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We introduce two generalizations of synchronizability to automata with transitions weighted in an
arbitrary semiringK = (K,+, ·,0,1). (or equivalently, to finite sets of matrices inKn×n.) Let us call a
matrixA location-synchronizing if there exists a column inA consisting of nonzero entries such that
all the other columns ofA are filled by zeros. If additionally all the entries of this designated column
are the same, we callA synchronizing. Note that these notions coincide for stochastic matrices and
also in the Boolean semiring. A setM of matrices inKn×n is called (location-)synchronizing if
M generates a matrix subsemigroup containing a (location-)synchronizing matrix. TheK -(location-
)synchronizability problem is the following: given a finitesetM of n×n matrices with entries inK ,
is it (location-)synchronizing? Both problems are PSPACE-hard for any nontrivial semiring. We give
sufficient conditions for the semiringK when the problems are PSPACE-complete and show several
undecidability results as well, e.g. synchronizability isundecidable if 1 has infinite order in(K,+,0)
or when the free semigroup on two generators can be embedded into (K, ·,1).

1 Introduction

The synchronization (directing, reseting) problem of classical, deterministic automata is a well-studied
topic with a vast literature (see e.g. [16] for a survey). An automatonA is synchronizableif some word
u induces a constant function on its state set, in which caseu is a synchronizing word ofA . Deciding
whether an automaton is synchronizable can be done in polynomial time and it is also known that for
synchronizable automata, a synchronizing word of lengthO(n3) exists, wheren denotes the number of
its states. (The famoušCerný conjecture from the sixties states that this bound is(n−1)2.)

The notion of synchronizability has been extended e.g. (in three different ways) to nondeterministic
automata in [9], to stochastic automata in [10] and more recently in another way in [2], to integer-
weighted transitions in [1]. To our knowledge, only ad-hoc notions have been defined so far, each for a
particular underlying semiring. We note that in [1] the notion has also been extended to timed automata
as well.

In this paper we introduce several extensions of synchronizability to automata with transitions weighted
in an arbitrary semiringK = (K,+, ·,0,1). For statesp,q and wordu, let (pu)q ∈K denote the sum of the
weights of allu-labeled paths fromp to q, with the weight of a path being the product of the weights of
its edges, as usual. Following the nomenclature of [1], we call the automatonA location-synchronizable
if ∃q,u: ∀p, r (pu)r 6= 0 iff r = q andsynchronizableif ∃q,u,k 6= 0: ∀p, r (pu)q = k and(pu)r = 0
for eachr 6= q.

As an equivalent formulation, let us call a matrixA∈Kn×n location synchronizingif it contains a column
entirely filled with nonzero values, and all its other entries are zero. If in addition all the nonzero values
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are the same, we callA synchronizing. Then, an instance of the synchronizability problems is a finite set
A = {Ai : 1≤ i ≤ k} of matrices, each inKn×n. The familyA is called (location) synchronizable if it
generates a (location) synchronizing matrix. The questionis to decide whether the instance is (location)
synchronizing.

Note that these notions coincide for stochastic automata and also in the Boolean semiring. For uncon-
strained automata, both problems arePSPACE-hard for any nontrivial semiring, and in any semiring, the
length of the shortest directing word can be exponential. Wegive sufficient conditions for the semiringK
when the problems are inPSPACE(and hence arePSPACE-complete) and show several undecidability
results as well.

2 Notation

A semiring is an algebraic structureK = (K,+, ·,0,1) where(K,+,0) is a commutative monoid with
identity 0, (K, ·,1) is a monoid with identity 1, 0 is an annihilator for· and · distributes over+, i.e.
0a= a0= 0, (a+b)c= ac+bcanda(b+c) = ab+ac for eacha,b,c∈K. (When the context is clear, we
usually omit the· sign.) The case when|K|= 1 is that of the trivial semiring; when|K|> 1, the semiring
is nontrivial. Three semirings used in this paper are theBoolean semiringB = ({0,1},∨,∧,0,1) and the
semiringsN andZ of the natural numbers{0,1,2, . . .} and the integers{0,±1,±2, . . .} with the standard
addition and product. Among these, onlyZ is a ring since the other two have no additive inverses. A
semiringK is zero-sum-free ifa+b= 0 impliesa= b= 0; is zero-divisor-free ifab= 0 impliesa= 0 or
b= 0; is positive if it is both zero-sum-free and zero-divisor-free; is locally finite if for any finiteK0 ⊆K,
the least subsemiring ofK containingK0 (which is also called the subsemiring ofK generated byK0) is
finite.

An alphabetis a finite nonempty set, usually denotedA in this paper. Whenn is an integer,[n] stands for
the set{1, . . . ,n}. For a setX, P(X) denotes its power set{Y : Y ⊆ X}. For any alphabetA, the semiring
of languagesoverA is (P(A∗),∪, ·, /0,{ε}) where product is concatenation of languages,KL = {uv : u∈
K,v∈ L} andε stands for the empty word.

WhenK is a semiring andn> 0 is an integer, then the setKn×n of n×n matrices with entries inK also
forms a semiring with pointwise addition(A+B)i, j = Ai, j +Bi, j (for clarity, Ai, j stands for the entry in
the ith row and jth column) and the usual matrix product(AB)i, j = ∑k∈[n] Ai,kBk, j . The zero element is

the null matrixOi, j = 0 and the one element is the identity matrixIi, j =

{

1, if i = j

0, otherwise
in Kn×n.

In this article we only take products of matrices, no sums andthus use the notion〈M 〉 whenM ⊆ Kn×n

is a set of matrices for the least submonoidof the monoid(Kn×n, ·, In) containingM . That is,〈M 〉
contains all products of the formM1M2 . . .Mk with k≥ 0 andMi ∈ M for eachi ∈ [k].

For a semiringK , alphabetA and integern > 0, ann-stateK -weighted A-automatonis a systemM =
(α ,(Ma)a∈Σ,β ) whereα ,β ∈ Kn are theinitial andfinal vectors, respectively and for eacha∈ A, Ma ∈
Kn×n is a transition matrix. The mappinga 7→ Ma extends in a unique way to a homomorphismA∗ →
Kn×n, w 7→ Mw with Ma1...ak = Ma1 . . .Mak. The automatonM above associates to each wordw a weight
M(w) = αMwβ ∈ K, whereα is considered as a 1×n row vector andβ as ann×1 column vector. We
usually do not specify the numbern of states explicitly and omitK andA when the weight structure
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and/or the alphabet is clear from the context.

3 Synchronizability in various semirings

Classical nondeterministic automata (with multiple initial states but noε-transitions) can be seen as au-
tomata with weights in the Boolean semiring. For any semiring K , aK -automatonM = (α ,(Ma)a∈A,β )
is

• partial if there is at most one nonzero entry in each row of each transition matrix, andα has exactly
one nonzero entry,

• deterministicif it is partial and there is exactly one nonzero entry in eachrow of each matrixMa.

A classical deterministic automatonM = (α ,(Ma)a∈A,β ) is calledsynchronizable(directable, resetable
etc) if there exists a wordw (called a synchronizing word ofM) such thatMw has exactly one column
that is filled with 1’s and all the other entries ofMw are zero. (Traditionally, this property is formalized
asw inducing a constant map on the state set.)

As an example, the 4-state automatonM = (α ,(Ma)a∈{0,1},β ) with arbitraryα andβ and with transition
matrices

M0 =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









,M1 =









0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1









is synchronizable since for the word 100010001, the transition matrix is

(M1(M0)
3)2M1 =









0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0









.

The notion celebrates its 50th anniversary this year – a verypopular and intensively studied conjecture in
the area is that of̌Cerný stating if ann-state classical deterministic automaton is synchronizable, then it
admits a synchronizing word of length at most(n−1)2. We remark here that it is decidable in polynomial
time (it’s actually inNL ) whether an input classical, deterministic automaton is synchronizable.

Synchronizability has been extended to nondeterminisic automata in [9] in three different ways. Here
we highlight the one entitled “D3-directability” there: aB-automatonM = (α ,(Ma)a∈A,β ) (that is, a
classical nondeterministic automaton) is called D3-directable if there exists a wordw such thatMw has
exactly one column that is filled with 1’s and all the other entries ofMw are zero. It is known (see e.g. [9])
that in general, the shortest synchronizing word of a synchronizablen-stateB-automaton can have length
Ω(2n) with O(2n) being an upper bound [4]. For partialB-automata, the best known bounds areΩ( 3

√
3

n
)

andO(n2 3
√

4
n
), see [11, 4].

In the next section of the paper we will frequently use the following results of [12]:

Theorem 1. Deciding whether an inputB-automaton is synchronizable is complete forPSPACE. The
problem remainsPSPACE-complete when restricted to partialB-automata.



304 Synchronizing weighted automata

For the probabilistic semiring, in which case the weight structure is that of the nonnegative reals with the
standard addition and product, and the input automata’s transition matrices are restricted to be stochastic,
the notion has been also generalized by several authors:

• In [10], M is synchronizable if there exists a wordw such that all the rows ofMw are identical.

• In [2], M is synchronizable if there exists a single infinite wordw such that for anyε > 0, there
exists an integerKε such that for each finite prefixu of w having length at leastKε , in Mu there is
a column in which each entry is at least 1− ε .

The problem of checking synchronizability is undecidable in the former setting andPSPACE-complete
in the latter setting.

Most of these generalizations require (an arbitrary precise approximation of) a column consisting of ones
and zeros everywhere else in some matrix of the formMw. In fact, under these conditions it is a simple
consequence of the structure of the semiring and the constraint on the automata that if in a row of a
transition matrixMw there is exactly one nonzero element, then it has to be 1. (TheBoolean semiring
has only two elements, while in the probability semiring thestochasticity of the matrices guarantee that
the row sum is preserved and is one.)

The authors of [1] worked in the semiringZ, with a different semantics notion, though: according to
the notions of the present paper they worked in the semiringPf (Z), where the elements are finite sets of
integers, with union as addition and complex sumX+Y= {x+y : x∈X,y∈Y} being product. There two
different notions of synchronizability are introduced: a matrix M is location synchronizingif there exists
a column in which each entry is nonzero, while all the other entries of the matrix are zeroes (recall that
in this semiring /0 plays as zero) and issynchronizingif additionally the nonzero entries all coincide and
map every possible starting vectorα to some fixed vector (which is simply not possible in this semiring
since this would require the presence of anL -trivial element of the semiring). An automatonM is
location synchronizable if there exists a wordw such thatMw is location synchronizing. Regarding the
complexity issues, location synchronizability isPSPACE-complete (which is due to the fact thatPf (Z)
is positive, cf. Proposition 4) and synchronizability is trivially false.

In this paper we extend the notion of synchronizability in spirit similar to [1], covering most of the
generalizations above (the exception being the case of the probabilistic semiring, which seems to require
a notion of metric).
Definition 1. Given a semiringK and a matrixM ∈ Kn×n, we say thatM is

• location synchronizingif there exists a (unique) integeri ∈ [n] such thatM j,k 6= 0 iff k= i;

• synchronizingif it is location synchronizing and additionally,M j,i = M1,i for each j ∈ [n] for the
above indexi.

A finite set M1, . . . ,Mk ∈ Kn×n of matrices is(location) synchronizableif they generate a (location)
synchronizing matrix, i.e. whenMi1Mi2 . . .Mit is (location) synchronizing for somei1, . . . , it ∈ [k], t > 0.

A K -automaton is (location) synchronizable if so is its set of transition matrices.

We formulate theK -(location) synchronizing problem (K -Sync andK -LocSync for short) as follows:
given a finite setM = {M1, . . . ,Mk} of matrices inKn×n for somen> 0, decide whetherM is (location)
synchronizable?

(Clearly, this is equivalent to having a singleK -automaton as input.)
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4 Results on complexity of the two problems

Given a semiringK , call a matrixM ∈ Kn×n a partial 0/1-matrix if in each row there is at most one
nonzero entry, which can have only a value of 1 if present, formally for eachi there exists at most
one j with Mi, j 6= 0 in which caseMi, j = 1 has to hold. Observe that the product of two partial 0/1-
matrices is still a partial 0/1-matrix, being the same in any semiring. Moreover, a partial 0/1-matrix is
synchronizing iff it is location synchronizing. Thus the following are equivalent for any setM ⊆ Kn×n

of partial 0/1-matrices:

1. M is synchronizable;

2. M is location synchronizable;

3. M , viewed as a set of partial 0/1-matrices overB, is synchronizable.

Since by Theorem 1 the last condition isPSPACE-hard to check, we immediately get the following:

Proposition 1. For any nontrivial semiringK , bothK -SyncandK -LocSyncarePSPACE-hard.

4.1 Decidable subcases

First we make several (rather straightforward) observations on decidable subcases, generally involving
finiteness conditions.

Of course ifK is finite, we getPSPACE-completeness:

Proposition 2. For any finite semiringK both problems are inPSPACE, thus arePSPACE-complete.

Proof. Given an instanceM = {M1, . . . ,Mk} of the problem, we store a current matrixC∈ Kn×n initial-
ized by the unit matrixIn of Kn×n. In an endless loop, we nondeterministically choose an index i ∈ [k]
and letC := CAi. After each step we check whetherC is (location) synchronizing. If so, we report
acceptance, otherwise continue the iteration.

If K is finite, storing an entry ofC takes constant space, so storingC takesO(n2) memory, as well as
computation of the product matrix. In total, we have anNPSPACE algorithm which isPSPACE by
Savitch’s theorem [13].

Proposition 3. For any locally finite semiringK , bothK -SyncandK -LocSyncare decidable, provided
that addition and product ofK are computable.

Proof. Recall that a semiringK is locally finite if any finite subset ofK generates a finite subsemiring of
K .

Now given an instanceM = {M1, . . . ,Mk} of the problem, letX = {Mi j,t : i ∈ [k], j, t ∈ [n]} ⊆ K stand
for the finite set of the entries occurring in any of the matrices. Then clearly,〈M 〉 ⊆ Xn×n whereX is the
subsemiring ofK generated byX. SinceK is finitely generated, this implies〈M 〉 is finite as well, hence
there exists an integert such that〈M 〉 = M≤t = {Mi1Mi2 . . .Mid : d ≤ t, i1, . . . , id ∈ [k]} which can be
chosen to be the least integert with M≤t =M≤t+1. Hence by computing the setsM≤t for t = 0,1,2, . . .
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and reporting acceptance when a witness is found and rejecting the input whenM≤t = M≤t+1 gets
satisfied without finding a witness we decide the respective problem.

(Note that computability of addition and product is needed for the effective computation of the sets
above.)

Proposition 4. For any positive semiringK , K -LocSync is in PSPACE.

Proof. For any positive semiringK the mappingσ : K → B which maps 0 to 0 and all other elements of
K to 1, is a semiring morphism. Henceσ can be extended pointwise to a semiring morphismσ : Kn×n →
Bn×n, with (σ(A))i, j = σ(Ai, j). Then, a matrixA∈ Kn×n is locationsynchronizing if and only ifσ(A)
is (location) synchronizing. HenceK -LocSync can be reduced toB-Sync via the polytime reduction
{A1, . . . ,Ak} 7→ {σ(A1), . . . ,σ(Ak)}, which is solvable inPSPACE, hence so isK -LocSync.

Remark1. One can use the above semiring morphism to decide any such property of matrices which
cares only on the positions of zeroes (i.e. whenM satisfies the property if and only if so doesσ(M)).
Examples of such properties aremortality (whether the all-zero matrix is generated), and thezero-in-
the-upper-left-corner(whether a matrix with a zero in the upper-left corner is generated). Thus both
properties are inPSPACEfor positive semirings (and are in fact undecidable for the semiringZ, which
is not zero-sum-free).

Synchronizability, on the other hand, as well as the “equal entries problem” asking whether a matrix is
generated having the same entry at two specified positions, is not such a property. The latter is well-
known to be undecidable inN while the former is shown to be undecidable in Theorem 2.

4.2 Undecidable subcases

Now we turn our attention to undecidability results.

A well-known undecidable problem is theFixed Post Correspondence Problem, or FPCP for short: given
a finite set{(u1,v1), . . . ,(uk,vk)} of pairs of nonempty words over a binary alphabet, does thereexist a
nonempty index sequencei1, . . . , it , eachi j in [k], t > 0 with it = 1 (i.e. we fix thelast used tile) such
thatui1ui2 . . .uit = vi1vi2 . . .vit ? The problem is already undecidable for the fixed constantk= 7 (also, it’s
known to be decidable fork= 2, see [8] and has an unknown decidability status for 3≤ k≤ 6).

Proposition 5. For any semiringK such that the semigroup({a,b}∗, ·) embeds into the multiplicative
monoid(K, ·,1) of K , theK -Syncproblem is undecidable, even for two-state deterministic WFA with an
alphabet size of8 (i.e. for eight2×2 matrices when the question is viewed as a problem for matrices).

Proof. In order to ease notation, suppose({a,b}∗, ·) is a subsemigroup of(K, ·,1). For wordsu,v ∈
{a,b}+, let us define the matricesA(u,v) =

(

u 0
0 v

)

andB(u,v) =

(

u 0
v 0

)

. Then a direct compu-

tation shows that

A(u1,v1)A(u2,v2) = A(u1u2,v1v2),

B(u1,v1)A(u2,v2) = B(u1u2,v1v2),

B(u1,v1)A(u2,v2) = B(u1,v1)B(u2,v2) = B(u1u2,v1u2).
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Also, matricesA(u,v) are not synchronizing while matricesB(u,v) are synchronizing iffu= v. Moreover,
a productB(u1,v1)X is synchronizing forX ∈ 〈∪u,v∈{a,b}+{A(u,v),B(u,v)}〉 iff u1 = v1. Thus we can
derive that a product of the formX1(u1,v2)X2(u2,v2) . . .Xk(uk,vk) with eachXi being eitherA or B and
ui ,vi ∈ {0,1}+ is synchronizing iff there exists somet ∈ [k] such thatXt = B, Xt ′ = A for eacht ′ < t and
u1 . . .ut = v1 . . .vt holds.

Hence, a reduction from FPCP toK -Sync is given by the transformation

{(ui ,vi) : i ∈ [k]} 7→ {A(ui ,vi) : i ∈ [k]}∪{B(u1,v1)}.

Since FPCP is undecidable, so isK -Sync.

Note that(Σ∗,∪, ·, /0,{ε}) is positive, so its location synchronization problem is decidable in polynomial
space, while when|Σ|> 1, its synchronization problem becomes undecidable.

Now we give a polynomial-time reduction from theK -mortality problem to both of theK -synchronization
and theK -location synchronization problem. TheK -mortality problem is actively studied for the case
K = Z:

Definition 2. For a fixed semiringK , theK -mortality problem is the following: given a finite setM =
{M1, . . . ,Mk} of matrices inKn×n for somen> 0, does〈M 〉 contain the null matrixOn?

Proposition 6. For any semiring K, theK -mortality problem reduces to both ofK -SyncandK -LocSync.
Thus, in particular, whenK -mortality problem is undecidable, so are both synchronizability problems.

Proof. Let M = {M1, . . . ,Mk} be an instance of theK -mortality problem. We define the matricesAi =
(

1 0
0 Mi

)

, i.e. adding an all-zero top row and an all-zero first row to each Mi, i ∈ [k] and fill the

upper-left corner by 1. Also, we defineA0 =

(

1 0
1 In

)

. We claim that the following are equivalent:

1. On ∈ 〈M 〉;
2. A = {Ai : 0≤ i ≤ k} is synchronizable;

3. A is location synchronizable.

Observe that each member ofA is block-lower triangular with 1 in the upper left corner, hence for

any productA= Ai1Ai2 . . .Ait we haveA=

(

1 0
X Mi1Mi2 . . .Mit

)

for some column vectorX. Note that

in order to ease notation we defineM0 as the unit matrixIn and setM = {M0, . . . ,Mk} – sinceIn is not
synchronizing and is the unit element ofKn×n, this neither affects mortality (ofM ) nor synchronizability
(of A ).

Thus in particular the first column of any matrixA ∈ 〈M 〉 contains a nonzero entry, henceA is (lo-
cation) synchronizing only ifMi1Mi2 . . .Mit = On, in which caseM is indeed a positive instance of
the K -mortality problem, showing iii)→ i). For i)→ii), let Ai1 . . .Ait = On, t > 0, i j ∈ [k]. Then

M := Mi1 . . .Mit =

(

1 0
0 On

)

, thusA0M =

(

1 0
1 On

)

is a synchronizing matrix. Finally, ii)→iii)

is clear for anyA .
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In particular, since mortality is undecidable inZ, so areZ-SyncandZ-LocSync.

Our most involved result on undecidability is the followingone:

Theorem 2. N-Syncis undecidable. Thus ifN embeds intoK (i.e. when1 has infinite order in(K,+,0)),
then so isK -Sync.

Proof. We give a polynomial-time reduction from the FPCP problem toN-Sync. This time we use the
variant of FPCP in which thefirst tile is fixed to (u1,v1). Let {(ui ,vi) : i ∈ [k]} be an instance of the
FPCP,ui ,vi ∈ {0,1}+. For a nonempty wordu ∈ {0,1}+ let int(u) be its value when considered as a
ternary number, i.e. int(an−1 . . .a0) = ∑0≤i<nai3i . Also, we define for each wordu a matrixM(u) =
(

3|u| 0
int(u) 1

)

. Then, since int(uv) = 3|v|int(u)+ int(v), we get thatM(u)M(v) = M(uv) and since the

mappingu 7→ M(u) is also injective, it is an embedding of the semigroup({0,1}+, ·) into N2×2.

We define the following matricesAi, i ∈ [k], B andC, all in N6×6:

Ai =





M(ui) 0 0
0 M(ui) 0
0 0 M(vi)



 ,

B=

















int(u1) 1 int(u1) 1 0 0
int(u1) 1 int(u1) 1 0 0
0 0 int(u1) 1 0 0
0 0 int(u1) 1 0 0
0 0 0 0 int(v1) 1
0 0 0 0 int(v1) 1

















,

C=

















0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

















,

that is,C has exactly two nonzero entries, namelyC3,1 =C5,1 = 1.

Then for any sequencei2, . . . , it , t ≥ 1 we have

Ai2 . . .Ait =





M(u) 0 0
0 M(u) 0
0 0 M(v)





with u= ui2 . . .uit andv= vi2 . . .vit and also

BAi2 . . .Ait =

















int(u1u) int(u) int(u1u) int(u) 0 0
int(u1u) int(u) int(u1u) int(u) 0 0
0 0 int(u1u) int(u) 0 0
0 0 int(u1u) int(u) 0 0
0 0 0 0 int(v1v) int(v)
0 0 0 0 int(v1v) int(v)

















,
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and thus

BAi2 . . .AitC=

















int(u1u) 0 0 0 0 0
int(u1u) 0 0 0 0 0
int(u1u) 0 0 0 0 0
int(u1u) 0 0 0 0 0
int(v1v) 0 0 0 0 0
int(v1v) 0 0 0 0 0

















,

which is synchronizing if and only ifu1ui2 . . .uit = v1vi2 . . .vit , hence if{(ui ,vi) : i ∈ [k]} is a positive
instance of FPCP, thenM = {Ai : i ∈ [k]}∪{B,C} is synchronizable.

For the other direction, supposeM is synchronizable. We already argued that any memberA of 〈{Ai :

i ∈ [k]}〉 has the form





M(u) 0 0
0 M(u) 0
0 0 M(v)



 for wordsu,v with u= ui1ui2 . . .uit andv= vi1vi2 . . .vit

for somei j ∈ [k], t ≥ 0. These matrices are clearly not (location) synchronizing.

Considering the matrixC, we have the following claims:

Claim A. For any matrixX we haveXC=











c1

c2
...
c6

0










for somec1, . . . ,c6 ∈ N.

Claim B. If XCY is synchronizing for some matricesX andY, then so isXC.

Indeed,XC is the matrix whose first column is the sum of the third and the fifth column ofX, and whose

other entries are all zero. Also, ifXC=











c1

c2
...
c6

0










thenXCY=











c1r1

c2r1
...
c6r1











wherer1 is the

first row ofY. If XCY is synchronizing, this impliescir1 = c j r1 6= 0 for eachi, j ∈ [6], henceci = c j and
XC is synchronizing as well.

Thus, by ii) above we get that ifM is synchronizable, then there is a synchronizing matrix of the form
XC with X ∈ 〈{Ai : i ∈ [k]}∪{B}〉.

Inspecting members of〈{Ai : i ∈ [k]}∪{B}〉 we get the following claim:

Claim C.Let A stand for the matrix semigroup〈{Ai : i ∈ [k]}〉. Then for anyn ≥ 0, any member of

A (BA )n has the form





X nX 0
0 X 0
0 0 Y



 for some matricesX,Y ∈ N2×2.

Indeed, for the base casen= 0 we have matrices of the form





M(u) 0 0
0 M(u) 0
0 0 M(v)



 satisfying the

condition. Suppose the claim holds forn and consider a matrixM ∈A (BA )n+1 =A (BA )nBA . By the
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induction hypothesis,M = M0BA with M0 =





X nX 0
0 X 0
0 0 Y



, andA=





M(u) 0 0
0 M(u) 0
0 0 M(v)



 for

someX,Y ∈ N2×2 and wordsu,v. We can also writeU1 for

(

int(u1) 1
int(u1) 1

)

andV1 for

(

int(v1) 1
int(v1) 1

)

.

Calculating the product we get

M = M0BA=





X nX 0
0 X 0
0 0 Y









U1 U1 0
0 U1 0
0 0 V1









M(u) 0 0
0 M(u) 0
0 0 M(v)





=





XU1M(u) (n+1)XU1M(u) 0
0 XU1M(u) 0
0 0 YV1M(v)



 ,

showing the claim.

Thus, since〈{Ai : i ∈ [k]} ∪ {B}〉 = ⋃

n≥0
A (BA )n, we get by Claim B that ifM is synchronizable,

then there is a synchronizing matrix of the form





X nX 0
0 X 0
0 0 Y



C. Writing X =

(

x1 x2

x3 x4

)

and

Y =

(

y1 y2

y3 y4

)

we get that this product is further equal to

















nx1

nx3

x1

x3

y1

y3

0

















which is synchronizing

if and only if n= 1 andx1 = x3 = y1 = y3 6= 0. By n= 1 we get that ifM is synchronizable, then there
is a synchronizing matrix of the form

X = A j1A j2 . . .A jℓBAi2Ai3 . . .AitC,

with ℓ≥ 0, t ≥ 1, jr , ir ∈ [k]. Writing u= u1ui2 . . .uit , v= v1vi2 . . .vit , u′ = u j1 . . .u jℓ andv′ = v j1 . . .v jℓ we
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can write

X = A j1A j2 . . .A jℓBAi2Ai3 . . .AitC

=





M(u′) 0 0
0 M(u′) 0
0 0 M(v′)





















int(u1u) 1 int(u1u) 1 0 0
int(u1u) 1 int(u1u) 1 0 0
0 0 int(u1u) 1 0 0
0 0 int(u1u) 1 0 0
0 0 0 0 int(v1v) 1
0 0 0 0 int(v1v) 1

















C

=













3|u
′|int(u1u) 3|u

′| 3|u
′ |int(u1u) 3|u

′| 0 0
(int(u′)+1) · int(u1u) int(u′)+1 (int(u′)+1) · int(u1u) int(u′)+1 0 0
0 0 3|u

′ |int(u1u) 3|u
′| 0 0

0 0 (int(u′)+1) · int(u1u) int(u′)+1 0 0
0 0 0 0 3|v

′|int(v1v) 3|v
′|

0 0 0 0 (|v′|+1) · int(v1v) int(v′)













C

=

















3|u
′|int(u1u)

(int(u′)+1) · int(u1u)
3|u

′|int(u1u)
(int(u′)+1) · int(u1u)
3|v

′|int(v1v)
(int(v′)+1) · int(v1v)

0

















which is synchronizing only if 3|u
′| = int(u′)+1 and 3|v

′| = int(v′)+1, that is,u′ = v′ = ε implying ℓ= 0.

Hence ifM is synchronizable then there exists a synchronizing product of the form BAi2Ai3 . . .AitC,
which in turn impliesu1ui2 . . .uit = v1vi2 . . .vit , thus in that case{(ui ,vi) : i ∈ [k]} is indeed a positive
instance of the FPCP problem.

We note that the idea of encoding of a PCP variant within matrix semirings is not new, see e.g. [7,
15, 3]. For example,Z-mortality can be shown to be undecidable for 3× 3 integral matrices via a

similar embedding(u,v) 7→ M(u,v) =





4|u| 0 0
0 4|v| 0
int(u) int(v) 1



 as in the proof of Theorem 2, with int(u)

being the base-4 value ofu. This mapping is also an injective monoid homomorphism. Then, defining

B=





0 0 0
−1 0 −1
0 0 0



 which satisfiesB2 = B andBM(u,v)B= (4|u|+ int(u)− int(v))B we get a similar

construction (cf. [5]), also suitable for showing the undecidability of the zero-in-the-upper-left-corner
problem. However, the lack of substraction (in general, zero-sum-freeness ofN) prevents us to apply this
method. Also, defining matrices of the formTM(u,v)T−1 for a suitableT (as in [6], see also [14]) is
again out of question since inNk×k, only permutation matrices are invertible. The most closest approach
is that of the equal entries problem: in the proof we also showed undecidability of the problem whetherA

generates a matrix having equal entries in the top-left corner and in entry(5,5). Actually, the embedding

(u,v) 7→
(

M(u) 0
0 M(v)

)

shows the same for 4× 4 matrices. However, we were unable to modify

the construction for 4× 4 matrices toshift the values int(u) and int(v) into, say, the first column and
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at the same time,overwrite the values 3|u| and 3|v| by int(u) and int(v), respectively. (Adding them or
something similar did not seem to work, either.) That’s why we had to use 6× 6 matrices – it is quite
plausible that the encoding is not the most compact possibleand the dimension can be further lowered.

5 Conclusion, future directions

We generalized the notion of synchronizability to automatawith transitions weighted in an arbitrary
semiring in two ways: one of them, location synchronizability requires the existence of a wordu and
a stateq such that starting from any statep, q and onlyq has a nonzero weight afteru is being read;
synchronizability additionally requires that this nonzero weight is the same for all statesp. In this paper
we studied thecomplexityof checking these properties, parametrized by the underlying semiring.

Our results can be summarised as follows:

• Both problems arePSPACE-hard for any nontrivial semiring.

• For finite semirings, they arePSPACE-complete.

• For positive semirings, location synchronizability isPSPACE-complete.

• For locally finite semirings they are decidable (provided that the addition and product operations
of the semiring are computable).

• The mortality problem reduces to both problems in any semiring. Thus for semirings having an
undecidable mortality problem, both variants of synchronization are undecidable. (This is the case
for Z.)

• If ({0,1}+, ·,ε) embeds into the multiplicative structure ofK , then synchronizability is undecid-
able forK , even for deterministic automata.

• Synchronizability is undecidable for any semiring where 1 has infinite order in the additive semi-
group. (This is the case forN. Note that forN, location synchronizability is inPSPACE.)

We do not have any decidability results forK -synchronizability when the semiringK is not locally
finite, the element 1 has a finite order in the additive structure, and{0,1}+ does not embed into the
multiplicative semigroup. Also, it is not clear whether synchronizability can be reduced to location
synchronizability in general – since inN, location synchronizability is decidable but synchronizability is
undecidable, so in general, synchronizability cannot be Turing-reduced to location synchronizability. It
is also an interesting question whetherN-synchronizability of 5-state automata is decidable or not– we
conjecture that it is still undecidable and one can use a slightly more compact encoding of FPCP. Also,
to cover the existing generalizations of synchronizability for the case of the probabilistic semiring, we
could study semirings that are equipped with a metric – our current investigations can be seen as the case
of this perspective where the metric is the dicrete unit-distance metric.
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