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Eilenberg correspondence, based on the concept of synagtioids, relates varieties of regular lan-
guages with pseudovarieties of finite monoids. Various fiications of this correspondence related
more general classes of regular languages with classesrefaomplex algebraic objects. Such gen-
eralized varieties also have natural counterparts fornyerldsses of finite automata equipped with
a certain additional algebraic structure. In this surveyowerview several variants of such varieties
of enriched automata.

Algebraic theory of regular languages is a well establisfiedd in the theory of formal languages.
A basic ambition of this theory is to obtain effective chaesizations of various natural classes of reg-
ular languages. The fundamental concept is the noti@ywtfactic monoiaf a given regular language
L, which is the smallest possible monoid recognizing the UaggL, and which is isomorphic to the
transition monoid of the minimal automaton lof First examples of natural classes of languages, which
were effectively characterized by properties of syntactanoids, were the star-free languades [34] hav-
ing aperiodic syntactic monoids and the piecewise testaiguages [36] having/ -trivial syntactic
monoids. A general framework for discovering relationshijetween properties of regular languages
and properties of monoids was provided by Eilenbelg [9], esi@ablished a one-to-one correspondence
between so-calledlarietiesof regular languages amseudovarietiesf finite monoids. Here varieties
of languages are classes closed under taking quotients)gges under morphisms and Boolean oper-
ations. On the other hand pseudovarieties of finite monaiglglasses closed under taking finite direct
products, submonoids and morphic images. Thus a membepsbijlem for a given variety of regu-
lar languages can be translated to a membership problerhdararresponding pseudovariety of finite
monoids. An advantage of this translation is that pseudeties of monoids are exactly classes of finite
monoids which have equational description by pseudoitienti32].

The goal of this contribution is not to overview all notionsdaapplications of the algebraic theory
of regular languages. For thorough introduction to thadtheve refer to[[25]. Other overviews are for
example[[26] and_[44]. A more detailed information concegnihe theory of pseudovarieties of finite
monoids can be found in the survéy [2] or in the bookKs [1] arB].[3

We should mention that many interesting classes of regalaguages, which are studied by the
algebraic methods, come from logic. It is well known thatulag languages which are definable in the
first order logic of finite linear orderings are exactly dta@e languages [23]. Within the class of star-
free languages, there were defined the so-caltgedepth hierarchyf7] and closely relate®btraubing—
Thérien hierarchy[38,[41]. In [42] it was shown that a language belongs tortthelevel of the latter
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hierarchy if and only if it is definable by a formula withalternations of quantifiers. Moreover, the class
of star-free languages is exactly the class of all langudgérable by linear temporal logic [15]. For a
recent survey on the classes of languages given by fragrokfitst-order logic we refer ta [8] and [40].
Some recent results can be found for examplé_in [19] and [29].

Since not every natural class of languages is closed unbereationed operations, various gener-
alizations of the notion of varieties of languages wereistlidOne possible generalization is the notion
of positive varietieof languages introduced in [24] for which an equational abgarization was given
in [27]; the positive varieties need not be closed under demepntation. In the same direction one can
consider varieties which need not be closed under takingnsnisee [30]). We shall return to these con-
cepts later. Another possibility is to weaken the closumpprty for preimages under morphisms. In this
way one can consides’-varieties of regular languages which were introduced 8j fd whose equa-
tional description was given in [20]. Here we require thesprece of preimages under morphisms only
for morphisms from a certain special clégs An important example is the class formed by morphisms
which map letters to letters; such varieties of languagesédiedliteral varieties)and the correspond-
ing pseudovarieties of monoids with marked generatorséiied monoid-generator paijswere studied
in [12]. Classes of languages with a complete absence oféimpages requirement were studied in/[13].

In our contribution we would like to consider varieties ot@mata as another natural counterpart to
varieties of regular languages. We should emphasize thatthsidered automata are deterministic finite
automata. Characterizing of varieties of languages byestgs of minimal automata is quite natural,
since usually we assume that an input of a membership profoleaifixed variety of languages is given
exactly by a minimal deterministic automaton. For examfleje want to effectively test whether an
input language is piecewise testable, we do not want to cterifgisyntactic monoid which could be
quite largg. Instead of that we consider a condition which must be satidfiy its minimal automaton
and which was given in the original Simon’s paper! [36]. THiamcterization was used in [37] and[43]
to obtain a polynomial and quadratic algorithm, respebtivier testing piecewise testability. 1 [118]
Simon’s condition was reformulated and the so-caltexlly confluent acyclic automadavere defined.
Therefore we are looking for a general definition of a teraniety of automatato obtain a setting in
which we could talk, for example, about the variety of logalbnfluent acyclic automata.

Let us consider a minimal automate#f of a regular language. A first easy observation is the
following: if we change the initial state i/ then the resulting automaton recognizes a left quotient of
the original languagé. Similarly but not trivially, if we change the final statebetresulting automaton
recognizes a Boolean combination of right quotients of tigarmal languagé.. Since we are interested in
characterizations of varieties of languages, the choiea @fitial state and final states can be left free and
we can consider only underlying labeled grﬁ)hvbich will form our varieties of automata. Furthermore,
since varieties of languages are closed under taking umindsntersections, we need to include direct
products of automata in our varieties of automata. Conisigex preimage of a given regular langudge
under some morphisrh, one can construct an automaton from the minimal automefoof L, so-called
f-subautomatonwhere states form a subset and a new action by each #é&gehe same as the action
by the wordf(a) in the original automaton. Since these constructions gé@erew automata, namely
products of automata antisubautomata, and since we are mainly interested in mirdu@mata, we
also include into our variety of automata all morphic imagesxisting automata. Finally, from technical
reasons we add disjoint unions of automata. Thus a varietytoinata will be a class of automata closed

IMore than(n— 1)! wheren is the number of states of the minimal automaton, See [5]fecipe bounds.

2These automata recognize exactly piecewise testabledgeguand papef 18] contains a new (purely automata based)
proof which does not use Simon’s original result.

3Such automata without initial and final states are sometirabed semiautomata in the literature.
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under taking products, disjoint unions, morphic images tssdbautomata. And of course, when we are
limited to morphisms from a certain clags we can even talk abo@-varieties of automata. Then one
can prove an Eilenberg type correspondence: varietiegfiges correspond to varieties of automata.
This concept occurred in_[10] in the case of literal morptasamd in [6] under the name varieties of
%-actions. In particular, one can consider the variety otalinter-free automata [23] characterizing
star-free languages or the variety of all locally confluesyiciic automata.

Now we enrich automata by an algebraic structure. If we sidhita deterministic automaton where
all states are reachable from the initial one then we cagmssieach statg the setlq consisting of all
words which are acceptable if the computation starts frassfate. Sometimes, is called thefuture of
the statay. It is known [4] that identifying the states with the samaufet produces a minimal automaton.
Thus a statg in the minimal automator#_ can be identified with its futurey and therefore it is a subset
of A*. Then such states are ordered by inclusion, which meansdchtminimal automaton is implicitly
equipped with a partial order. Moreover, final sttewm an upward closed subset. This leads to a
notion of partially ordered automata where actions by tettee isotone mappings and languages are
recognized by final states which form an upward closed subset

Furthermore, varieties, or more generafyvarieties, of partially ordered automatean be defined
once again as classes which are closed under taking prodisjtsint unions, morphic images arfd
subautomata. Now one can prove that these varieties oajpadrdered automata correspond to positive
varieties of languages. A well known example is the leyé ih the Straubing-Thérien hierarchy of star-
free languages. The effective characterization of thd tex2 can be found in [3]. This characterization
can be equivalently stated as validity of the identitX X in the syntactic ordered monoid of a lan-
guage([28]. Therefore, the corresponding variety of pdyt@rdered automata is formed by automata
where actions are increasing mappings (for a sjated a lettea we haveq-a > q).

Now we return to the representation of the minimal automatprof a regular language where a
stateq = Lq is a subset oA" and we consider all possible intersections of states. Sirchave only
finitely many states in7_, we obtain finitely many intersections. The resulting nmestilattice.] can
be naturally equipped with actions by letters: applyingttetea to an intersectiorf)¢, g;, i.e. a state
in A, is the intersection of all stateg-a. If we use as final states those which contain the empty
word, then final states form a principal filter in the semiéatt¥ . This idea leads to a notion of a
meet automatomvhich was introduced in_[16]. Here the corresponding veesebf languages are not
closed under taking unions, since in the product of autothet@orresponding set of final states is not a
principal filter. Therefore the corresponding classes gfil@ languages are conjunctive varieties which
were defined in[[30]. We have already mentioned that the s{iotéordered) monoid of a language
is isomorphic to the transition (ordered) monoid of the éwedl) minimal automaton of the language.
Analogous statement is valid in the case of meet automateariicular, thecanonical meet automaton
.~ of alanguagd. is a minimal meet automaton of a given language. Moreowetransition structure
is asyntactic semiringvhich is a minimal semiring recognizing the language andctvitan be defined
analogously to a syntactic monoid (seel[30]). In the pap6} fiere are mentioned some examples of
¢ -varieties of languages which can be characterized viatasi of meet automata. There is also a close
connection between the notion of a canonical meet automatdra notion of ainiversal automaton
which contains all minimal non-deterministic automata gien regular language (see [31] ahdl[22]).

One can make one step further. As we add intersections tefinesentation of minimal automaton,

4A state is final if and only if it contains the empty word.
5There exist several papers which use the term ordered fdigistic, non-deterministic or two-way) automaton in &l
ent meaning, e.g. in[35] it is required that an action by tetas increasing but need not be isotone.
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we can try to add also unions. In other words, we consider théatice of the lattice 2 generated

by @ . Since this lattice is distributive, we define an abstradtomoof a distributive lattice automata
(DL-automatd which are automata enriched by a distributive latticecitme, where both operations are
compatible with actions by letters. Note that this modeled#f from lattice automata defined in [21].
We want to define varieties @fL-automata as a natural counterpart of generalized vagietimnguages
which are not required to be closed under taking any of Bootgzerations. Indeed, such classes natu-
rally occur in the theory of formal languages: for exampleyyclasses defined by models of quantum
automata are of this kind. The goal is a characterizatioruohlasses. Note that it is also possible
to extend this principle, consider the Boolean subalgelr2ogenerated by# and define a notion
of a BA-automaton Before developing this theory we prefer to clarify all asfgeof the theory oDL-
automata, since there are some difficulties. For examphkbeirtase of meet automata, since actions by
letters are morphism with respect to the meet operatiomprexby sets of letters are also morphisms
with respect to this operation. In the casebdf-automata, such an extension is not valid.

At the end we could mention that one can extend the congtruati at least two natural directions.
First, the theory of tree languages is a field where many fonasdial ideas from the theory of determin-
istic automata were successfully generalized. Anothezrienotion of biautomata (see [17] and [14])
is based on considering both-sided quotients instead ofjleftients only. In both cases one can try to
apply the previous constructions and consider varietieaitdmata (enriched by an algebraic structure).
Some papers in this direction already exist [11].

Acknowledgement

I would like to express my gratitude to my colleagues Michahk and Libor Polak for our numerous
interesting discussions on the topic.

References

[1] J. Almeida (1994):Finite semigroups and universal algebraVorld Scientific, Singapore, dai0.1142/
2481.

[2] J. Almeida (2005)Profinite semigroups and applications V.B. Kudryavtsev, I.G. Rosenberg & M. Gold-
stein, editors:Structural theory of automata, semigroups, and univellgebaa NATO Science Series Il:
Mathematics, Physics and Chemis2®y7, Springer, pp. 1-45, dab.1007/1-4020-3817-8_1.

[3] M. Arfi (1987): Polynomial Operations on Rational Languagds F.-J. Brandenburg, G. Vidal-Naquet &
M. Wirsing, editors:STACS Lecture Notes in Computer Scier2é7, Springer, pp. 198-206, dod:.. 1007/
BFb0039607.

[4] J. Brzozowski (1962)Canonical regular expressions and minimal state graphslédinite eventsin: Math-
ematical theory of Automat&ymposia series2, Research Institute, Brooklyn, pp. 529-561.

[5] J. Brzozowski & B. Li (2013):Syntactic Complexity of R- and J-Trivial Regular Languadedd. Jurgensen
& R. Reis, editors:DCFS Lecture Notes in Computer Scieng@31, Springer, pp. 160-171, doj:.. 1007/
978-3-642-39310-5_16.

[6] L. Chaubard, JE. Pin & H. Straubing (2006)Actions, wreath products of C-varieties and concatenation
product Theor. Comput. ScB56(1-2), pp. 73—-89, ddi0.1016/j.tcs.2006.01.0309.

[7] R. Cohen & J. Brzozowski (1971)Dot-Depth of Star-Free Events). Comput. Syst. Scb(1), pp. 1-16,
doi:10.1016/50022-0000(71)80003-X.

[8] V. Diekert, P. Gastin & M. Kufleitner (2008)A Survey on Small Fragments of First-Order Logic over Finite
Words Int. J. Found. Comput. Sci19(3), pp. 513-548, ddi0.1142/50129054108005802.


http://dx.doi.org/10.1142/2481
http://dx.doi.org/10.1142/2481
http://dx.doi.org/10.1007/1-4020-3817-8_1
http://dx.doi.org/10.1007/BFb0039607
http://dx.doi.org/10.1007/BFb0039607
http://dx.doi.org/10.1007/978-3-642-39310-5_16
http://dx.doi.org/10.1007/978-3-642-39310-5_16
http://dx.doi.org/10.1016/j.tcs.2006.01.039
http://dx.doi.org/10.1016/S0022-0000(71)80003-X
http://dx.doi.org/10.1142/S0129054108005802

Ondrej Klima 53

[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]
[20]
[21]
[22]

[23]
[24]

[25]

[26]
[27]
[28]

[29]

S. Eilenberg (1976)Automata, Languages and Machines, vol Aademic Press.

Z. Esik & M. Ito (2003): Temporal Logic with Cyclic Counting and the Degree of Apéiddy of Finite Au-
tomata Acta Cybern16(1), pp. 1-28. Available atttp://www.inf .u-szeged.hu/actacybernetica/
edb/vol16nl/Esik_2003_ActaCybernetica.xml.

Z. Esik & S. Ivan (2008):Some Varieties of Finite Tree Automata Related to Restriemporal Log-
ics. Fundam. Inform82(1-2), pp. 79-103. Available atttp://iospress.metapress.com/content/
4216mrh7r6477172/.

Z. Esik & K.G. Larsen (2003)Regular languages definable by Lindstr quantifiers RAIRO - Theoretical
Informatics and Application37(3), pp. 179-241, ddi0.1051/ita:2003017.

M. Gehrke, S. Grigorieff & JE. Pin (2008): Duality and Equational Theory of Regular Languages
In L. Aceto, I. Damgard, L.A. Goldberg, M.M. Halldorssoi. Ingolfsdéttir & I. Walukiewicz, ed-
itors: ICALP (2), Lecture Notes in Computer Scien&426, Springer, pp. 246-257, duf..1007/
978-3-540-70583-3_21.

M. Holzer & S. Jakobi (2013)Minimization and characterizations for biautomata S. Bensch, F. Drewes,
R. Freund & F. Otto, editorsNCMA, 294,Osterreichische Computer Gesellschaft, pp. 179-193.

H. Kamp (1968):Tense logic and theory of linear orderBh.D. thesis, University of California.

0. Klima & L. Polak (2008):0n varieties of meet automata’heor. Comput. ScA07(1-3), pp. 278-289,
doi:10.1016/j.tcs.2008.06.005

0. Klima & L. Polak (2012)0On biautomata RAIRO - Theor. Inf. and Applic46(4), pp. 573-592, ddi0 .
1051/ita/2012014

O. Klima & L. Polak (2013):Alternative Automata Characterization of Piecewise Tel&d anguagesin
M.-P. Béal & O. Carton, editorsDevelopments in Language Thephecture Notes in Computer Science
7907, Springer, pp. 289-300, dob.. 1007/978-3-642-38771-5_26.

M. Kufleitner & P. Weil (2012):On logical hierarchies within FB-definable languaged_ogical Methods
in Computer Sciencg(3), doi10.2168/LMCS-8(3:11)2012.

M. Kunc (2003):Equational description of pseudovarieties of homomonpkisRAIRO - Theoretical Infor-
matics and Application37(3), pp. 243-254, ddi0.1051/ita:2003018.

O. Kupferman & Y. Lustig (2007)Lattice AutomataIn B. Cook & A. Podelski, editorsVMCAI, Lecture
Notes in Computer Scien@849, Springer, pp. 199-213, dui:. 1007/978-3-540-69738-1_14.

S. Lombardy & J. Sakarovitch (2008Jhe universal automatorin J. Flum, E. Gradel & T. Wilke, editors:
Logic and AutomataTexts in Logic and Gamex Amsterdam University Press, pp. 457-504.

R. McNaughton & S. Papert (1971¢ounter-Free AutomataM.l.T. Press.

J.£. Pin (1995)A Variety Theorem Without Complementatid®ussian Mathematic9, pp. 80-90. Avail-
able athttp://www.liafa.jussieu.fr/~jep/publications.html.

J.£. Pin (1997): Syntactic semigroupsin G. Rozenberg & A. Salomaa, editoréfandbook of Formal
Languagesl, Springer, pp. 679—-746, dod.1007/978-3-642-59136-5_10. Available atwww.liafa.
jussieu.fr/~jep/publications.html,

J.€. Pin (2012):Equational Descriptions of Languagesit. J. Found. Comput. S23(6), pp. 1227-1240,
doi:10.1142/50129054112400497.

J.€. Pin & P. Weil (1996)A Reiterman theorem for pseudovarieties of finite first-osdeictures Algebra
Universalis35(4), pp. 577-595, ddi0.1007/BF01243597.

J.£€. Pin & P. Weil (1997):Ponynominal Closure and Unambiguous Produtheory Comput. SysB0(4),
pp. 383—422, doi:0.1007/BF02679467.

T. Place & M. Zeitoun (2014)Separating Regular Languages with First-Order LogiioRRabs/1402.3277.
Available athttp://arxiv.org/abs/1402.3277.


http://www.inf.u-szeged.hu/actacybernetica/edb/vol16n1/Esik_2003_ActaCybernetica.xml
http://www.inf.u-szeged.hu/actacybernetica/edb/vol16n1/Esik_2003_ActaCybernetica.xml
http://iospress.metapress.com/content/4216mrh7r6477172/
http://iospress.metapress.com/content/4216mrh7r6477172/
http://dx.doi.org/10.1051/ita:2003017
http://dx.doi.org/10.1007/978-3-540-70583-3_21
http://dx.doi.org/10.1007/978-3-540-70583-3_21
http://dx.doi.org/10.1016/j.tcs.2008.06.005
http://dx.doi.org/10.1051/ita/2012014
http://dx.doi.org/10.1051/ita/2012014
http://dx.doi.org/10.1007/978-3-642-38771-5_26
http://dx.doi.org/10.2168/LMCS-8(3:11)2012
http://dx.doi.org/10.1051/ita:2003018
http://dx.doi.org/10.1007/978-3-540-69738-1_14
http://www.liafa.jussieu.fr/~jep/publications.html
http://dx.doi.org/10.1007/978-3-642-59136-5_10
www.liafa.jussieu.fr/~jep/publications.html
www.liafa.jussieu.fr/~jep/publications.html
http://dx.doi.org/10.1142/S0129054112400497
http://dx.doi.org/10.1007/BF01243597
http://dx.doi.org/10.1007/BF02679467
http://arxiv.org/abs/1402.3277

54 On Vvarieties of Automata Enriched with an Algebraic Struetu

[30] L. Polak (2004):A classification of rational languages by semilattice-getEmonoids Archivum Mathe-
maticum40(4), pp. 395-406. Available attp://emis.muni.cz/journals/AM/04-4/index.html.

[31] L. Polak (2005):Minimalizations of NFA using the universal automatdnt. J. Found. Comput. Sc16(5),
pp. 999-1010, doin.1142/50129054105003431.

[32] J. Reiterman (1982)The Birkhoff theorem for finite algebra®Algebra Universalid4, pp. 1-10, doi0.
1007/BF02483902.

[33] J. Rhodes & B. Steinberg (2009)he g-theory of Finite Semigrouplonographs in Mathematics, Springer,
doi:10.1007/b104443.

[34] M. P. Schitzenberger (1965pn Finite Monoids Having Only Trivial Subgroupsiformation and Control
8(2), pp. 190-194, dain.1016/50019-9958(65) 90108-7.

[35] T. Schwentick, D. Thérien & H. Vollmer (2001Rartially-Ordered Two-Way Automata: A New Characteri-
zation of DA In W. Kuich, G. Rozenberg & A. Salomaa, editoBevelopments in Language Thephgcture
Notes in Computer Scien@295, Springer, pp. 239-250, dui:.. 1007/3-540-46011-X_20.

[36] I. Simon (1975)Piecewise testable events H. Barkhage, editorAutomata Theory and Formal Languages
Lecture Notes in Computer Sciend®, Springer, pp. 214-222, do@1. 1007/3-540-07407-4_23.

[37] J. Stern (1985)Complexity of Some Problems from the Theory of Autoniafarmation and Contra6(3),
pp. 163—-176, doi:0.1016/30019-9958(85) 80058-9.

[38] H. Straubing (1981)A Generalization of the Sdéltzenberger Product of Finite Monoids heor. Comput.
Sci. 13, pp. 137-150, dain.1016/0304-3975(81)90036-0.

[39] H. Straubing (2002):0n Logical Descriptions of Regular Languagefn S. Rajsbaum, editorLATIN,
Lecture Notes in Computer Scienz286, Springer, pp. 528-538, dii:. 1007/3-540-45995-2_46,

[40] H. Straubing & P. Weil (2012):An introduction to finite automata and their connection tgito In
D. D'Souza & P. Shankar, editordodern Applications of Automata TheghySc Research Monographs Se-
ries, World Scientific, dot0.1142/9789814271059_0001. Available athttp://arxiv.org/abs/1011.
6491.

[41] D. Thérien (1981)Classification of Finite Monoids: The Language Approaétheor. Comput. Scil4, pp.
195-208, doit0.1016/0304-3975(81)90057-8.

[42] W. Thomas (1982)Classifying Regular Events in Symbolic Lagic Comput. Syst. Sc25(3), pp. 360-376,
doi:10.1016/0022-0000(82)90016-2.

[43] A. Trahtman (2001)Piecewise and Local Threshold Testability of DRAR. Freivalds, editorFCT, Lecture
Notes in Computer Scien@4 38, Springer, pp. 347-358, doi:.. 1007/3-540-44669-9_33.

[44] P. Weil (2004): Algebraic Recognizability of LanguagesIn J. Fiala, V. Koubek & J. Kratochvil,
editors: MFCS Lecture Notes in Computer Scien@153, Springer, pp. 149-175, duob. 1007/
978-3-540-28629-5_8. Available athttp://arxiv.org/abs/cs/0609110.


http://emis.muni.cz/journals/AM/04-4/index.html
http://dx.doi.org/10.1142/S0129054105003431
http://dx.doi.org/10.1007/BF02483902
http://dx.doi.org/10.1007/BF02483902
http://dx.doi.org/10.1007/b104443
http://dx.doi.org/10.1016/S0019-9958(65)90108-7
http://dx.doi.org/10.1007/3-540-46011-X_20
http://dx.doi.org/10.1007/3-540-07407-4_23
http://dx.doi.org/10.1016/S0019-9958(85)80058-9
http://dx.doi.org/10.1016/0304-3975(81)90036-0
http://dx.doi.org/10.1007/3-540-45995-2_46
http://dx.doi.org/10.1142/9789814271059_0001
http://arxiv.org/abs/1011.6491
http://arxiv.org/abs/1011.6491
http://dx.doi.org/10.1016/0304-3975(81)90057-8
http://dx.doi.org/10.1016/0022-0000(82)90016-2
http://dx.doi.org/10.1007/3-540-44669-9_33
http://dx.doi.org/10.1007/978-3-540-28629-5_8
http://dx.doi.org/10.1007/978-3-540-28629-5_8
http://arxiv.org/abs/cs/0609110

