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Vojtěch Vorel
Charles University in Prague, Czech Republic

vorel@ktiml.mff.cuni.cz

We consider the following generalized notion of synchronization: A word is called a reset word of
a subset of states of a deterministic finite automaton if it maps all states of the set to a unique state.
It is known that the minimum length of such words is superpolynomial in worst cases, namely in
a series of substantially nontransitive automata. We present a series of transitive binary automata
with a strongly exponential minimum length. This also constitutes a progress in the research of
composition sequences initiated by Arto Salomaa, because reset words of subsets are just a special
case of composition sequences. Deciding about the existence of a reset word for given automaton
and subset is known to be a PSPACE-complete problem, we provethat this holds even if we restrict
the problem to transitive binary automata.

1 Introduction

A deterministic finite automatonis a triple A = (Q,X,δ ), whereQ and X are finite sets andδ is an
arbitrary mappingQ× X → Q. Elements ofQ are calledstates, X is the alphabet. The transition
functionδ can be naturally extended toQ×X⋆ → Q, still denoted byδ . We extend it also by defining

δ (S,w) = {δ (s,w) | s∈ S,w∈ X⋆}

for eachS⊆ Q. An automaton(Q,X,δ ) is said to betransitiveif

(∀r,s∈ Q)(∃w∈ X⋆)δ (r,w) = s.

A states∈ Q is asink stateif

(∀x∈ X)δ (s,x) = s.

Clearly, if a nontrivial automaton has some sink state, it isimpossible for the automaton to be transitive.
For a given automatonA= (Q,X,δ ), we callw∈ X⋆ a reset wordif |δ (Q,w)|= 1. If such a word exists,
we call the automatonsynchronizing. Note that each word having a reset word as a factor is also a reset
word.

The Černý conjecture, a longstanding open problem, claims that each synchronizing automaton has
a reset word of length at most(|Q|−1)2. There is a series of automata due toČerný that reaches this

bound [3], but all known upper bounds lie inΩ
(

|Q|3
)

, see [15] for the best one1. A tight bound has been

established for various special classes of automata, see a survey in [23] or some recent advances e.g. in
[1, 6, 8, 20].

∗Research supported by the Czech Science Foundation grant GA14-10799S.
1An improved bound published by Trakhtman [22] in 2011 has turned out to be proved incorrectly.
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1.1 Synchronization of Subsets

Even if an automaton is not synchronizing, there could be various subsetsS⊆ Q such that|δ (S,w)|= 1
for some wordw∈ X⋆. We say that suchS is synchronizablein A and in the opposite case we say it is
blind in A. The wordw is called areset word of Sin A. Such words are of our interest. They lack some
of elegant properties of classical reset words (i.e. reset words of allQ), particularly a wordw having a
factorv which is a reset word ofSneed not to be itself a reset word ofS. In fact, if we choose a subsetS
and a wordw, it is possible for the setδ (S,w) to be blind even if the setSwas synchronizable.

SupposeA= (Q,X,δ ) andS⊆ Q. We denote byCS(A,S) the length of the shortest reset word ofS
in A. If S is blind, we setCS(A,S) = 0. LetM be a class of automata. For eachn let M≤n be the class
of all automata lying inM and having at mostn states. We denote

CSMn = max
A∈M≤n

S⊆Q

CS(A,S) .

If M is the class ofall automata, we write justCSn instead ofCSMn .
Such values we informally callsubset synchronization thresholds.The class of all transitive automata

and the class of all automata with ak-letter alphabet are denoted byT R andALk respectively. Automata
from AL2 are calledbinary.

As we describe below, it was proven independently by [10] and[17] thatCSn ≥ ( 3
√

n)!, and a con-
struction from [12] implies thatCSn ≥ 2Ω(n), but the proofs use automata with multiple sink states and
growing alphabets. Use of sink states is a very strong tool for designing automata having given proper-
ties, but in practice such automata seem very special. They represent unstable systems balancing between
different deadlocks. The very opposite are the transitive automata. Does the threshold remain so high if
we consider only transitive automata? Unfortunately, we show below that it does, even if we restrict the
alphabet size to a constant. We prove that

CSAL2∩T R
n = 2Ω(n)

,

which substantially raises also the general lower bounds ofeachCSALk
n , because their former lower

bounds (following from [12]) lie in2o(n). The new bound is tight sinceCSn = 2O(n).

1.2 Minimum Length of Compositions

It has been repeatedly pointed out by Arto Salomaa [17, 18] that very little is known about minimum
length of a composition needed to generate a function by a given set of generators. To be more precise,
let us adopt and slightly extend the notation used in [17, 18]. We denote byTn the semigroup of all
functions from{1, . . . ,n} to itself. GivenG⊆ Tn, we denote by〈G〉 the subsemigroup generated byG.
GivenF⊆ Tn we denote byD(G,F) the lengthk of a shortest sequenceg1, . . . ,gk of functions fromG

such thatg1 . . .gk ∈ F. Finally, denote

Dn =max
n≤n

max
F,G⊆Tn
F∩〈G〉6=∅

D(G,F) . (1)

From the well-known connection between automata and transformation semigroups it follows that the
valueCSn could be also defined by (1) if we just restrictF to be some of the sets

FS= { f ∈ Tn | (∀r,s∈ S) f (r) = f (s)}
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for S⊆ {1, . . . ,n}. Therefore it holds trivially that

Dn ≥ CSn .

Arto Salomaa refers to a single nontrivial bound ofDn, namelyDn ≥ ( 3
√

n)!, which is a consequence
of the above-mentioned variant forCSn. In fact he omits a much older construction of Kozen [9,
Theorem 3.2.7] which deals with lengths ofproofs rather than compositions but witnesses easily that

Dn = 2
Ω
(

n
logn

)

. Since 2013 it follows from [12] thatDn = 2Ω(n). Our result shows that this lower bound
holds also if we restrictG to any nontrivial fixed size.

In Group Theory, thresholds likeDn are studied in the scope of permutations, see [7].

2 Lower Bounds of Subset Synchronization Thresholds

We first formulate the two former lower bounds ofCSn. Let pi stand for thei-th prime.

Theorem 1([10, 17]). For each k there is an automaton Ak = (Qk,{a,b} ,δk) and a subset Sk such that
|Qk|= 2+∑k

i=1 pi andCS(Ak,Sk) = ∏k
i=1 pi .

The proof of the theorem uses an automatonAk that consists ofk cyclic parts of prime sizes and
two sink states, so it is essentially non-transitive. The theorem implies thatCSn ≥ ( 3

√
n)!, because

∏k
i=1 pi ≥ k! and |Qk| ≤ k3, using the estimationpi ≤ i2. By the terminology of [10] such bound is

exponential, but using canonical estimations ofpi it is not hard to show that the bound is exceeded by
n 7→ εn for anyε > 1.

Theorem 2([12]). It holds thatCSn = 2Ω(n) andCSAL2
n = 2

Ω
(

n
log n

)

.

The paper [12] studiescareful synchronizationof partial automata, but the lower bounds can be
adapted for our setting. The proofs of [12, Theorem 1] and [12, Theorem 3] can be modified (by adding
one state) so that the constructed automata have sink states. Then we can add another sink stateD which
becomes the target of all undefined transitions. Then all reset words for the subsetQ\{D} are careful
reset words of the original partial automaton and we can use the corresponding lower bounds.

Let us introduce three key methods used in the present paper.The first is quite simple and has been
already used in the literature [2]. It modifies an automaton in order to decrease the alphabet size with
preserving high synchronization thresholds:

Lemma 3. For each automaton A= (Q,X,δ ) and S⊆ Q there is an automaton A′ = (Q′,X′,δ ′) and
S′ ⊆ Q′ such that

1. S is synchronizable in A⇒ S′ is synchronizable in A′

2. CS(A′,S′)≥ CS(A,S)

3. |Q′|= |Q| · |X|
4. |X′|= 2

5. A′ and A have equal number of strongly connected components

Proof. Suppose thatX = {a0, . . . ,am}. We setQ′ = Q×X, X′ = {α ,β},

δ ′((s,ai) ,α) = (δ (s,ai) ,a0)

δ ′((s,ai) ,β ) = (s,ai+1 mod m) .
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Informally, a transitionr
ai−→ sof A is simulated inA′ by

(r,a0)
β−→ (r,a1)

β−→ . . .
β−→ (r,ai)

α−→ (s,a0) .

If we set S′ = S×{a0}, it is not hard to see that any reset word ofS′ in A′ have to be of the form
(

β i1α
)

. . .
(

β id α
)

for somew= ai1 . . .aid which is a reset word ofS in A.

The second method is original and is intended for modifying an automaton to be transitive, again
with high synchronization thresholds preserved. It relieson the following concept:

Definition 4. Let A = (Q,X,δ ) be an automaton and letρ ⊆ Q2 be a congruence, i.e. equivalence
relation satisfyingrρs⇒ δ (r,x)ρ δ (s,x) for eachx∈ X. We say thatρ is aswap congruenceif, for each
equivalence classC of ρ and each letterx∈ X, the restricted functionδ (_,x) :C→ Q is injective.

Let us express the key feature of swap congruences and use it in the construction.

Lemma 5. Let A= (Q,X,δ ) be an automaton, letρ ⊆ Q2 be a swap congruence and take any S⊆ Q. If
there are any r,s∈ S with r 6= s and rρs, the set S is blind.

Proof. Becauser ands lie in a common equivalence class ofρ , by the definition of swap congruence we
haveδ (r,x) 6= δ (s,x) for anyx∈ X. It follows that each setδ (S,w) for w∈ X⋆ is of size at least2.

Lemma 6. For each automaton A= (Q,X,δ ) and S⊆ Q there is an automaton A′ = (Q′,X′,δ ′) and
S′ ⊆ Q′ such that

1. S is synchronizable in A⇒ S′ is synchronizable in A′

2. CS(A′,S′)≥ CS(A,S)

3. A′ is transitive

4. |Q′|= 4 |Q|+2

5. |X′|= |X|+2c

where c is the number of strongly connected components of A.

Proof. LetC1, . . . ,Cc be the strongly connected components ofA. Fix someqi ∈Ci for eachi. We set

Q′ =
{

E,E
}

∪
({

1,1,2,2
}

×Q
)

X′ = X∪{ai ,bi | i = 1, . . . ,c}

and define the transition functionδ ′ as follows. If we omit all the lettersas andbs from the alphabetX′,
we find the statesE,E isolated (i.e.E

x→ E,E
x→ E for x∈ X) and the rest ofA′ consisting just of four

copies ofA:

(N,s)
x−→ (N,δ (s,x))

for N ∈
{

1,1,2,2
}

,s∈ Q,x∈ X. Let us introduce the additional letters. For anyi ∈ 1, . . . ,c ands∈ Q
such thats 6= qi we set

(1,s)
ai ,bi−→E

(2,s)
ai ,bi−→E

(

1,s
) ai ,bi−→E

(

2,s
) ai ,bi−→E
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and it remains to see Figure 1, which describes for eachi ∈ 1, . . . ,c the action ofai andbi on the six states
E,E,(1,qi) ,

(

1,qi
)

,(2,qi) ,
(

2,qi
)

.
Observe that the equivalenceρ having the classes

{

E,E
}

and
{

(1,s) ,
(

1,s
)}

,
{

(2,s) ,
(

2,s
)}

for
eachs∈ Q is a swap congruence ofA′. We claim that the automatonA′ and the set

S′ = {1}×S∪
{

2
}

×S

fulfill our requirements on synchronizability, the synchronization threshold and transitivity:

• If the setS is synchronizable inA, there arer ∈ Q and w ∈ X⋆ such thatδ (S,w) = {r}. The
stater lies in someCi , so there is a wordu ∈ X⋆ such thatδ (r,u) = qi . We claim that the word
wuai synchronizesS′ in A′. Indeed, we haveδ ′(S′,w) =

{

(1, r) ,
(

2, r
)}

and thereforeδ ′(S′,wu) =
{

(1,qi) ,
(

2,qi
)}

andδ ′(S′,wuai) = {(1,qi)}.

• Let S′ be synchronized inA′ by a wordw ∈ (X′)⋆. There must occur some letterar or br in w,
becauseS′ contains states from two different copies ofA. Thus we can write

w= uxv

for someu ∈ X⋆, i ∈ 1, . . . ,c, x ∈ {ai ,bi} andv ∈ (X′)⋆. If δ ′(S′,u) contains unique state from
{1}×Q, the wordu synchronizesS in A, we are done. Otherwise there is some state(1,s) ∈
δ ′(S′,u) such thats 6= qi . Becauseu∈ X⋆, it holds also that

(

2,s
)

∈ δ ′(S′,u). But

(1,s)
ai ,bi−→E

(

2,s
) ai ,bi−→E,

so the blind subset
{

E,E
}

is contained inδ ′(S′,ux), which is a contradiction.

• In order to verify thatA′ is transitive we first find a path between any pair of distinct states
(N,s),(N, r) from a common copy ofA. Let r ∈ Ci and δ (qi ,u) = r. If s= qi , the path is la-
beled byu. Otherwise we have:

(1,s)
ai−→ E

ai−→ (1,qi)
u−→ (1, r)

(2,s)
ai−→ E

bi−→ (2,qi)
u−→ (2, r)

(

1,s
) ai−→ E

ai−→
(

1,qi
) u−→

(

1, r
)

(

2,s
) ai−→ E

bi−→
(

2,qi
) u−→

(

2, r
)

.

The paths above also guarantee that there are no more than twostrongly connected components:

C= {E}∪{1,2}×Q, C=
{

E
}

∪
{

1,2
}

×Q.

It remains to connectC with C: For anyi we have(1,qi)
bi−→

(

2,qi
) ai−→ (1,qi) .

E

1, qi 1̄, qi 2, qi 2̄, qi

E

Figure 1: Action of the lettersai (solid arrows) andbi (dotted arrows) on certain states ofA′.
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Let us present the main construction of the present paper, a series of automata with strictly exponen-
tial subset synchronization threshold, constant alphabetsize and constant number of strongly connected
components. We use some informal principles that occur in [12] as well.

{0, . . . ,m− 1} ×
{

0,0↓,0↑
}

{0, . . . ,m− 1} ×
{

1,1↓,1↑
} D

D

{q0, . . . , qlogm}

Figure 2: Main parts ofA. The arrows depict the connectivity pattern ofA.

Lemma 7. For infinitely many m∈ N there is an automaton A= (Q,X,δ ) and S⊆ Q such that

1. CS(A,S) = 2m(logm+1)+1

2. |Q|= 6m+logm+3

3. |X|= 4

4. A has4 strongly connected components.

Proof. Supposem= 2k. For eacht ∈ 0, . . . ,m− 1 we denote byτ = bin(t) the standardk-digit binary
representation oft. By a classical result proved in [5] there is aDe Bruijn sequenceξ = ξ0 . . .ξm−1

consisting of binary lettersξi ∈ {0,1} such that each wordτ ∈ {0,1}k appears exactly once as a cyclic
factor ofξ (i.e. it is a factor or begins by a suffix ofξ and continues by a prefix ofξ ). Let us fix such
ξ . By π(i) we denote the numbert, whose binary representationbin(t) starts inξ from thei-th position.
Note thatπ is a permutation of{0, . . . ,m−1}. Set

Q =
(

{0, . . . ,m−1}×
{

0,0
↓
,0

↑
,1,1

↓
,1

↑
})

∪
{

q0, . . . ,qlogm,D,D
}

X = {0,1,κ ,ω}
S = ({0, . . . ,m−1}×{0})∪{q0,D} .

Figure 2 visually distinguishes main parts of the automaton. The statesD andD are sinks. Together
with D ∈ S it implies that any reset word ofS takes the states ofS to D and that the stateD must not
become active during the synchronization (i.e. lie inδ (S,v) for a prefixv of a reset word). The states
{q0, . . . ,qlogm} guarantee that any reset word ofS lies in

(

{0,1}k κ
)⋆

ωX⋆
. (2)

Indeed, as defined by Figure 3, any other word takesq0 to D. Let the letterω act as follows:

{0, . . . ,m−1}×{1} , q0 , D
ω−→ D

{0, . . . ,m−1}×
{

0,0
↓
,0

↑
,1

↓
,1

↑
}

, q1, . . . ,qlogm , D
ω−→ D.

We see thatω maps each state toD or D. This implies that onceω occurs in a reset word ofS, it must
complete the synchronization. In order to mapq0 to D, the letterω mustoccur, so any shortest reset
word ofS is exactly of the form

w= (τ1κ) . . . (τdκ)ω , (3)
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D
q0

q1 q2

qlogm−1 qlogm−2

qlogm

κ

0,1
0,1

0,1
0,1

ω

D

X

X

0,1

0,1

Figure 3: A part ofA. Except for the depicted ones, all transitions here lead toD.

whereτ j ∈ {0,1}k for each j.
The two biggest parts depicted by Figure 2 contain3m states each and are the same up to the letters

κ andω . On both of them (takeb ∈ {0,1}) let the letters0 and1 act as follows:

(i,b)
0−→

{

(i +1,b) if ξi = 0
(

i +1,b↓
)

if ξi = 1

(

i,b↑
)

0,1−→
(

i +1,b↑
)

(i,b)
1−→

{

(

i +1,b↑
)

if ξi = 0

(i +1,b) if ξi = 1

(

i,b↓
)

0,1−→
(

i +1,b↓
)

where we perform the addition modulom. For example, Figure 4 depicts such part ofA for m= 8 and a
particular De Bruijn sequenceξ . Figure 5 defines the action ofκ on the states{i}×

{

0,0↓,0↑,1,1↓,1↑
}

for any i, so the automatonA is completely defined.

0,b 1,b 2,b 3,b 4,b 5,b 6,b 7,b 0,b

0,b
↓

0 0 1 0 1 1 1 0

1 1 1 1

0 0 0 0

0,b
↑

1,b
↑

2,b
↑

3,b
↑

4,b
↑

5,b
↑

6,b
↑

7,b
↑

0,b
↑

1,b
↓

3,b
↓

4,b
↓

5,b
↓

6,b
↓

7,b
↓

0,b
↓

2,b
↓

Figure 4: A part ofA assumingm= 8 andξ = 00101110. Bold arrows represent both0,1.

i,1↑

i,1i− k,1

i,1↓

i,0↑

i,0i− k,0

i,0↓ D̄

Figure 5: Action of the letterκ . The subtrac-
tion is modulom.

i,1

i,0

vπ(i)

{vt|t < π(i)}

{vt|t > π(i)}

{vt|t ≤ π(i)}

D̄

{vt|t > π(i)}

Figure 6: Action of the wordsv0, . . . ,vm−1 on
the i-th switch.
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Let w be a shortest reset word ofS in A. It is necessarily of the form (3), so it makes sense to denote
vt = bin(t)κ and treatw as a word

w= vt1 . . .vtd ω ∈ {v0, . . . ,vm−1,ω}⋆ . (4)

The action of eachvt is depicted by Figure 6. It is a key step of the entire proof to confirm that Figure 6
is correct. Indeed:

• Starting from a state(i,0), a wordbin(t) takes us through kind of decision tree to one of the
states

(

i +k,0↓
)

,(i +k,0) ,
(

i +k,0↑
)

, depending on whethert is lesser, equal, or greater than
π(i) respectively. This is guaranteed by wiring the sequenceξ into the transition function, see
Figure 4. The letterκ then take us back to{i}×{. . .}, namely to(i,0) or (i,1), or we fall toD
(respectively).

• Starting from a state(i,1), we proceed similarly and end up in(i,0) or (i,1) depending on whether
t is greater thanπ(i) or not.

It follows that after applying any prefixvt1 . . .vt j of w exactly one of the states(i,0) ,(i,1) is active for
eachi. We say thatthe i-th switch is set to0 or 1 in time j. Observe that in timed all the switches are set
to 1, because otherwise the stateD would become active by the application ofω . On the other hand, in
time0 all the switches are set to0. We are going to show that in fact during the synchronizationof S the
switches together perform a binary counting from0 (all the switches set to0) to 2m−1 (all the switches
set to1). For eachi the significance ofi-th switch is given by the valueπ(i). So theπ−1(m−1)-th
switch carries the most significant digit, theπ−1(0)-th switch carries the least significant digit and so on.
The number represented in this manner by the switches in timej is denoted byb j ∈ {0, . . . ,2m−1}. We
claim thatb j = j for each j. Indeed:

• In time0, all the switches are set to0, we haveb0 = 0.

• Suppose thatb j′ = j ′ for each j ′ ≤ j −1. We denote

t j =min{π(i) | i-th switch is set to0 in time j −1} (5)

and claim thatt j = t j . Note thatt j is defined to be the least significance level at which there
occurs a0 in the binary representation ofb j−1. Suppose for a contradiction thatt j > t j . By the
definition of t j the state

(

π−1(t j) ,0
)

lies in δ
(

S,vt1 . . .vt j−1

)

. But vt j takes this state toD, which
is a contradiction. Now suppose thatt j < t j . In such case the application ofvt j does not turn any
switch from0 to 1, sob j ≤ b j−1 and thus in timej the configuration of switches is the same at it
was in timeb j . This contradicts the assumption thatw is a shortest reset word. We have proved
thatt j = t j and it remains only to show that the application ofvt j performs an addition of1 and so
makes the switches represent the valueb j−1+1.

– Consider ani-th switch withπ(i) < t j . By the definition oft j it is set to1 in time j − 1
and the wordvt j set it to0 in time j. This is what we need because such switches represent
a continuous segment of1s at the least significant positions of the binary representation of
b j−1.

– Theπ−1(t j)-th switch is set from0 to 1 by the wordvt j .

– Consider ani-th switch withπ(i) > t j . The switch represents a digit ofb j−1 which is more
significant than thet j -th digit. As we expect, the wordvt j leave such switch unchanged.
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Becausebd = 2m, we deduce thatd = 2m and thus|w|= 2m(logm+1)+1 if such (shortest) reset word
exists. But in fact we have also shown that there is only one possibility for suchw and that it is a true
reset word forS: The uniquew is of the form (4), wheret j is the position of the least significant0 in the
binary representation ofj −1.

Now it remains to put the three lemmas together and so construct a binary transitive automaton with a
strictly exponential subset synchronization threshold.

Theorem 8. It holds thatCST R∩AL2
n = 2Ω(n).

Proof. The seriesCSn is non-decreasing, so it is enough to work with some infinitely many values ofn.
Let us take anym∈ N and use it to build the automatonA= (Q,X,δ ) and the subsetSas described by
Lemma 7. We apply Lemma 6 to get transitiveA′ = (Q′,X′,δ ′) andS′ with

∣

∣Q′
∣

∣ = 24m+4logm+14
∣

∣X′
∣

∣ = 12

CS
(

A′
,S′

)

≥ 2m

and then apply Lemma 3 to get transitiveA′′ = (Q′′,X′′,δ ′′) andS′′ with

∣

∣Q′′
∣

∣ = 288m+48logm+168
∣

∣X′
∣

∣ = 2

CS
(

A′′
,S′′

)

≥ 2m

Denotingn= 288m+48logm+168 we get that

CST R∩AL2
n =Ω

(

2
n

289

)

.

Simpler variants of the constructions imply some more subtle results for less restricted classes:

Theorem 9. It holds that

1. CSn =Ω
(

2
n
2

)

2. CST R
n =Ω

(

2
n
4

)

3. CSAL4
n =Ω

(

2
n
7

)

4. CSAL2
n =Ω

(

2
n
25

)

A series witnessing the first claim arises from the proof of Lemma 7 if we just consider actual
alphabet consisting of the letters{ω ,v0, . . . ,vm−1} and realize the idea of Figure 6 so there remain only
the statesD,D and(i,0) ,(i,1) for eachi. There is no more need to deal with a De Bruijn sequence.
The construction presented in Lemma 7 results from an effortto make this simple variant binary with
keeping the size ofQ in O(m). A construction needed to prove the second claim depends on acareful use
of swap congruences and appears in the extended version of this paper. The third claim follows directly
from Lemma 7 and the last one we get if we then just apply Lemma 3.
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3 Deciding about Synchronizability

It is well known that the decision about classical synchronizability of a given automaton (i.e. assuming
S=Q) is a polynomial time task, even if we also require an explicit reset word on the output. A relatively
simple algorithm could be traced back to [3] and since that time a lot of work has been done on various
improvements. Besides decreasing the running time of the algorithm there is an effort to decrease the
length of reset words produced [16, 21]. It has been proven that it is both NP-hard and coNP-hard to find a
shortestreset word for given automaton (it is actually DP-complete [14]). Moreover, it remains NP-hard
to bound the length of shortest reset words only from above bya given value [4] or approximate its length
with a constant factor [2]. Such problems has been studied also with various additional requirements on
the automaton, e.g. cyclicity, Eulerian property, commutativity and others, but in most cases also the
restricted problem turns up to be hard, see [11, 24].

On the other hand, there have not been done much research in computational complexity of problems
concerning synchronization of subsets, although they doesnot seem to have less chance to emerge in
practice. Namely, the first natural problem in this direction is

SUBSYNITY

Input: n-state automatonA= (Q,X,δ ), S⊆ Q
Output: is there somew∈ X⋆ such that|δ (S,w)|= 1?

This problem, in contrast to the similar problem of classical synchronizability, is known to be
PSPACE-complete. Note that such hardness is not a consequence of any lower bound of synchronization
threshold, because an algorithm need not to produce an explicit reset word.

Theorem 10([13, 19]). SUBSYNITY is a PSPACE-complete problem.

The proofs of the theorem above make use of a result of Kozen [9], which establishes that it is
PSPACE-complete to decide if given finite acceptors with a common alphabet accept any common word.
This problem is polynomially reduced to SUBSYNITY using the idea of two sink states, which is used
also in the automata with prime-length cycles and in Lemma 7.Is it possible to avoid the non-transitivity
here? We have proved that the subset synchronization threshold may be exponential even in automata
from AL2∩T R, but this does not imply that there is no trick for tractable decision about their synchro-
nizability. However, the methods we used are general enoughto reduce SUBSYNITY to the restricted
version:

Theorem 11. SUBSYNITY RESTRICTED TO BINARY TRANSITIVE AUTOMATA is a PSPACE-complete
problem.

Proof. There is a polynomial reduction from the general problem SUBSYNITY: Perform the construction
from Lemma 6 and then the one from Lemma 3.

Though the results of this paper does not sound very optimistically, there are still many interesting
and practical restrictions which could hypothetically make our decision problem tractable or at least
decrease the subset synchronization threshold, preferably to a polynomial. Such restrictions, which
all have been already studied in terms of classical synchronization, concern monotonic and aperiodic
automata, cyclic and one-cluster automata, Eulerian automata and others.
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