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Eilenberg correspondence, based on the concept of syntactic monoids, relates varieties of regular lan-
guages with pseudovarieties of finite monoids. Various modifications of this correspondence related
more general classes of regular languages with classes of more complex algebraic objects. Such gen-
eralized varieties also have natural counterparts formed by classes of finite automata equipped with
a certain additional algebraic structure. In this survey, we overview several variants of such varieties
of enriched automata.

Algebraic theory of regular languages is a well establishedfield in the theory of formal languages.
A basic ambition of this theory is to obtain effective characterizations of various natural classes of reg-
ular languages. The fundamental concept is the notion ofsyntactic monoidof a given regular language
L, which is the smallest possible monoid recognizing the languageL, and which is isomorphic to the
transition monoid of the minimal automaton ofL. First examples of natural classes of languages, which
were effectively characterized by properties of syntacticmonoids, were the star-free languages [34] hav-
ing aperiodic syntactic monoids and the piecewise testablelanguages [36] havingJ -trivial syntactic
monoids. A general framework for discovering relationships between properties of regular languages
and properties of monoids was provided by Eilenberg [9], whoestablished a one-to-one correspondence
between so-calledvarietiesof regular languages andpseudovarietiesof finite monoids. Here varieties
of languages are classes closed under taking quotients, preimages under morphisms and Boolean oper-
ations. On the other hand pseudovarieties of finite monoids are classes closed under taking finite direct
products, submonoids and morphic images. Thus a membershipproblem for a given variety of regu-
lar languages can be translated to a membership problem for the corresponding pseudovariety of finite
monoids. An advantage of this translation is that pseudovarieties of monoids are exactly classes of finite
monoids which have equational description by pseudoidentities [32].

The goal of this contribution is not to overview all notions and applications of the algebraic theory
of regular languages. For thorough introduction to that theory we refer to [25]. Other overviews are for
example [26] and [44]. A more detailed information concerning the theory of pseudovarieties of finite
monoids can be found in the survey [2] or in the books [1] and [33].

We should mention that many interesting classes of regular languages, which are studied by the
algebraic methods, come from logic. It is well known that regular languages which are definable in the
first order logic of finite linear orderings are exactly star-free languages [23]. Within the class of star-
free languages, there were defined the so-calleddot-depth hierarchy[7] and closely relatedStraubing–
Thérien hierarchy[38, 41]. In [42] it was shown that a language belongs to thenth level of the latter
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hierarchy if and only if it is definable by a formula withn alternations of quantifiers. Moreover, the class
of star-free languages is exactly the class of all languagesdefinable by linear temporal logic [15]. For a
recent survey on the classes of languages given by fragmentsof first-order logic we refer to [8] and [40].
Some recent results can be found for example in [19] and [29].

Since not every natural class of languages is closed under all mentioned operations, various gener-
alizations of the notion of varieties of languages were studied. One possible generalization is the notion
of positive varietiesof languages introduced in [24] for which an equational characterization was given
in [27]; the positive varieties need not be closed under complementation. In the same direction one can
consider varieties which need not be closed under taking unions (see [30]). We shall return to these con-
cepts later. Another possibility is to weaken the closure property for preimages under morphisms. In this
way one can considerC -varieties of regular languages which were introduced in [39] and whose equa-
tional description was given in [20]. Here we require the presence of preimages under morphisms only
for morphisms from a certain special classC . An important example is the class formed by morphisms
which map letters to letters; such varieties of languages (so-calledliteral varieties)and the correspond-
ing pseudovarieties of monoids with marked generators (so-calledmonoid-generator pairs) were studied
in [12]. Classes of languages with a complete absence of the preimages requirement were studied in [13].

In our contribution we would like to consider varieties of automata as another natural counterpart to
varieties of regular languages. We should emphasize that the considered automata are deterministic finite
automata. Characterizing of varieties of languages by properties of minimal automata is quite natural,
since usually we assume that an input of a membership problemfor a fixed variety of languages is given
exactly by a minimal deterministic automaton. For example,if we want to effectively test whether an
input language is piecewise testable, we do not want to compute its syntactic monoid which could be
quite large1. Instead of that we consider a condition which must be satisfied by its minimal automaton
and which was given in the original Simon’s paper [36]. This characterization was used in [37] and [43]
to obtain a polynomial and quadratic algorithm, respectively, for testing piecewise testability. In [18]
Simon’s condition was reformulated and the so-calledlocally confluent acyclic automata2 were defined.
Therefore we are looking for a general definition of a termvariety of automata, to obtain a setting in
which we could talk, for example, about the variety of locally confluent acyclic automata.

Let us consider a minimal automatonAL of a regular languageL. A first easy observation is the
following: if we change the initial state inAL then the resulting automaton recognizes a left quotient of
the original languageL. Similarly but not trivially, if we change the final states, the resulting automaton
recognizes a Boolean combination of right quotients of the original languageL. Since we are interested in
characterizations of varieties of languages, the choice ofan initial state and final states can be left free and
we can consider only underlying labeled graphs3 which will form our varieties of automata. Furthermore,
since varieties of languages are closed under taking unionsand intersections, we need to include direct
products of automata in our varieties of automata. Considering a preimage of a given regular languageL
under some morphismf , one can construct an automaton from the minimal automatonAL of L, so-called
f -subautomaton, where states form a subset and a new action by each lettera is the same as the action
by the word f (a) in the original automaton. Since these constructions generate new automata, namely
products of automata andf -subautomata, and since we are mainly interested in minimalautomata, we
also include into our variety of automata all morphic imagesof existing automata. Finally, from technical
reasons we add disjoint unions of automata. Thus a variety ofautomata will be a class of automata closed

1More than(n−1)! wheren is the number of states of the minimal automaton, see [5] for precise bounds.
2These automata recognize exactly piecewise testable languages and paper [18] contains a new (purely automata based)

proof which does not use Simon’s original result.
3Such automata without initial and final states are sometimescalled semiautomata in the literature.
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under taking products, disjoint unions, morphic images andf -subautomata. And of course, when we are
limited to morphisms from a certain classC , we can even talk aboutC -varieties of automata. Then one
can prove an Eilenberg type correspondence: varieties of languages correspond to varieties of automata.
This concept occurred in [10] in the case of literal morphisms and in [6] under the name varieties of
C -actions. In particular, one can consider the variety of allcounter-free automata [23] characterizing
star-free languages or the variety of all locally confluent acyclic automata.

Now we enrich automata by an algebraic structure. If we startwith a deterministic automaton where
all states are reachable from the initial one then we can assign to each stateq the setLq consisting of all
words which are acceptable if the computation starts from this state. SometimesLq is called thefutureof
the stateq. It is known [4] that identifying the states with the same future produces a minimal automaton.
Thus a stateq in the minimal automatonAL can be identified with its futureLq and therefore it is a subset
of A∗. Then such states are ordered by inclusion, which means thateach minimal automaton is implicitly
equipped with a partial order. Moreover, final states4 form an upward closed subset. This leads to a
notion of partially ordered automata where actions by letters are isotone mappings and languages are
recognized by final states which form an upward closed subset.

Furthermore, varieties, or more generallyC -varieties, of partially ordered automata5 can be defined
once again as classes which are closed under taking products, disjoint unions, morphic images andf -
subautomata. Now one can prove that these varieties of partially ordered automata correspond to positive
varieties of languages. A well known example is the level 1/2 in the Straubing-Thérien hierarchy of star-
free languages. The effective characterization of the level 1/2 can be found in [3]. This characterization
can be equivalently stated as validity of the identity 1≤ x in the syntactic ordered monoid of a lan-
guage [28]. Therefore, the corresponding variety of partially ordered automata is formed by automata
where actions are increasing mappings (for a stateq and a lettera we haveq·a≥ q).

Now we return to the representation of the minimal automatonAL of a regular languageL where a
stateq= Lq is a subset ofA∗ and we consider all possible intersections of states. Sincewe have only
finitely many states inAL, we obtain finitely many intersections. The resulting meet-semilatticeSL can
be naturally equipped with actions by letters: applying a letter a to an intersection

⋂
i∈I qi , i.e. a state

in SL, is the intersection of all statesqi · a. If we use as final states those which contain the empty
word, then final states form a principal filter in the semilattice SL. This idea leads to a notion of a
meet automatonwhich was introduced in [16]. Here the corresponding varieties of languages are not
closed under taking unions, since in the product of automatathe corresponding set of final states is not a
principal filter. Therefore the corresponding classes of regular languages are conjunctive varieties which
were defined in [30]. We have already mentioned that the syntactic (ordered) monoid of a language
is isomorphic to the transition (ordered) monoid of the (ordered) minimal automaton of the language.
Analogous statement is valid in the case of meet automata. Inparticular, thecanonical meet automaton
SL of a languageL is a minimal meet automaton of a given language. Moreover, its transition structure
is asyntactic semiringwhich is a minimal semiring recognizing the language and which can be defined
analogously to a syntactic monoid (see [30]). In the paper [16] there are mentioned some examples of
C -varieties of languages which can be characterized via varieties of meet automata. There is also a close
connection between the notion of a canonical meet automatonand a notion of auniversal automaton
which contains all minimal non-deterministic automata of agiven regular language (see [31] and [22]).

One can make one step further. As we add intersections to the representation of minimal automaton,

4A state is final if and only if it contains the empty word.
5There exist several papers which use the term ordered (deterministic, non-deterministic or two-way) automaton in a differ-

ent meaning, e.g. in [35] it is required that an action by a letter is increasing but need not be isotone.
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we can try to add also unions. In other words, we consider the sublattice of the lattice 2A
∗

generated
by AL. Since this lattice is distributive, we define an abstract notion of a distributive lattice automata
(DL-automata) which are automata enriched by a distributive lattice structure, where both operations are
compatible with actions by letters. Note that this model differs from lattice automata defined in [21].
We want to define varieties ofDL-automata as a natural counterpart of generalized varieties of languages
which are not required to be closed under taking any of Boolean operations. Indeed, such classes natu-
rally occur in the theory of formal languages: for example, many classes defined by models of quantum
automata are of this kind. The goal is a characterization of such classes. Note that it is also possible
to extend this principle, consider the Boolean subalgebra of 2A∗

generated byAL and define a notion
of a BA-automaton. Before developing this theory we prefer to clarify all aspects of the theory ofDL-
automata, since there are some difficulties. For example, inthe case of meet automata, since actions by
letters are morphism with respect to the meet operation, actions by sets of letters are also morphisms
with respect to this operation. In the case ofDL-automata, such an extension is not valid.

At the end we could mention that one can extend the construction in at least two natural directions.
First, the theory of tree languages is a field where many fundamental ideas from the theory of determin-
istic automata were successfully generalized. Another recent notion of biautomata (see [17] and [14])
is based on considering both-sided quotients instead of left quotients only. In both cases one can try to
apply the previous constructions and consider varieties ofautomata (enriched by an algebraic structure).
Some papers in this direction already exist [11].
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