Subset Synchronization of Transitive Automatd

Vojtéch Vorel
Charles University in Prague, Czech Republic

vorel@ktiml .mff.cuni.cz

We consider the following generalized notion of synchratim: A word is called a reset word of
a subset of states of a deterministic finite automaton if ppsrell states of the set to a unique state.
It is known that the minimum length of such words is superpolyial in worst cases, namely in
a series of substantially nontransitive automata. We pteseeries of transitive binary automata
with a strongly exponential minimum length. This also cdngtés a progress in the research of
composition sequences initiated by Arto Salomaa, becasst words of subsets are just a special
case of composition sequences. Deciding about the exesteina reset word for given automaton
and subset is known to be a PSPACE-complete problem, we gnavéhis holds even if we restrict
the problem to transitive binary automata.

1 Introduction

A deterministic finite automators a triple A = (Q,X,d), whereQ and X are finite sets and is an
arbitrary mappingQ x X — Q. Elements ofQ are calledstates X is the alphabet The transition
functiond can be naturally extended @x X* — Q, still denoted byd. We extend it also by defining

5(Sw) ={d(sw) |se Swe X"}
for eachSC Q. An automaton(Q, X, d) is said to beransitiveif
(Vr,se Q) (3w e X*) d(r,w) =s.

A states € Q is asink statef
(Vxe X)d(s,X) =s.

Clearly, if a nontrivial automaton has some sink state, iinigossible for the automaton to be transitive.
For a given automatoA = (Q, X, d), we callw € X* areset wordf |6(Q,w)| = 1. If such a word exists,
we call the automatosynchronizing Note that each word having a reset word as a factor is alsgea re
word.

The Cerny conjecturea longstanding open problem, claims that each synchrapiitomaton has
a reset word of length at mo§iQ| — 1)?. There is a series of automata dueCterny that reaches this

bound [3], but all known upper bounds lie§ ]Q\?’), see[[15] for the best ofleA tight bound has been

established for various special classes of automata, seweysn [23] or some recent advances e.g. in
[1.16,8,/20].
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1An improved bound published by Trakhtman|[22] in 2011 hasedrout to be proved incorrectly.
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1.1 Synchronization of Subsets

Even if an automaton is not synchronizing, there could b®uarsubset$ C Q such thafd(Sw)| =1

for some wordw € X*. We say that suck is synchronizablen A and in the opposite case we say it is

blind in A. The wordw is called areset word of S3n A. Such words are of our interest. They lack some

of elegant properties of classical reset words (i.e. resetsvof allQ), particularly a wordwv having a

factorv which is a reset word dbneed not to be itself a reset word &fln fact, if we choose a subs8t

and a wordw, it is possible for the s&l(S w) to be blind even if the s&&was synchronizable.
SupposéA = (Q, X, d) andSC Q. We denote byCS(A,S) the length of the shortest reset word®f

in A. If Sis blind, we selCS(A,S) = 0. Let M be a class of automata. For eaclet M <, be the class

of all automata lying inM and having at most states. We denote

CSM = max CS(AS).
AEMSn

SCQ

If M is the class oéll automata, we write just’S, instead ofCSﬁ"‘.

Such values we informally cadlubset synchronization threshold$he class of all transitive automata
and the class of all automata witlikdetter alphabet are denoted ByR and. ALy respectively. Automata
from AL, are calledbinary.

As we describe below, it was proven independently/by [10] [@qd that CS, > ({/n)!, and a con-
struction from [12] implies tha€'S, > 24" but the proofs use automata with multiple sink states and
growing alphabets. Use of sink states is a very strong taadlésigning automata having given proper-
ties, but in practice such automata seem very special. BHpmgsent unstable systems balancing between
different deadlocks. The very opposite are the transitiueraata. Does the threshold remain so high if
we consider only transitive automata? Unfortunately, wanshelow that it does, even if we restrict the
alphabet size to a constant. We prove that

CSF]4£2FYT"R _ 2Q(n)7

which substantially raises also the general lower boundsaohCS;]‘wk, because their former lower
bounds (following from[[12]) lie ire°™. The new bound is tight sind@&s, = 20"

1.2 Minimum Length of Compositions

It has been repeatedly pointed out by Arto Salonhaa([1l7, 1&]vhry little is known about minimum
length of a composition needed to generate a function byengiet of generators. To be more precise,
let us adopt and slightly extend the notation used_in [17, M denote by7, the semigroup of all
functions from{1,...,n} to itself. GivenG C 7y, we denote by{G) the subsemigroup generated Gy
GivenF C T, we denote byD(G, F) the lengthk of a shortest sequencg, . .., gk of functions fromG
such thag; ... gk € F. Finally, denote

Dp=max max D(G,F). Q)
n<n F,GCTx
FN(G)#0

From the well-known connection between automata and wamsftion semigroups it follows that the
value CS,, could be also defined bll(1) if we just restrietto be some of the sets

Fs={f €Ty| (vr,seSf(r)="1f(s)}
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for SC {1,...,n}. Therefore it holds trivially that
Dp > CSp.

Arto Salomaa refers to a single nontrivial boundl®f, namelyD, > (/n)!, which is a consequence
of the above-mentioned variant f@fS,. In fact he omits a much older construction of Kozén [9,
Theorem 3.2.7] which deals with lengths mofs rather than compositions but witnesses easily that

D, = 29($> Since 2013 it follows from [12] thab, = 2*(". Our result shows that this lower bound
holds also if we restricG to any nontrivial fixed size.
In Group Theory, thresholds like, are studied in the scope of permutations, see [7].

2 Lower Bounds of Subset Synchronization Thresholds

We first formulate the two former lower bounds@©$,,. Let p; stand for thé-th prime.
Theorem 1([10,/17]). For each k there is an automatork A (Qx, {a,b},d) and a subsetSsuch that
Q=2+ 3k, pi and CS(A S) = 1 pi-

The proof of the theorem uses an automa#qrthat consists ok cyclic parts of prime sizes and
two sink states, so it is essentially non-transitive. Theotem implies thaCS, > (/n)!, because
M, pi > K and|Qy| < k%, using the estimatiom; < i2. By the terminology of[[10] such bound is
exponential but using canonical estimations pfit is not hard to show that the bound is exceeded by
n— e"foranye > 1.

Theorem 2([12]). It holds thatCS,, = 2% and CSz¢2 = 2Q($)

The paper[[1R2] studiesareful synchronizatiorof partial automata, but the lower bounds can be
adapted for our setting. The proofs bf [12, Theorem 1] and Tteorem 3] can be modified (by adding
one state) so that the constructed automata have sink. staies we can add another sink stBtevhich
becomes the target of all undefined transitions. Then aditnesrds for the subs&d\ {D} are careful
reset words of the original partial automaton and we canhesedrresponding lower bounds.

Let us introduce three key methods used in the present paberfirst is quite simple and has been
already used in the literaturgl[2]. It modifies an automatoorider to decrease the alphabet size with
preserving high synchronization thresholds:

Lemma 3. For each automaton A= (Q,X,d) and SC Q there is an automaton’A= (Q/,X’, &) and
S C @ such that

1. Sis synchronizable in & S is synchronizable in ‘A

2. CS(A,S) > CS(A)S

3. 1Q=1QIX]

4. X'| =2

5. A and A have equal number of strongly connected components

Proof. Suppose thaX = {ay,...,am}. We setQ =Qx X, X' = {a,B},

d((sa),a) = (6(sa),a)
5/((S7al)aB) = (Syai+1modm)-
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Informally, a transitiorr - sof A is simulated inA’ by

(rnao) 2 (na) 25 ... 25 (na) % (s a).

If we setS = Sx {ap}, it is not hard to see that any reset word®fin A’ have to be of the form
(Ba)...(B"a) for somew = aj, ...a;, which is a reset word dBin A. O

The second method is original and is intended for modifyingaatomaton to be transitive, again
with high synchronization thresholds preserved. It retieghe following concept:

Definition 4. Let A= (Q,X,d) be an automaton and Igt C Q? be a congruence, i.e. equivalence
relation satisfying ps=- d(r,X) p (s, x) for eachx € X. We say thap is aswap congruenc, for each
equivalence class of p and each lettex € X, the restricted functiod(_,x) : C — Qis injective.

Let us express the key feature of swap congruences and nshé construction.
Lemma 5. Let A= (Q, X, &) be an automaton, lgg C Q? be a swap congruence and take ang 8. If
there are any ;s S with r# s and ps, the set S is blind.

Proof. Because andslie in a common equivalence classmfby the definition of swap congruence we
haved(r,x) # &(s,x) for anyx € X. It follows that each sed(Sw) for w € X* is of size at leas2. [

Lemma 6. For each automaton A= (Q,X,d) and SC Q there is an automaton’A= (Q/,X’, &) and
S C @ such that

1. Sis synchronizable in A S is synchronizable in’A

2. CS(A,S) > CS(A,9)

3. Alis transitive

4.|Q|=4/Q|+2

5. |X'| = [X]|+2¢c

where c is the number of strongly connected components of A.

Proof. LetC,,...,C. be the strongly connected component#\ofix someg; € C; for eachi. We set

Q = {EE}u({1,1,2,2} xQ)
X' = Xu{a,bl|i=1,...,c}

and define the transition functia¥ as follows. If we omit all the letteras andbg from the alphabeX’,
we find the state&, E isolated (i.e.E = E,E = E for x € X) and the rest of\’ consisting just of four
copies ofA:

(N;9) = (N,8(sx))
for N € {1,T,2,§} ,S€ Q,x e X. Let us introduce the additional letters. For any1,...,candsc Q
such thas £ g; we set

(1,9) ab e (1,9) abg
(2,9) ab g (2,9) abg



374 Subset Synchronization of Transitive Automata

and it remains to see Figure 1, which describes for €ach ..., c the action ofy; andb; on the six states

E.E (La),(La),(2,9),(2,6). B - -
Observe that the equivalengehaving the classe$¢E,E} and {(1,s),(1,s)},{(2,9),(2,s)} for
eachs € Qis a swap congruence 8f. We claim that the automatoX and the set

S={1}xSuU{2} xS

fulfill our requirements on synchronizability, the synchization threshold and transitivity:

e If the setSis synchronizable imA, there arer € Q andw € X* such thatd(Sw) = {r}. The
stater lies in someC;, so there is a word € X* such thatd(r,u) = g;. We claim that the word
wug synchronizesS in A'. Indeed, we havé’(S,w) = {(1,r),(2,r) } and therefore’ (S,wu) =
{(1,q),(2,q) } andd’(S,wua) = {(1,q)}.

e Let S be synchronized id by a wordw € (X’)*. There must occur some lettar or by in w,
becauseS contains states from two different copiesffThus we can write

W = UXV

for someu e X*, i €1,...,c, x€ {a,b} andv e (X)*. If &(S,u) contains unique state from
{1} x Q, the wordu synchronizesSin A, we are done. Otherwise there is some sfats) €
&'(S,u) such thas # g;. Becauses € X*, it holds also tha{2,s) € &'(S,u). But

(1,s) ab g (2,s) a‘—’b$E

so the blind subse{E,E} is contained inY’(S,ux), which is a contradiction.

e In order to verify thatA’ is transitive we first find a path between any pair of distinetes
(N,s),(N,r) from a common copy oA. Letr € C; andd(q;,u) =r. If s=q;, the path is la-
beled byu. Otherwise we have:

1,9 = E 2 (1,q) — (1,r) Ts) % E % (T,g) — (I,r)
2,8 % E 25 (2,g) -5 (2.1) 29 5 E 2 (Z9) -5 @)

The paths above also guarantee that there are no more thatromgly connected components:
C={E}U{1,2} xQ, C={E}u{1,2} xQ.

It remains to conned® with C: For anyi we have(1,q) - (2,q) = (1,q;).

Figure 1: Action of the letters; (solid arrows) andb; (dotted arrows) on certain statesAsf
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Let us present the main construction of the present paperjesf automata with strictly exponen-
tial subset synchronization threshold, constant alphsiketand constant number of strongly connected
components. We use some informal principles that occur2hds well.

{0,...,m—1} x {1,141} '@‘
{QOa ) qlogm}

{0,...,m—1} x {0,0%,0"}

Figure 2: Main parts oA. The arrows depict the connectivity patternfof

Lemma 7. For infinitely many ne N there is an automaton A (Q, X, d) and SC Q such that
1. CS(A,S) =2M(logm+1)+1
2. |Q| =6m+logm+3
3. X|=4
4. Ahas4 strongly connected components.

Proof. Supposan= 2. For eacht € 0,...,m— 1 we denote byr = bin(t) the standard-digit binary
representation of. By a classical result proved iql[5] there isDe Bruijn sequenc€ = &y...&m_1
consisting of binary letter§ € {0,1} such that each word € {0, 1}k appears exactly once as a cyclic
factor of € (i.e. itis a factor or begins by a suffix §f and continues by a prefix &). Let us fix such
. By ni(i) we denote the numbérwhose binary representatibin(t) starts iné from thei-th position.
Note thatrris a permutation of0,...,m—1}. Set

Q = ({O""’m_l}x{O’O\LaOT7171\L71T})U{q07"'aqlogmaD75}
X = {0,1,k,w}

Figure[2 visually distinguishes main parts of the automatthe stateD andD are sinks. Together
with D € Sit implies that any reset word @ takes the states &to D and that the stat® must not
become active during the synchronization (i.e. li®ifs,v) for a prefixv of a reset word). The states
{0, ..., qgm} guarantee that any reset wordSiies in

({O, 1} K)*wX*. 2
Indeed, as defined by Figure 3, any other word taje® D. Let the letterw act as follows:

{0,....m=1}x{1} , o, D = D

— w —

{o,...,m—l}x{o,oi,otli,ﬂ} . i\ Oogm » D -2 D.

We see thato maps each state @ or D. This implies that oncev occurs in a reset word @, it must
complete the synchronization. In order to n@pto D, the letterw mustoccur, so any shortest reset
word of Sis exactly of the form

W= (T1K)...(TdK) @, (3)
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Figure 3: A part ofA. Except for the depicted ones, all transitions here leddl. to

wheret;j € {0,1}*for eachj.
The two biggest parts depicted by Figlfe 2 containstates each and are the same up to the letters
Kk andw. On both of them (tak® € {0,1}) let the letter® and1 act as follows:

i i | = i T i | =
() 0 UHLP) &G=0 ) 0 JO+LbY) ifG=0
(i+1,b}) if&=1 (i+1,b) if&§=1
(i,bT) o1 <i+1,bT) (i,bi) o1 <i+1,b¢)
where we perform the addition moduia For example, Figuriel 4 depicts such parddbr m= 8 and a

particular De Bruijn sequendg Figure[5 defines the action efon the stategi} x {0,0+,0",1,1+,1"}
for anyi, so the automatoA is completely defined.

Figure 5: Action of the lettek. The subtrac- Figure 6: Action of the wordsyg,...,vnh_1 ON
tion is modulom. thei-th switch.
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Letw be a shortest reset word 8fn A. It is necessarily of the forni{3), so it makes sense to denote
vt = bin(t) k and treatw as a word

W=V, .. Ve, @ € {Vo, ..., Vin—1, W} " 4)

The action of eacly is depicted by Figurgl6. It is a key step of the entire proofdnfitm that Figuré 6
is correct. Indeed:

e Starting from a statéi,0), a wordbin(t) takes us through kind of decision tree to one of the
states(i + k,0%), (i+k,0), (i+k,0"), depending on whethdris lesser, equal, or greater than
(i) respectively. This is guaranteed by wiring the sequehdeto the transition function, see
Figure[4. The lettek then take us back téi} x {...}, namely to(i,0) or (i,1), or we fall toD
(respectively).

e Starting from a staté, 1), we proceed similarly and end up(in0) or (i, 1) depending on whether
t is greater tham(i) or not.

It follows that after applying any prefix, ...v; of w exactly one of the statg$,0), (i, 1) is active for
eachi. We say thathe i-th switch is set t0 or 1 in time j. Observe that in timd all the switches are set
to 1, because otherwise the st@evould become active by the application@f On the other hand, in
time 0 all the switches are set th We are going to show that in fact during the synchronizatib§ the
switches together perform a binary counting frorgall the switches set t0) to 2™ — 1 (all the switches
set tol). For eachi the significance of-th switch is given by the value(i). So thermr!(m—1)-th
switch carries the most significant digit, the'! (0)-th switch carries the least significant digit and so on.
The number represented in this manner by the switches injtisidenoted by; € {0,...,2"—1}. We
claim thatb; = j for eachj. Indeed:

e Intime0, all the switches are set th we haveby = 0.

e Suppose thaij = j’ for eachj’ < j — 1. We denote
tj = min {r1(i) | i-th switch is set t® in time j — 1} (5)

and claim thatt; = ;. Note thatf; is defined to be the least significance level at which there
occurs &) in the binary representation of ;. Suppose for a contradiction thiat> ;. By the
definition offj the state(rr!(j),0) lies ind(Sw, ...v;_, ). Buty, takes this state tB, which

is a contradiction. Now suppose that< fj. In such case the application af does not turn any
switch fromO to 1, sob; < bj_; and thus in timg the configuration of switches is the same at it
was in timeb;. This contradicts the assumption thais a shortest reset word. We have proved
thatt; = tj and it remains only to show that the applicationjpfperforms an addition of and so
makes the switches represent the valpe + 1.

— Consider ari-th switch with (i) < t;. By the definition offj it is set to1 in time j —1
and the wordys; set it to0 in time j. This is what we need because such switches represent
a continuous segment ak at the least significant positions of the binary represientaf
bj_1.

— Them*(tj)-th switch is set fron® to 1 by the wordw; .

— Consider an-th switch with (i) > tj. The switch represents a digit bf_; which is more
significant than th&-th digit. As we expect, the word, leave such switch unchanged.
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Becausenq = 2™, we deduce thad = 2™ and thugw| = 2™ (logm+ 1) 4 1 if such (shortest) reset word
exists. But in fact we have also shown that there is only orssipdity for suchw and that it is a true
reset word folS: The uniquew is of the form [4), where; is the position of the least significa@tin the
binary representation gf— 1. O

Now it remains to put the three lemmas together and so canisirbinary transitive automaton with a
strictly exponential subset synchronization threshold.

Theorem 8. It holds thatCS] *M 442 — 29,

Proof. The seriesCS;, is non-decreasing, so it is enough to work with some infipiteiny values oh.

Let us take anyn € N and use it to build the automat@n= (Q, X, d) and the subse® as described by
Lemmé&T. We apply Lemnid 6 to get transitide= (Q’,X’, &) andS with

|Q| = 24m+4logm+ 14
X' = 12
CS(A,S) > 2m
and then apply Lemnid 3 to get transiti&é = (Q”,X”,9"”) andS’ with

|Q"| = 288m+48logm-+ 168
x| = 2
CS(A",S) > 2m

Denotingn = 288m+ 48log m+ 168 we get that
CSTRML — 238 ).
O

Simpler variants of the constructions imply some more sutgsults for less restricted classes:
Theorem 9. It holds that
1. CSy = Q<22>

2. CSZR:Q(z%)
3. CS;,“C‘*:Q( %)
4. Cser = (25

A series witnessing the first claim arises from the proof ombea[7 if we just consider actual
alphabet consisting of the lettefso, vy, ...,Vvm—1} and realize the idea of Figuré 6 so there remain only
the stateD,D and(i,0),(i,1) for eachi. There is no more need to deal with a De Bruijn sequence.
The construction presented in Lemfa 7 results from an efforhake this simple variant binary with
keeping the size d in O(m). A construction needed to prove the second claim dependsareful use
of swap congruences and appears in the extended versiois giger. The third claim follows directly
from LemmdY and the last one we get if we then just apply Lefdma 3
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3 Deciding about Synchronizability

It is well known that the decision about classical synchzahility of a given automaton (i.e. assuming
S= Q) is a polynomial time task, even if we also require an exptieset word on the output. A relatively
simple algorithm could be traced back to [3] and since tmaeta lot of work has been done on various
improvements. Besides decreasing the running time of tperiim there is an effort to decrease the
length of reset words produced [16] 21]. It has been prowatrittts both NP-hard and coNP-hard to find a
shortestreset word for given automaton (it is actually DP-complé#]]. Moreover, it remains NP-hard
to bound the length of shortest reset words only from abowediyen valuel[4] or approximate its length
with a constant factor [2]. Such problems has been studsmvaith various additional requirements on
the automaton, e.g. cyclicity, Eulerian property, comrtivityg and others, but in most cases also the
restricted problem turns up to be hard, see [11, 24].

On the other hand, there have not been done much researamputational complexity of problems
concerning synchronization of subsets, although they doeseem to have less chance to emerge in
practice. Namely, the first natural problem in this directi®

SUBSYNITY
Input:  n-state automatoA = (Q,X,9),SCQ
Output: is there some € X* such thaio(S,w)| = 1?

This problem, in contrast to the similar problem of classggchronizability, is known to be
PSPACE-complete. Note that such hardness is not a consagjaéany lower bound of synchronization
threshold, because an algorithm need not to produce arcixpbet word.

Theorem 10([13,[19]). SuBsYNITY is a PSPACE-complete problem.

The proofs of the theorem above make use of a result of KazZen@ich establishes that it is
PSPACE-complete to decide if given finite acceptors withramon alphabet accept any common word.
This problem is polynomially reduced tau8sYNITY using the idea of two sink states, which is used
also in the automata with prime-length cycles and in Leriia it possible to avoid the non-transitivity
here? We have proved that the subset synchronization thidestay be exponential even in automata
from AL NT'R, but this does not imply that there is no trick for tractabéeidion about their synchro-
nizability. However, the methods we used are general entugleduce $BSYNITY to the restricted
version:

Theorem 11. SUBSYNITY RESTRICTED TO BINARY TRANSITIVE AUTOMATA is a PSPACE-complete
problem.

Proof. There is a polynomial reduction from the general problems $YNITY: Perform the construction
from Lemmd. 6 and then the one from Lemima 3. O

Though the results of this paper does not sound very optaailt, there are still many interesting
and practical restrictions which could hypothetically madur decision problem tractable or at least
decrease the subset synchronization threshold, prejetald polynomial. Such restrictions, which
all have been already studied in terms of classical syn@atiaon, concern monotonic and aperiodic
automata, cyclic and one-cluster automata, Eulerian aatend others.
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