call a
matrix A location-synchronizing if there exists a columnArtonsisting of nonzero entries such that
all the other columns oA are filled by zeros. If additionally all the entries of thisstgnated column
are the same, we call synchronizing. Note that these notions coincide for stettbanatrices and
also in the Boolean semiring. A se# of matrices inK™" is called (location-)synchronizing if
/ generates a matrix subsemigroup containing a (locatipnejgonizing matrix. Th& -(location-
)synchronizability problem is the following: given a finget.# of n x n matrices with entries iK,

is it (location-)synchronizing? Both problems are PSPAGIEd for any nontrivial semiring. We give
sufficient conditions for the semirirkg when the problems are PSPACE-complete and show several
undecidability results as well, e.g. synchronizabilityiglecidable if 1 has infinite order [, +,0)

or when the free semigroup on two generators can be embedliggdi -, 1).

1 Introduction

The synchronization (directing, reseting) problem of sieal, deterministic automata is a well-studied
topic with a vast literature (see e.d. [16] for a survey). Atomatone/ is synchronizablef some word

u induces a constant function on its state set, in which cdsea synchronizing word of7. Deciding
whether an automaton is synchronizable can be done in polghdime and it is also known that for
synchronizable automata, a synchronizing word of lergth®) exists, wheren denotes the number of
its states. (The famouSerny conjecture from the sixties states that this bourfd is1)2.)

The notion of synchronizability has been extended e.g. Hied different ways) to nondeterministic
automata in[[R], to stochastic automata [in][10] and morentgen another way in[[2], to integer-
weighted transitions in_[1]. To our knowledge, only ad-hations have been defined so far, each for a
particular underlying semiring. We note that(in [1] the pathas also been extended to timed automata
as well.

In this paper we introduce several extensions of synchatilizy to automata with transitions weighted
in an arbitrary semiring€ = (K,+,-,0,1). For stateg,qand wordu, let (pu)q € K denote the sum of the
weights of allu-labeled paths fronp to g, with the weight of a path being the product of the weights of
its edges, as usual. Following the nomenclaturélof [1], vldloaautomaton/ location-synchronizable

if 3g,u: Vp,r (pu); # 0 iff r = q andsynchronizabléf 3q,u,k # 0: Vp,r (pu)q =k and(pu); =0

for eachr # q.

As an equivalent formulation, let us call a matlix K"*" ocation synchronizingf it contains a column
entirely filled with nonzero values, and all its other ergrage zero. If in addition all the nonzero values
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are the same, we call synchronizing Then, an instance of the synchronizability problems isitefiset

o/ ={A :1<i <k} of matrices, each ik™". The family </ is called (location) synchronizable if it
generates a (location) synchronizing matrix. The questiaa decide whether the instance is (location)
synchronizing.

Note that these notions coincide for stochastic automadaatso in the Boolean semiring. For uncon-
strained automata, both problems B®PACEhard for any nontrivial semiring, and in any semiring, the
length of the shortest directing word can be exponential gie sufficient conditions for the semiring
when the problems are RSPACE (and hence arBSPACEcomplete) and show several undecidability
results as well.

2 Notation

A semiringis an algebraic structur€ = (K,+,-,0,1) where(K,+,0) is a commutative monoid with
identity 0, (K,-,1) is a monoid with identity 1, 0 is an annihilator ferand - distributes overt, i.e.
O0a=a0=0, (a+b)c=ac+bcanda(b+c) =ab+acfor eacha,b,c € K. (When the context is clear, we
usually omit the sign.) The case wheliK| = 1 is that of the trivial semiring; whefK| > 1, the semiring
is nontrivial. Three semirings used in this paper areBhelean semirind® = ({0,1},V, A,0,1) and the
semiringsN andZ of the natural numberf0,1,2, ...} and the integer$0,+1,+2, ...} with the standard
addition and product. Among these, omlyis a ring since the other two have no additive inverses. A
semiringK is zero-sum-free i+ b = 0 impliesa= b = 0; is zero-divisor-free itb= 0 impliesa= 0 or

b = 0; is positive if it is both zero-sum-free and zero-dividare; is locally finite if for any finiteg C K,
the least subsemiring & containingKy (which is also called the subsemiring kfgenerated b¥p) is
finite.

An alphabetis a finite nonempty set, usually denot&éh this paper. When is an integer[n] stands for
the set{1,...,n}. For a sei, P(X) denotes its power sé¥ : Y C X}. For any alphabeA, the semiring
of languagesoverAis (P(A*),U,-,0,{e}) where product is concatenation of languadés= {uv:u e
K,v e L} ande stands for the empty word.

WhenK is a semiring anah > 0 is an integer, then the s&t™" of n x n matrices with entries iKK also
forms a semiring with pointwise additio\+ B); ; = A j + B; j (for clarity, A ; stands for the entry in
theith row andjth column) and the usual matrix produ@B); ; = ¥ ¢ AikBkj. The zero element is
1,ifi=]

0, otherwise

the null matrix¢; ; = 0 and the one element is the identity matfix= { in K™,

In this article we only take products of matrices, no sumsthod use the notiofu#) when.#Z C K™"
is a set of matrices for the least snbnoid of the monoid(K"™",-,1,) containing.#. That is, (.#)
contains all products of the fori; M, ... My with k > 0 andM; € .# for eachi € [K].

For a semiringK, alphabetA and integem > 0, ann-stateK -weighted A-automatois a systemM =
(a,(Ma)aes, B) wherea, B € K" are theinitial andfinal vectors, respectively and for eaate A, M, €
K™" is atransition matrix The mappinga — M, extends in a unique way to a homomorphidn—
K™ wi— My with Mg, _a = Mg, ... Mg,. The automato above associates to each weva weight
M(w) = aMyf € K, wherea is considered as axln row vector and3 as ann x 1 column vector. We
usually do not specify the numberof states explicitly and omiK and A when the weight structure
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and/or the alphabet is clear from the context.

3 Synchronizability in various semirings

Classical nondeterministic automata (with multiple adistates but n@-transitions) can be seen as au-
tomata with weights in the Boolean semiring. For any semgikn aK-automatorM = (a, (Ma)aca, B)
is

e partial if there is at most one nonzero entry in each row of each tiiansnatrix, andax has exactly
one nonzero entry,

e deterministidf it is partial and there is exactly one nonzero entry in eamh of each matrix\,.

A classical deterministic automatdh = (o, (Ma)aca, B) is calledsynchronizablgdirectable, resetable

etc) if there exists a word (called a synchronizing word dfl) such thatV,, has exactly one column

that is filled with 1's and all the other entries B, are zero. (Traditionally, this property is formalized
asw inducing a constant map on the state set.)

As an example, the 4-state automakdn= (o, (Ma)aco,1}, B) with arbitrarya and and with transition
matrices

0100 0100
0010 0100
M=10001|™M=|l0010
1000 0 001

is synchronizable since for the word 100010001, the tramsihatrix is

01

o

(M1(Mo)*)*My =

o OoOoo

0
0
0

PR
o oo

The notion celebrates its 50th anniversary this year — ap@pular and intensively studied conjecture in
the area is that cﬁ:ern)’/ stating if am-state classical deterministic automaton is synchromézdben it
admits a synchronizing word of length at m@st- 1)2. We remark here that it is decidable in polynomial
time (it's actually inNL) whether an input classical, deterministic automaton ekyonizable.

Synchronizability has been extended to nondeterminisioraata in [9] in three different ways. Here
we highlight the one entitled “D3-directability” there: BrautomatonM = (a, (Ma)aca,8) (that is, a
classical nondeterministic automaton) is called D3-daele if there exists a word' such thatvl,, has
exactly one column that is filled with 1's and all the otherest ofM,, are zero. Itis known (see e.g! [9])
that in general, the shortest synchronizing word of a syorubkablen-stateB-automaton can have length
Q(2") with O(2") being an upper bound|[4]. For partBtautomata, the best known bounds Q(e?/ﬁn)
andO(n?¥4"), seel[11, 4].

In the next section of the paper we will frequently use théofeing results of[[12]:

Theorem 1. Deciding whether an inpuB-automaton is synchronizable is complete RBPACE The
problem remain® SPACE-complete when restricted to partiBFautomata.
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For the probabilistic semiring, in which case the weightictire is that of the nonnegative reals with the
standard addition and product, and the input automatadsitran matrices are restricted to be stochastic,
the notion has been also generalized by several authors:

¢ In [10], M is synchronizable if there exists a wordsuch that all the rows d¥l,, are identical.

e In [2], M is synchronizable if there exists a single infinite warduch that for any > 0, there
exists an integeK; such that for each finite prefixof w having length at lead{,, in M, there is
a column in which each entry is at least- k.

The problem of checking synchronizability is undecidali¢hie former setting anBSPACE-complete
in the latter setting.

Most of these generalizations require (an arbitrary pesgjgproximation of) a column consisting of ones
and zeros everywhere else in some matrix of the fvtg In fact, under these conditions it is a simple
consequence of the structure of the semiring and the camstma the automata that if in a row of a
transition matrixM,, there is exactly one nonzero element, then it has to be 1. Bboéean semiring
has only two elements, while in the probability semiring st@chasticity of the matrices guarantee that
the row sum is preserved and is one.)

The authors ofi[l1] worked in the semiriri, with a different semantics notion, though: according to
the notions of the present paper they worked in the semRjiig), where the elements are finite sets of
integers, with union as addition and complex sXimY = {x+y:x € X,y € Y} being product. There two
different notions of synchronizability are introduced: atnix M is location synchronizingf there exists

a column in which each entry is nonzero, while all the othdries of the matrix are zeroes (recall that
in this semiring 0 plays as zero) andsignchronizingf additionally the nonzero entries all coincide and
map every possible starting vecimrto some fixed vector (which is simply not possible in this semgi
since this would require the presence of #htrivial element of the semiring). An automatdn is
location synchronizable if there exists a wavdsuch thatV, is location synchronizing. Regarding the
complexity issues, location synchronizabilityRS PACEcomplete (which is due to the fact that(Z)

is positive, cf. Proposition]4) and synchronizability isially false.

In this paper we extend the notion of synchronizability idrisgimilar to [1], covering most of the
generalizations above (the exception being the case ofttmbpilistic semiring, which seems to require
a notion of metric).

Definition 1. Given a semirindK and a matrixM € K™", we say thaM is

e location synchronizingf there exists a (unique) integee [n] such thaM; y # 0 iff k=i;

e synchronizingf it is location synchronizing and additionalli; ; = My ; for eachj € [n] for the
above index.

A finite setMy,...,Mx € K™" of matrices is(location) synchronizabléf they generate a (location)
synchronizing matrix, i.e. whell;, M, ... M, is (location) synchronizing for somg,...,i; € [K],t > 0.

A K-automaton is (location) synchronizable if so is its setransition matrices.

We formulate theK-(location) synchronizing problenK¢Sync andK-LocSync for short) as follows:
given a finite set# = {Mg, ..., Mg} of matrices irK™" for somen > 0, decide whether# is (location)
synchronizable?

(Clearly, this is equivalent to having a singdeautomaton as input.)
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4 Results on complexity of the two problems

Given a semiringK, call a matrixM € K™" a partial 01-matrix if in each row there is at most one
nonzero entry, which can have only a value of 1 if presentnfdly for eachi there exists at most
one j with M; ; # 0 in which caseM; j = 1 has to hold. Observe that the product of two partjel-O
matrices is still a partial QL-matrix, being the same in any semiring. Moreover, a gaBtia-matrix is
synchronizing iff it is location synchronizing. Thus thdléwing are equivalent for any se#Z C K™"

of partial 0/1-matrices:

1. . is synchronizable;

2. ./ is location synchronizable;

3. ., viewed as a set of partial/@-matrices oveB, is synchronizable.

Since by Theorerl 1 the last conditionASPACEhard to check, we immediately get the following:
Proposition 1. For any nontrivial semiring<, bothK-SyncandK-LocSyncare PSPACEhard.

4.1 Decidable subcases

First we make several (rather straightforward) obsermation decidable subcases, generally involving
finiteness conditions.

Of course ifK is finite, we getPSPACE-completeness:

Proposition 2. For any finite semirind< both problems are ifPSPACE, thus arePSPACEcomplete.

Proof. Given an instance# = {My, ..., M} of the problem, we store a current matgh K™ " initial-
ized by the unit matrix, of K™". In an endless loop, we nondeterministically choose anximde[K]
and letC := CA;. After each step we check wheth@ris (location) synchronizing. If so, we report
acceptance, otherwise continue the iteration.

If K is finite, storing an entry o€ takes constant space, so storldgakesO(n?) memory, as well as
computation of the product matrix. In total, we have MRSPACE algorithm which isPSPACE by
Savitch’s theorem [13]. O

Proposition 3. For any locally finite semirind<, bothK-SyncandK -LocSyncare decidable, provided
that addition and product df are computable.

Proof. Recall that a semiring is locally finite if any finite subset df generates a finite subsemiring of
K.

Now given an instance# = {My,..., M} of the problem, leXX = {M;;; :i € [k], j,t € [n]} C K stand
for the finite set of the entries occurring in any of the masicThen clearly.#) C X™" whereX is the
subsemiring oK generated byX. SinceK is finitely generated, this implies#) is finite as well, hence
there exists an integérsuch that(.#) = .#<' = {Mi,Mi,...Mj, : d <t,iy,...,iq € [K]} which can be
chosen to be the least intedawith .#Z =<' = .#='*1. Hence by computing the setg' <! fort =0,1,2, ...



306 Synchronizing weighted automata

and reporting acceptance when a witness is found and mgettie input whenz =t = .7 =1 gets
satisfied without finding a witness we decide the respectioblpm.

(Note that computability of addition and product is neededthe effective computation of the sets
above.) O

Proposition 4. For any positive semiringl, K-LocSyncis in PSPACE

Proof. For any positive semiring the mappingo : K — B which maps 0 to 0 and all other elements of
K to 1, is a semiring morphism. Hencecan be extended pointwise to a semiring morphisnkK ™" —
B™", with (a(A))i,; = g(Aij). Then, a matrixA € K"" is location synchronizing if and only io(A)

is (location) synchronizing. Hende-LocSync can be reduced tB-Sync via the polytime reduction
{A1,...,A} = {0(A1),...,0(Ax)}, which is solvable irPSPACE, hence so i&-LocSync O

Remarkl. One can use the above semiring morphism to decide any suplerpyaf matrices which
cares only on the positions of zeroes (i.e. wihksatisfies the property if and only if so doggM)).
Examples of such properties amortality (whether the all-zero matrix is generated), and zbeo-in-
the-upper-left-cornefwhether a matrix with a zero in the upper-left corner is gatesl). Thus both
properties are ilPSPACEfor positive semirings (and are in fact undecidable for tmising Z, which
is not zero-sum-free).

Synchronizability, on the other hand, as well as the “equélies problem” asking whether a matrix is
generated having the same entry at two specified positisnsotisuch a property. The latter is well-
known to be undecidable N while the former is shown to be undecidable in Theorém 2.

4.2 Undecidable subcases

Now we turn our attention to undecidability results.

A well-known undecidable problem is tiixed Post Correspondence Probleon FPCP for short: given
a finite set{(ug,v1),..., (U, V) } of pairs of nonempty words over a binary alphabet, does tbeist a
nonempty index sequengg,.. ., i, eachi; in k], t > 0 with iy = 1 (i.e. we fix thelast used tile) such
thatu;, uj, ... u, = Vi,Vi,...V;,? The problem is already undecidable for the fixed constan? (also, it's
known to be decidable fdt= 2, seel[8] and has an unknown decidability status fari3< 6).

Proposition 5. For any semiringK such that the semigrou@a, b}*,-) embeds into the multiplicative
monoid(K, -, 1) of K, theK-Syncproblem is undecidable, even for two-state deterministAW¥ith an
alphabet size o8 (i.e. for eight2 x 2 matrices when the question is viewed as a problem for malyice

Proof. In order to ease notation, suppode,b}*,-) is a subsemigroup ofK,-,1). For wordsu,v €

b}*,-
{a,b} ", let us define the matrice&u,v) = 3 8 > andB(u,v) = < \lj 0 > Then a direct compu-

0
tation shows that

A(uz,v1)A(Uz,v2) = A(upUz, ViVo),
B(u1,Vv1)A(Uz,V2) = B(upuz, viVo),
B(u1,Vv1)A(Uz,V2) = B(ug,Vv1)B(Uz,v2) = B(UuiUz,VviUy).
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Also, matricesA(u, V) are not synchronizing while matricB$u, v) are synchronizing ifti=v. Moreover,

a productB(ug,v1)X is synchronizing forX € (Uyyefapby+ {AU, V), B(U,V)}) iff up = v1. Thus we can
derive that a product of the fortd (uz,v2)Xa(Uz, Vo) ... Xk(Uk, Vi) with eachX; being eitherA or B and

ui,vi € {0,1}" is synchronizing iff there exists some [k] such tha¥x; = B, Xy = A for eacht’ <t and

Ui...W =Vi...V; holds.

Hence, a reduction from FPCPKo-Syncis given by the transformation
{(u,v):ie K} +—  {Alu,Vv):ie€[k}u{B(uyvi)}.

Since FPCP is undecidable, sdisSync O

Note that(>*,U,-,0,{e}) is positive, so its location synchronization problem isidable in polynomial
space, while whef| > 1, its synchronization problem becomes undecidable.

Now we give a polynomial-time reduction from tKemortality problem to both of thK -synchronization
and theK -location synchronization problem. Tlke-mortality problem is actively studied for the case
K=2Z:

Definition 2. For a fixed semirind<, theK-mortality problem is the following: given a finite se# =
{Mg,..., Mg} of matrices inK™" for somen > 0, does(.#) contain the null matri¢,?

Proposition 6. For any semiring K, th& -mortality problem reduces to both IsFSyncandK-LocSync
Thus, in particular, wherK -mortality problem is undecidable, so are both synchrobilds problems.

Proof. Let.# = {Ms,...,M} be an instance of thi€-mortality problem. We define the matricés=

( é :3/' > i.e. adding an all-zero top row and an all-zero first row tohelsl;, i € [k] and fill the
1

10

upper-left corner by 1. Also, we defidg = < 1
n

> . We claim that the following are equivalent:

1. Ohe (M),
2. o/ ={A :0<i <k} is synchronizable;

3. & is location synchronizable.

Observe that each member of is block-lower triangular with 1 in the upper left corner,nce for
1 0

any productA = A, A, ... A, we haveA = ( X MM,...M

in order to ease notation we defilg as the unit matrix,, and set# = {Mo, ..., Mg} — sincel, is not

synchronizing and is the unit elementiof*", this neither affects mortality (o#) nor synchronizability

(of ).

) for some column vectaX. Note that

Thus in particular the first column of any matie (.#) contains a nonzero entry, henéeis (lo-
cation) synchronizing only iM;,M;,...M; = &), in which caseZ is indeed a positive instance of
the K-mortality problem, showing iii}» i). For i)—ii), let A, ...A, = Oh, t >0, ij € [k]. Then
M:=M,...M, = 10 , thusAgM = Lo is a synchronizing matrix. Finally, i}iii)

0 ﬁn 1 ﬁl’l

is clear for anyer. O
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In particular, since mortality is undecidabledn so areZ-SynandZ-LocSync

Our most involved result on undecidability is the followiage:

Theorem 2. N'Syncis undecidable. Thus M embeds int& (i.e. whenl has infinite order ifK, +, 0)),
then so iK-Sync

Proof. We give a polynomial-time reduction from the FPCP problemNt8ync. This time we use the
variant of FPCP in which thérst tile is fixed to (uz,v1). Let {(ui,vi) :i € [k]} be an instance of the
FPCPu;,vi € {0,1}". For a nonempty wordi € {0,1}" let int(u) be its value when considered as a
ternary number, i.e. infa,_1...a) = Yo<j-n&3. Also, we define for each word a matrixM(u) =

lul
( i:?wt(u) (l) > Then, since inuv) = 3Mint(u) + int(v), we get thaiM (u)M(v) = M(uv) and since the
mappingu — M(u) is also injective, it is an embedding of the semigrgy®, 1} *,-) into N2*2,

We define the following matrices;, i € [k], B andC, all in N6*®:

M(u) O 0
A = 0 M(Ui) 0 ,
0 0 M(vi)
int(ug) 1 intlu3)) 1 O 0
int(u1) 1 intlu) 1 O 0
B_ 0 0 intup)) 1 O 0
| o 0 influ1) 1 O 0|’
0 00 0 infvy) 1
0 00 0 infvy) 1
0 00O0O0OO
0 00O0O0ODO
co 1 0000O0
0 00O0OO O]}
1 0000O
0 00O0O0ODO

that is,C has exactly two nonzero entries, nam@lyy =Cs1 = 1.

Then for any sequenas, ... ,i;, t > 1 we have

Aiz...Ait<

with u=u,...u, andv=v,...v;, and also

int(ugu) int(u) int(upu) int(u) O 0
int(ugu) int(u) int(ugu) int(u) O 0
‘ 10 0 int(upu) int(u) O 0
BA- A= 0 0 int(uiu) int(u) 0 0 '
0 0 0 0 in{v1v) int(v)
0 0 0 0 in{v1v) int(v)
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and thus

BA,...A,C =

OO OO OoOOo
OO O0OO0OO0OOo
O OO0 OoOOo
OO OO OoOOo
cNeoNeoNolNolNo)

which is synchronizing if and only iU, ... u, = vivi,...Vi,, hence if{(u,v) : i € K]} is a positive
instance of FPCP, thew” = {A :i € [k} U{B,C} is synchronizable.

For the other direction, suppos#’ is synchronizable. We already argued that any menbafr ({A :
M(u) O 0

i € [k|}) has the form[ 0 M(u) O for wordsu, v with u = uj, U, ... U, andv = vi,i, ...V,
0 0 M(v)

for someij € [k], t > 0. These matrices are clearly not (location) synchronizing

Considering the matri&, we have the following claims:
C1
. _ C2 O
Claim A. For any matrixX we haveXC= | . for somec,,...,cs € N.
Ce
Claim B.If XCY is synchronizing for some matriceésandY, then so isXC.

Indeed X Cis the matrix whose first column is the sum of the third and thie ¢iolumn of X, and whose

C1 Cily
. . 2 O Cory .
other entries are all zero. Also, XC = ) thenXCy=| . wherer is the
Ce Col'1

first row of Y. If XCY is synchronizing, this impliesiry = c;r1 # 0 for eachi, j € [6], hencec; = ¢j and
XCis synchronizing as well.

Thus, by ii) above we get that itZ is synchronizable, then there is a synchronizing matrixhefform
XCwith X € ({A i € K} U{B}).

Inspecting members @f A : i € [k]} U{B}) we get the following claim:

Claim C.Let o/ stand for the matrix semigroud A : i € [K]}). Then for anyn > 0, any member of

X nX O
/(B )" has the form( 0 X O ) for some matriceX,Y € N2x2,
0O 0 Y

M(u) O 0

Indeed, for the base case= 0 we have matrices of the form 0 M(u) O satisfying the
0 0 M(v)

condition. Suppose the claim holds foand consider a matrid € <7 (B</)"! = o/ (B</)"B«7. By the
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X nXx 0 M(u) O 0
induction hypothesisl = MogBAwithMp=| 0 X O |,andA=| O M(u) O for
0 0 Y 0 0 M (V)

someX,Y € N?*2 and wordsu,v. We can also writéJ; for !nt(ul) 1 andV; for !nt(vl) L .
int(uy) 1 int(vy) 1

Calculating the product we get

>

X 0 U Ug 0 M(U) 0 0
X 0 0 Uy O 0 M(u) O
0 Y 0 0 Vi 0 0 M(v)

UiM(u) (n+1)XUM(u) O )

M = MoBA= (

|

XUyM (u) 0
0 YVM(v)

O O X OO X

showing the claim.

Thus, since({A :i € K} U{B}) = U & (B«)", we get by Claim B that if# is synchronizable,
n>0

X nX O
then there is a synchronizing matrix of the form0 X 0 | C. Writing X = < X% ) and
X3 X4
0 0 Y
nxy
nxg

Y = ( zl iz ) we get that this product is further equal oil O which is synchronizing
3 Y4 3

Y1

Y3
if and only if n=1 andx; = x3 =Yy1 = y3 # 0. Byn =1 we get that it # is synchronizable, then there

is a synchronizing matrix of the form
X=AjA,...AjBAA;,...AC,

with > 0,t > 1, j;,ir € [k]. Writing u = Uy Ui, ... U, V=V1Vi,... Vi, U = U}, ...Uj, andV = vj, ...vj, we
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can write

X=AjA,...A;BAA;,...AC

int(ugu) 1 intlupu) 1 O 0
, int(ugu) 1 intlupu) 1 O 0
B ('\)"(”) &U, 8 0 0 intuu) 1 0 0|
N 0 0( ) M(V 0 0 intfuu) 1 0 0
) 0 00 0 infviv) 1
0 00 0 infviv) 1
3Vlint(uu) 3lvl 3lint(uyu) qv| 0 0
(int(W)+1)-int(upu) int(u)+1 (int(u)+1)-int(uu) int(u)+1 O 0
| o 0 3¥lint(uyu) 3l 0 0
10 0 (int(u/ )+ll)~int(u1u) int(W)+1 O 0 c
0 0 0 0 Flint(vyv) 3V
0 0 0 0 (V] +1)-int(viv)  int(v/)
3Vlint(uyu)
(int(u") + 1) - int(ugu)
| 3¥lint(uyu) O
| (int(U) + 1) - int(ugu)
3Vlint(vyv)
) :

which is synchronizing only if 8! = int(u) +1 and 3’| = int(V) 4 1, that isy/ =V = € implying ¢ = 0.

Hence if.# is synchronizable then there exists a synchronizing priodfithe form BA, A, ... A,C,
which in turn impliesupui, ... U, = VqVi,... Vi, thus in that casé(ui,vi) : i € [K]} is indeed a positive
instance of the FPCP problem. O

We note that the idea of encoding of a PCP variant within maemirings is not new, see e.al [7,

15,[3]. For exampleZ-mortality can be shown to be undecidable fox 3 integral matrices via a
4ul 0 0

similar embeddindu,v) — M(u,v) = | 0 4 0 | asin the proof of Theorefd 2, with i)
int(u) int(v) 1

being the base-4 value af This mapping is also an injective monoid homomorphism. T kakefining

0O 0O
B=| -1 0 —1 | which satisfie8? = B andBM(u,v)B = (4" +int(u) — int(v))B we get a similar
0O 0O

construction (cf.[[5]), also suitable for showing the uridability of the zero-in-the-upper-left-corner
problem. However, the lack of substraction (in generalpzem-freeness dfl) prevents us to apply this
method. Also, defining matrices of the forfiVi(u,v)T 2 for a suitableT (as in [6], see alsd [14]) is
again out of question since KX, only permutation matrices are invertible. The most clbapgroach

is that of the equal entries problem: in the proof we also stbundecidability of the problem whethef
generates a matrix having equal entries in the top-lefteroand in entry5,5). Actually, the embedding
(V) — < g/l(u) (Iz/l(v) > shows the same for 4 4 matrices. However, we were unable to modify

the construction for 4 4 matrices toshift the values intu) and in{v) into, say, the first column and
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at the same timeyverwritethe values 8/ and 3" by int(u) and in{v), respectively. (Adding them or
something similar did not seem to work, either.) That's why ad to use & 6 matrices — it is quite
plausible that the encoding is not the most compact posaitidehe dimension can be further lowered.

5 Conclusion, future directions

We generalized the notion of synchronizability to automattn transitions weighted in an arbitrary
semiring in two ways: one of them, location synchroniz&pifiequires the existence of a woudand
a stateq such that starting from any stapg q and onlyq has a nonzero weight afteris being read;
synchronizability additionally requires that this norz&reight is the same for all statgs In this paper
we studied theomplexityof checking these properties, parametrized by the undeylgemiring.

Our results can be summarised as follows:

e Both problems ar®SPACE-hard for any nontrivial semiring.
e For finite semirings, they aleSPACE-complete.
e For positive semirings, location synchronizabilityASPACE-complete.

e For locally finite semirings they are decidable (providedttthe addition and product operations
of the semiring are computable).

e The mortality problem reduces to both problems in any semiriThus for semirings having an
undecidable mortality problem, both variants of synchzation are undecidable. (This is the case
forZ.)

e If ({0,1}1,-,€) embeds into the multiplicative structure Kf then synchronizability is undecid-
able forK, even for deterministic automata.

e Synchronizability is undecidable for any semiring whereas mfinite order in the additive semi-
group. (This is the case fdt. Note that forN, location synchronizability is iPSPACE)

We do not have any decidability results fiirsynchronizability when the semiring is not locally
finite, the element 1 has a finite order in the additive stmestand{0,1}" does not embed into the
multiplicative semigroup. Also, it is not clear whether shironizability can be reduced to location
synchronizability in general — since i, location synchronizability is decidable but synchrobitity is
undecidable, so in general, synchronizability cannot bén@iereduced to location synchronizability. It
is also an interesting question whetiesynchronizability of 5-state automata is decidable or-note
conjecture that it is still undecidable and one can use athlignore compact encoding of FPCP. Also,
to cover the existing generalizations of synchronizabildr the case of the probabilistic semiring, we
could study semirings that are equipped with a metric — otneatiinvestigations can be seen as the case
of this perspective where the metric is the dicrete unitatise metric.
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