
Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 124–138, doi:10.4204/EPTCS.151.8

c© H. Bordihn, M. Kutrib, A. Malcher

Measuring Communication in
Parallel Communicating Finite Automata

Henning Bordihn
Institut für Informatik, Universität Potsdam,

August-Bebel-Str. 89, 14482 Potsdam, Germany

henning@cs.uni-potsdam.de

Martin Kutrib and Andreas Malcher
Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher}@informatik.uni-giessen.de

Systems of deterministic finite automata communicating by sending their states upon request are
investigated, when the amount of communication is restricted. The computational power and de-
cidability properties are studied for the case of returningcentralized systems, when the number of
necessary communications during the computations of the system is bounded by a function depend-
ing on the length of the input. It is proved that an infinite hierarchy of language families exists,
depending on the number of messages sent during their most economical recognitions. Moreover,
several properties are shown to be not semi-decidable for the systems under consideration.

1 Introduction

Communication is one of the most fundamental concepts in computer science: objects of object-oriented
programs, roles or pools in business processes, concurrentprocesses in computer networks or in infor-
mation or operating systems are examples of communicating agents.

Parallel communicating finite automata systems (PCFA) havebeen introduced in [12] as a simple
automaton model of parallel processes and cooperating systems, see also [1, 2, 4]. A PCFA consists of
several finite automata, the components of the system, that process a joint input string independently of
each other. However, their transitions are synchronized according to a global clock. The cooperation of
the components is enabled by communication steps in which components can request the state reached
by another component. The system can work in returning or non-returning mode. In the former case
each automaton which sends its current state is set back to its initial state after this communication step.
In the latter case the state of the sending automaton is not changed. Recently, these communication pro-
tocols have been refined in [15] and further investigated forthe case of parallel communicating systems
of pushdown automata [14]. There, the communication process is performed in an asynchronous man-
ner, reflecting the technical features of many real communication processes. In the sequel of this paper
and as a first step towards an investigation of the influence ofrestricted communication to parallel com-
municating systems of automata, we stick with the simpler model having synchronized communication
steps.

In a PCFA, one also distinguishes between centralized systems where only one designated automa-
ton, called master, can request information from other automata, and non-centralized systems where
every automaton is allowed to request information from others. Taking the distinction between returning
and non-returning systems into account, we are led to four different working modes. Moreover, one

http://dx.doi.org/10.4204/EPTCS.151.8

H. Bordihn, M. Kutrib, A. Malcher 125

distinguishes between deterministic and nondeterministic PCFA. The system is deterministic, if all its
components are deterministic finite automata.

It is known from [2, 4, 12] that deterministic (nondeterministic) non-centralized PCFA are equally
powerful as deterministic (nondeterministic) one-way multi-head finite automata [6], both in returning
and non-returning working modes. Moreover, it is proved in [2] that nondeterminism is strictly more
powerful than determinism for all the four working modes, and that deterministic centralized returning
systems are not weaker than deterministic centralized non-returning ones.

All variants of PCFA accept non-regular languages due to thefeature that communication between
the components of the system is allowed. Thus it is of interest to measure the amount of communication
needed for accepting those languages. Mitrana proposed in [13] a dynamical measure of descriptional
complexity as follows: The degree of communication of a PCFAfor a given word is the minimal number
of communications necessary to recognize the word. Then, the degree of communication of a PCFA is
the supremum of the degrees of communication taken over all words recognized by the system, while the
degree of communication of a language (with respect to a PCFAof typeX) is the infimum of the degrees
of communication taken over all PCFA of typeX that accept the language. Mitrana proved that this
measure cannot be algorithmically computed for languages accepted by nondeterministic centralized or
non-centralized non-returning PCFA. The computability status of the degree of communication for the
other types of PCFA languages as well as for all types of PCFA is stated as open question in [13].

In this paper, we study PCFA where the degree of communication is bounded by a function in the
length of the input word. We restrict ourselves to one of the simplest types of PCFA, namely to determin-
istic centralized returning systems of finite automata. In the next section, the basic definitions and two
examples of languages accepted by communication bounded PCFA are presented. In Section 3, we show
that bounding the degree of communication by logarithmic, square root or linear functions leads to three
different families of languages. For the strictness results, we use similar witness languages and a proof
technique based on Kolmogorov complexity as in [9], where the second and the third author investigated
the computational power of two-party Watson-Crick systems, that is, synchronous systems consisting of
two finite automata running in opposite directions on a shared read-only input and communicating by
broadcasting messages.

In Section 4, non-semi-decidability results are proved fordeterministic returning centralized PCFA
and their languages, thus partially answering questions listed as open in [13]. Similarly to [1] the proofs
rely on properties of one-way cellular automata and their valid computations. Finally, Section 5 refines
the three-level hierarchy from Section 3 to an infinite hierarchy.

2 Preliminaries and Definitions

We write Σ∗ for the set of all words over the finite alphabetΣ, andN for the set{0,1,2, . . .} of non-
negative integers. Theempty wordis denoted byλ . For thelengthof w we write |w|. We use⊆ for
inclusionsand⊂ for strict inclusions.

Next we turn to the definition of parallel communicating finite automata systems. The nondetermin-
istic model has been introduced in [12]. Following [1], the formal definition is as follows.

A deterministic parallel communicating finite automata system of degree k(DPCFA(k)) is a construct
A= 〈Σ,A1,A2, . . . ,Ak,Q,⊳〉, where

1. Σ is the set ofinput symbols,

2. eachAi = 〈Si ,Σ,δi ,s0,i ,Fi〉, 1≤ i ≤ k, is adeterministic finite automatonwith finite state setSi ,
partial transition functionδi : Si × (Σ∪{λ ,⊳})→ Si (requiring thatδi(s,a) is undefined for all

126 Measuring Communication in Parallel Communicating FiniteAutomata

a∈ Σ∪{⊳}, if δi(s,λ) is defined), initial states0,i ∈ Si , and set of accepting statesFi ⊆ Si ,

3. Q= {q1,q2, . . . ,qk} ⊆
⋃

1≤i≤k Si is the set ofquery states, and

4. ⊳ /∈ Σ is theend-of-input symbol.

The single automata are calledcomponentsof the systemA. A configuration(s1,x1,s2,x2, . . . ,sk,xk)
of A represents the current statessi as well as the still unread partsxi of the tape inscription of all
components 1≤ i ≤ k. SystemA starts with all of its components scanning the first square ofthe tape in
their initial states. For input wordw∈ Σ∗, the initial configuration is(s0,1,w⊳,s0,2,w⊳, . . . ,s0,k,w⊳).

Basically, a computation ofA is a sequence of configurations beginning with an initial configura-
tion and ending with a halting configuration, when no successor configuration exists. Each step can
consist of two phases. In a first phase, all components are in non-query states and perform an ordi-
nary (non-communicating) step independently. The second phase is the communication phase during
which components in query states receive the requested states as long as the sender is not in a query
state itself. That is, if a componentAi is in query stateq j , thenAi is set to the current state of compo-
nentA j . This process is repeated until all requests are resolved, if possible. If the requests are cyclic,
no successor configuration exists. For the first phase, we define the successor configuration relation⊢
by (s1,a1y1,s2,a2y2, . . . ,sk,akyk) ⊢ (p1,z1, p2,z2, . . . , pk,zk), if Q∩{s1,s2, . . . ,sk} = /0, ai ∈ Σ∪{λ ,⊳},
pi ∈ δi(si ,ai), andzi = ⊳ for ai =⊳ andzi = yi otherwise, 1≤ i ≤ k. For non-returning communication
in the second phase, we set(s1,x1,s2,x2, . . . ,sk,xk) ⊢ (p1,x1, p2,x2, . . . , pk,xk), if, for all 1 ≤ i ≤ k such
that si = q j andsj /∈ Q, we havepi = sj , and pr = sr for all the otherr, 1≤ r ≤ k. Alternatively, for
returning communication in the second phase, we set(s1,x1,s2,x2, . . . ,sk,xk) ⊢ (p1,x1, p2,x2, . . . , pk,xk),
if, for all 1 ≤ i ≤ k such thatsi = q j andsj /∈ Q, we havepi = sj , p j = s0, j , andpr = sr for all the otherr,
1≤ r ≤ k.

A computationhalts when the successor configuration is not defined for the current situation. In
particular, this may happen when cyclic communication requests appear, or when the transition function
of one component is not defined. The languageL(A) accepted by a DPCFA(k) A is precisely the set
of wordsw such that there is some computation beginning withw⊳ on the input tape and halting with
at least one component having an undefined transition function and being in an accepting state. Let⊢∗

denote the reflexive and transitive closure of the successorconfiguration relation⊢ and defineL(A) as

{w∈ Σ∗ | (s0,1,w⊳,s0,2,w⊳, . . . ,s0,k,w⊳) ⊢∗ (p1,a1y1, p2,a2y2, . . . , pk,akyk),

such thatpi ∈ Fi andδi(pi ,ai) as well asδi(pi ,λ) are undefined for some 1≤ i ≤ k}.

Whenever the degree is missing in the notation DPCFA(k), we mean systems of arbitrary degree.
The absence or presence of an R in the type of the system denotes whether it works innon-returning
communication, that is, the sender remains in its current state, orreturning communication, that is, the
sender is reset to its initial state. If there is just one component, sayA1, that is allowed to query for states,
that is,Si ∩Q= /0, for 2≤ i ≤ k, then the system is said to becentralized. In this case, we refer toA1

as themaster componentand add a C to the notation of the type of the system. Thefamily of languages
acceptedby devices of typeX with arbitrary degree (with degreek) is denoted byL (X) (L (X(k))).

In the following, we study the impact of communication in PCFA. The communication is measured
by the total number of queries sent during a computation. That is, we count the number of time steps
at which a component enters a query state and consider the sumof these numbers for all components.
Let f : N→ N be a mapping. If allw∈ L(A) are accepted with computations where the total number of
queries sent is bounded byf (|w|), thenA is said to becommunication bounded by f .

H. Bordihn, M. Kutrib, A. Malcher 127

We denote the class of devices of typeX (with degreek) that are communication bounded by some
function f by f -X (f -X(k)).

In order to clarify the notation we give two examples. Whenever we refer to a timet of a computation
of a DPCFA, then the configuration reached after exactlyt computation steps is considered.

Example 1 The languageLexpo= {$a20
ba21

b· · ·ba2m
& | m≥ 1} belongs toL (f -DRCPCFA(2)) with

f ∈ O(log(n)). Roughly, the idea of the construction is that the lengths ofadjacenta-blocks (separated
by ab) are compared. To this end, the master reads the left block with half speed, that is, moving one
symbol to the right in every other time step, while the non-master component reads the right block with
full speed, that is, moving one symbol to the right in every time step. If the master reaches ab, it queries
the non-master whether it has also reached ab. If this is true, the comparison of the next twoa-blocks is
started. The input is accepted if the master obtains the symbol & from the non-master component and the
remaining input is ina+&⊳.

Formally, we defineA = 〈{a,b,$,&},A1,A2,{q2},⊳〉 to be a DRCPCFA(2) with master compo-
nentA1 = 〈{s0,1,s1,1,s2,1,s3,1,s4,1,s5,1,sb,s&,q2,accept},{a,b,$,&},δ1,s0,1,{accept}〉, second compo-
nentA2 = 〈{s0,2,s1,2,s2,2,s3,2,sb,s&,s⊳},{a,b,$,&},δ2,s0,2, /0〉, and transition functionsδ1 andδ2 as fol-
lows.

The non-master componentA2:

1. δ2(s0,2,$) = s1,2

2. δ2(s1,2,a) = s2,2

3. δ2(s2,2,b) = s3,2

4. δ2(s3,2,a) = s3,2

5. δ2(s3,2,b) = sb

6. δ2(s3,2,&) = s&

7. δ2(s0,2,a) = s3,2

8. δ2(s0,2,⊳) = s⊳

9. δ2(s⊳,λ) = s⊳

The component reads the input prefix$ab in the first three time steps (rules 1,2,3). Subsequently, itreads
ana-block in states3,2 (rule 4). Whenever it moves on a symbolb it changes into statesb (rule 5). So, it
enters statesb at time step 3 plus the length of the seconda-block plus 1. The component halts in statesb

unless it is reset to its initial state by a query. In this caseit reads the currenta-block and the nextb and
enters statesb again after a number of time steps that is the length of thea-block plus one (rules 7,4,5).
Rule 6 is used when& appears in the input instead ofb. After being reset into the initial state on the
endmarker, the component enters states⊳ and loops withλ -moves.

The master componentA1:

1. δ1(s0,1,$) = s1,1

2. δ1(s1,1,λ) = s2,1

3. δ1(s2,1,λ) = s3,1

4. δ1(s3,1,a) = s4,1

5. δ1(s4,1,λ) = s3,1

6. δ1(s3,1,b) = q2

7. δ1(sb,a) = s4,1

8. δ1(s&,a) = s&

9. δ1(s&,&) = s5,1

10. δ1(s5,1,⊳) = accept

The master reads the input prefix$ab in the first six time steps and enters the query stateq2 (rules 1–6).
Exactly at that time the non-master component enters statesb. Being in statesb received the master
reads the currenta-block and the nextb and enters stateq2 again after a number of time steps that is two
times the length of thea-block plus one (rules 7,4,5,6). Exactly at this time the non-master component
enters statesb again provided that thea-block read by the non-master component is twice as long as the
a-block read by the master. When the master receives states& instead ofsb, it reads the remaining suffix
(rules 8,9), enters the accepting state on the endmarker (rule 10) and halts.

128 Measuring Communication in Parallel Communicating FiniteAutomata

Finally, the length of a wordw∈ Lexpo is |w|= m+2+∑m
i=0 2i = 2m+1+m+1, for somem≥ 1. In

its accepting computation, a communication takes place forevery symbolb and the endmarker. So there
arem+1 communications which is of orderO(log(|w|)). �

The construction of the next example is similar to the one given in Example 1.

Example 2 The languageLpoly = {$aba3ba5b· · ·ba2m+1& | m≥ 0 } belongs toL (f -DRCPCFA(2))
with f ∈ O(

√
n). �

3 Computational Capacity

In this section we consider aspects of the computational capacity of f -DRCPCFA(k). Examples 1 and 2
already revealed that there are non-semilinear languages accepted by systems with two components and
sublinear communication. The next simple result is nevertheless important for the size of representations
that will be used in connection with Kolmogorov arguments toseparate language classes.

Lemma 3 Let k≥ 1 andA be a DRCPCFA(k) with S1,S2, . . . ,Sk being the state sets of the single com-
ponents. Ifw∈ L(A), thenw is accepted after at most|S1| · |S2| · · · |Sk| · (|w|+ 1) time steps, that is, in
linear time.

Proof During a computation some componentAi may be in|Si | different states. So after|S1| · |S2| · · · |Sk|
time steps the whole system runs through a loop if none of the components moves. Therefore, as long
as no halting configuration is reached, at least one component must move after at most|S1| · |S2| · · · |Sk|
time steps. �

The language of the next lemma combines the well-known non-context-free copy language withLexpo

from above. It plays a crucial role in later proofs.

Lemma 4 The language

Lexpo,wbw= {$w1w2 · · ·wmba20
w1w1a21

w2w2 · · ·a2m−1
wmwm& | m≥ 1,wi ∈ {0,1},1≤ i ≤ m}

belongs toL (O(log(n))-DRCPCFA(3)).

Proof A formal construction of aO(log(n))-DRCPCFA(3) acceptingLexpo,wbw is given through the
transition functions below, wheres0,i is the initial state of componentAi, 1≤ i ≤ 3, the sole accepting
state isaccept, andσ ∈ {0,1}.

The second non-master componentA3 initially passes over the$ and, then, it reads a symbol, remem-
bers it in its state, and loops without moving (rules 1,2,3,8,9). Whenever the component is reset into its
initial state after a query, it reads the next symbol, remembers it, and loops without moving (rules 4–11).
This component is used by the master to match thewi from the prefix with thewi from the suffix.

The non-master componentA3:

1. δ3(s0,3,$) = s1,3

2. δ3(s1,3,0) = s0

3. δ3(s1,3,1) = s1

4. δ3(s0,3,0) = s0

5. δ3(s0,3,1) = s1

6. δ3(s0,3,b) = sb

7. δ3(s0,3,a) = sa

8. δ3(s0,λ) = s0

9. δ3(s1,λ) = s1

10. δ3(sb,λ) = sb

11. δ3(sa,λ) = sa

H. Bordihn, M. Kutrib, A. Malcher 129

The first non-master componentA2 initially passes over the prefix$w1w2 · · ·wm (rules 1,2), theb
(rule 3), and the adjacent infixaw1w1aaw2w2 (rules 4–13). On its way it checks whether the neighboring
symbolswi are in fact the same (rules 5–8 and 10–13). If the second checkis successful the component
enters statesww. Exactly at that time it has to be queried by the master, otherwise it blocks the compu-
tation. Subsequently, it repeatedly continues to read the input, where each occurrence of neighboring
symbolswi are checked for equality (rules 14 and 9–13), which is indicated by entering statesww again.
This component is used to verify that all neighboring symbols wi in the suffix are equal and, by the mas-
ter, to check the lengths of thea-blocks in the same way as in Example 1. Note that the component is at
time m+9 on the first symbol afterw2w2. After being reset to its initial state, it takes a number of time
steps equal to the length of the nexta-block plus 2 to get on the first symbol after the nextwiwi .

The non-master componentA2:

1. δ2(s0,2,$) = s1,2

2. δ2(s1,2,σ) = s1,2

3. δ2(s1,2,b) = s2,2

4. δ2(s2,2,a) = s3,2

5. δ2(s3,2,0) = s0
4,2

6. δ2(s3,2,1) = s1
4,2

7. δ2(s0
4,2,0) = s5,2

8. δ2(s1
4,2,1) = s5,2

9. δ2(s5,2,a) = s5,2

10. δ2(s5,2,0) = s0
6,2

11. δ2(s5,2,1) = s1
6,2

12. δ2(s0
6,2,0) = sww

13. δ2(s1
6,2,1) = sww

14. δ2(s0,2,a) = s5,2

15. δ2(s0,2,&) = s&

16. δ2(s&,λ) = s&

17. δ2(s0,2,⊳) = s⊳

18. δ2(s⊳,λ) = s⊳

The master componentA1 initially passes over the prefix$w1w2 · · ·wm (rules 1,2), theb (rule 3), and
the firsta (rules 4–8). Then it reads the first of two adjacent symbolswi and enters the query stateq3

(rule 9) (the equality of the symbolswi has already been checked by componentA2). From component
A3 it receives the information about the matching symbolwi from the prefix. If this symbol is the same
as the next input symbol, then the computation continues (rules 10,11) by entering query stateq2. Note
that this happens exactly at time stepm+9. If the master receives statesww the length of the first two
a-blocks are verified. Now the master repeatedly continues toread the input (rule 12,7,8), where on
each occurrence of neighboring symbolswi the equality with the corresponding symbol in the prefix is
checked by querying componentA3 and the lengths of thea-blocks are compared by querying component
A2. After querying componentA2, it takes a number of time steps equal to the length of the adjacenta-
block (processed by componentA2) plus 2 to get into stateq2 again. Finally, when the master component
has checked the last symbolwm and gets the information thatA2 has read symbol&, it queries component
A3 (rule 13). If it receives ab, the input is accepted (rule 14). In all other cases it is rejected.

The master componentA1:

1. δ1(s0,1,$) = s1,1

2. δ1(s1,1,σ) = s1,1

3. δ1(s1,1,b) = s2,1

4. δ1(s2,1,λ) = s3,1

5. δ1(s3,1,λ) = s4,1

6. δ1(s4,1,λ) = s5,1

7. δ1(s5,1,a) = s6,1

8. δ1(s6,1,λ) = s5,1

9. δ1(s5,1,σ) = q3

10. δ1(s0,0) = q2

11. δ1(s1,1) = q2

12. δ1(sww,a) = s6,1

13. δ1(s&,&) = q3

14. δ1(sb,⊳) = accept

The length of a wordw∈ Lexpo,wbw is |w|= 3m+3+∑m−1
i=0 2i = 2m+3m+2, for somem≥ 1. In its

accepting computation, two communications take place for every wiwi and one more communication on

130 Measuring Communication in Parallel Communicating FiniteAutomata

the endmarker. So there are 2m+1 communications which is of orderO(log(|w|)). �

For the proof of the following theorem we use an incompressibility argument. General information
on Kolmogorov complexity and the incompressibility methodcan be found in [10]. Letw∈ {0,1}+ be
an arbitrary binary string. The Kolmogorov complexityC(w) of w is defined to be the minimal size of
a program describingw. The following key argument for the incompressibility method is well known.
There are binary stringsw of any length so that|w| ≤C(w).

Lemma 5 The languageLwbw= {w1w2 · · ·wmbw1w2 · · ·wm | m≥ 1,wi ∈ {0,1},1 ≤ i ≤ m} is accepted
by someO(n)-DRCPCFA(2) but, for anyk≥ 1, does not belong toL (f -DRCPCFA(k)) if f ∈ n

ω(log(n)) .

Proof First, we sketch the construction of aO(n)-DRCPCFA(2) acceptingLwbw. Initially, the master
component proceeds to the center markerb, while the non-master component reads the first input sym-
bol w1 and remembers this information in its state. Next, the master queries the non-master and matches
the information received with the first symbol followingb, while the non-master reads the next input
symbol and remembers it in its state. Subsequently, this behavior is iterated, that is, the master queries
the non-master again and matches its next input symbol, while the non-master reads and remembers the
next symbol. The input is accepted when the master receives ab at the moment it reaches the right
endmarker. Clearly, the number of communications on input lengthn= 2m+1 ism+1∈ O(n).

Second, we turn to show thatLwbw /∈ L (f -DRCPCFA(k)) if f ∈ n
ω(log(n)) . In contrast to the as-

sertion, we assume thatLwbw is accepted by somef -DRCPCFA(k) A = 〈Σ,A1,A2, . . . ,Ak,Q,⊳〉 with
f (n) ∈ n

ω(log(n)) . Let z= wbw, for somew ∈ {0,1}+, andK0 ⊢ ·· · ⊢ Kacc be the accepting computation
on inputz, whereK0 is the initial configuration andKacc is an accepting configuration.

Next, we consider snapshots of configurations at every time step at which the master component
queries some other component or at which a component enters the middle markerb. For every such con-
figuration, we take the time stepti , the current statess(i)1 ,s(i)2 , . . . ,s(i)k , and the positionsp(i)1 , p(i)2 , . . . , p(i)k

of the components. Thus, theith snapshot is represented by the tuple(ti ,s
(i)
1 , p(i)1 ,s(i)2 , p(i)2 , . . . ,s(i)k , p(i)k).

Since there are altogether at mostf (2|w|+1) communications, the list of snapshotsΛ contains at most
f (2|w|+1)+k entries.

We claim that each snapshot can be represented by at mostO(log(|w|)) bits. Due to Lemma 3
acceptance is in linear time and, therefore, each time step can be represented by at mostO(log(|w|)) bits.
Each position of a component can also be represented by at most O(log(|w|)) bits. Finally, each state can
be represented by a constant number of bits. Altogether, each snapshot can be represented byO(log(|w|))
bits. So, the listΛ can be represented by(f (2|w|+1)+k) ·O(log(|w|)) = |w|

ω(log(|w|)) ·O(log(|w|)) = o(|w|)
bits.

Now we show that the listΛ of snapshots together with a snapshot ofKacc and the knowledge ofA
and|w| is sufficient to reconstructw. The reconstruction is implemented by the following algorithm P.
First,P sequentially simulatesA on all 2|w| inputsxbxwhere|x|= |w|. Additionally, it is checked whether
the computation simulated has the same snapshots as in the list Λ and the accepting configuration. In
this way, the stringw can be identified. We have to show that there is no other stringw′ 6= w which can
be identified in this way as well. Let us assume that such aw′ exists. Then all snapshots of accepting
computations on inputwbwandw′bw′ are identical. This means that both computations end at the same
time step and all components are in the same state and position. Additionally, in both computations
communications take place at the same time steps, all components are in the same state and position
at that moment. Moreover, the right half of the respective words is entered in the same states and in

H. Bordihn, M. Kutrib, A. Malcher 131

the same time steps on both input wordswbw andwbw′. So, both computations are also accepting on
input wbw′ which is a contradiction.

Thus,w can be reconstructed given the above programP, the list of snapshotsΛ, the snapshot of the
accepting configuration,A, and|w|. Since the sizes ofP andA are bounded by a constant, the size ofΛ is
bounded byo(|w|), and|w| as well as the size of the remaining snapshot is bounded byO(log(|w|)) each,
we can reconstructw from a description of total sizeo(|w|). Hence, the Kolmogorov complexityC(w),
that is, the minimal size of a program describingw is bounded by the size of the above description, and
we obtainC(w) ∈ o(|w|). On the other hand, we know that there are binary stringsw of arbitrary length
such thatC(w)≥ |w|. This is a contradiction forw being long enough. �

The language of the next lemma is used in later proofs.

Lemma 6 The language

Lpoly,wbw = {$w1w2 · · ·wmba1w1w1a3w2w2a5w3w3 · · ·a2m−1wmwm& | m≥ 1,wi ∈ {0,1},1≤ i ≤ m}

is accepted by someO(
√

n)-DRCPCFA(3) but, for anyk ≥ 1, does not belong toL (f -DRCPCFA(k))
if f ∈ O(log(n)).

Proof Using the construction idea of Lemma 4, one showsLpoly,wbw∈ L (O(
√

n)-DRCPCFA(3)).
The claimed non-containment is shown similarly to Lemma 5: in contrast to the assertion, we assume

thatLpoly,wbw is accepted by somef -DRCPCFA(k) A= 〈Σ,A1,A2, . . . ,Ak,Q,⊳〉 with f (n) ∈ O(log(n)).
Let

z= $w1w2 · · ·wmba1w1w1a3w2w2a5w3w3 · · ·a2m−1wmwm& ∈ Lpoly,wbw,

wherew = w1w2 · · ·wm, andK0 ⊢ ·· · ⊢ Kacc be the accepting computation on inputz, whereK0 is the
initial configuration andKacc is an accepting configuration.

We use again an incompressibility argument and write down the list of snapshots of configurations
in which communication takes place and the accepting configurationKacc, and descriptions ofA and|w|.
Similar to the proof of Lemma 5, a programP can be described which reconstructsw uniquely from the
information given.

Next, we determine the size of such a description. ProgramP and the systemA can be represented
by a constant number of bits. The length|w| can be described by log(|w|) ∈ O(log(m)) bits. Since
|z|= 3m+3+∑m

i=12i−1= 3m+3+m2 and acceptance is in linear time (Lemma 3), each time step can
be represented byO(log(|z|)) = O(log(m2)) bits. Moreover, thek states can be described byO(1) bits,
and thek positions byk · log(|z|) = k · log(m2+3m+3) ∈ O(log(m)) bits. So, altogether one snapshot
can be represented byO(log(m)) bits. Since at mostf (|z|) ∈ O(log(|z|)) = O(log(m)) snapshots have
to be listed, the list of all snapshots can be described byO((log(m))2) bits. Therefore, the total size of
a description ofw is bounded byO((log(m))2) as well. Thus, the Kolmogorov complexityC(w) of w
is bounded byO((log(m))2). On the other hand, there are binary stringsw of arbitrary length such that
C(w)≥ |w|= m. This is a contradiction forw being long enough. �

The previous theorems showed that there are proper inclusions

L (O(log(n))-DRCPCFA(k))⊂ L (O(
√

n)-DRCPCFA(k))

for everyk≥ 3, and

L (O(
√

n)-DRCPCFA(k))⊂ L (O(n)-DRCPCFA(k))

132 Measuring Communication in Parallel Communicating FiniteAutomata

for everyk≥ 2.
Later, we will prove an infinite hierarchy in between the classesL (O(log(n))-DRCPCFA(k)) and

L (O(
√

n))-DRCPCFA(k), for everyk≥ 4.

4 Decidability and Undecidability Results

4.1 Undecidability of Emptiness and Classical Questions

First, we show undecidability of the classical questions for models with a logarithmic amount of com-
munication. To this end, we adapt the construction given in [1] which is based on the valid computations
of one-way cellular automata(OCA), a parallel computational model (see, for example, [7, 8]). More
precisely, the undecidability is shown by reduction of the corresponding problems for OCA which are
known not even to be semi-decidable [11]. To this end, histories of OCA computations are encoded in
single words that are calledvalid computations(cf., for example, [5]).

A one-way cellular automaton is a linear array of identical deterministic finite automata, sometimes
called cells. Except for the leftmost cell each one is connected to its nearest neighbor to the left. The
state transition depends on the current state of a cell itself and the current state of its neighbor, where
the leftmost cell receives information associated with a boundary symbol on its free input line. The state
changes take place simultaneously at discrete time steps. The input mode for cellular automata is called
parallel. One can suppose that all cells fetch their input symbol during a pre-initial step.

More formally, an OCA is a systemM = 〈S,#,T,δ ,F〉, whereS is the nonempty, finite set of cell
states,# /∈ S is the boundary state,T ⊆ S is the input alphabet,F ⊆ S is the set of accepting cell states,
andδ : (S∪{#})×S→ S is the local transition function.

A configuration of an OCA at some time stept ≥ 0 is a description of its global state, which
is formally a mappingct : {1,2, . . . ,n} → S, for n ≥ 1. The initial configuration at time 0 on input
w= x1x2 . . .xn is defined byc0,w(i) = xi , 1≤ i ≤ n. Let ct , t ≥ 0, be a configuration withn≥ 2, then its
successorct+1 is defined as follows:ct+1(1) = δ (#,ct(1)) andct+1(i) = δ (ct(i −1),ct(i)), 2≤ i ≤ n.

An input is accepted if at some time step during its computation the rightmost cell enters an ac-
cepting state. Without loss of generality and for technicalreasons, one can assume that any accepting
computation has at least three steps.

Now we turn to the valid computations of an OCAM = 〈S,#,T,δ ,F〉. The computation of a suc-
cessor configurationct+1 of a given configurationct is written down in a sequential way as follows.
Assumect+1 is computed cell by cell from left to right. That is, we are concerned with subconfigurations
of the formct+1(1) · · ·ct+1(i)ct(i +1) · · ·ct(n), wheren is the length of the input. For technical reasons,
in ct+1(i) we have to store both the successor state, which is entered intime stept+1 by celli, and its for-
mer state. In this way, the computation of the successor configuration ofM can be written as a sequence
of n subconfigurations, and configurationct+1 can be represented byw(t+1) = w(t+1)

1 · · ·w(t+1)
n such that

w(t+1)
i ∈ #S∗(S×S)S∗, for 1≤ i ≤ n, with w(t+1)

i = #ct+1(1) · · ·ct+1(i −1)(ct+1(i),ct(i))ct(i +1) · · ·ct(n).
The valid computations VALC(M) are now defined to be the set of words of the formw(0)w(1) · · ·w(m),
wherem≥ 3, w(t) ∈ (#S∗(S×S)S∗)+ are configurations ofM, 1≤ t ≤ m, w(0) is an initial configuration
having the form#(T ′)+, whereT ′ is a primed copy of the input alphabetT with T ′ ∩S= /0, w(m) is an
accepting configuration of the form(#S∗(S×S)S∗)∗#S∗(F ×S), andw(t+1) is the successor configuration
of w(t), for 0≤ t ≤ m−1.

For the constructions of DRCPCFA accepting the set VALC(M), we provide an additional tech-
nical transformation of the input alphabet. LetS′ = S∪ T ′ and A = {#} ∪ S′ ∪ S′2 be the alphabet

H. Bordihn, M. Kutrib, A. Malcher 133

over which VALC(M) is defined. We consider the mappingf : A+ → (A×A)+ which is defined for
words of length at least two byf (x1x2 · · ·xn) = [x1,x2][x2,x3] · · · [xn−1,xn]. From now on we consider
VALC(M)⊆ (A×A)+ to be the set of valid computations to whichf has been applied. The set ofinvalid
computationsINVALC (M) is then the complement of VALC(M) with respect to the alphabetA×A.

The following example illustrates the definitions.

Example 7 We consider the following computation of an OCAM over the input alphabet{c,d}. The
initial configuration isc0 = (c,d,d). Let the successor configurations bec1 =(p1, r1,s1), c2 = (p2, r2,s2),
andc3 = (p3, r3,s3). Furthermore, lets3 be an accepting state, that is,cdd is an accepted input. These
configurations are written down as sequences of subconfigurations as follows.

w(0) = #c′d′d′

w(1) = #(p1,c)dd#p1(r1,d)d#p1r1(s1,d)

w(2) = #(p2, p1)r1s1#p2(r2, r1)s1#p2r2(s2,s1)

w(3) = #(p3, p2)r2s2#p3(r3, r2)s2#p3r3(s3,s2)

Then,

f (w(0)w(1)w(2)w(3)) = [#,c′][c′,d′][d′,d′][d′,#][#,(p1,c)][(p1,c),d][d,d][d,#]

[#, p1][p1,(r1,d)][(r1,d),d][d,#][#, p1][p1, r1][r1,(s1,d)][(s1,d),#][#,(p2, p1)]

[(p2, p1), r1][r1,s1][s1,#][#, p2][p2,(r2, r1)][(r2, r1),s1][s1,#][#, p2][p2, r2]

[r2,(s2,s1)][(s2,s1),#][#,(p3, p2)][(p3, p2), r2][r2,s2][s2,#][#, p3][p3,(r3, r2)]

[(r3, r2),s2][s2,#][#, p3][p3, r3][r3,(s3,s2)]

is a valid computation ofM.

The length of a valid computation can be easily calculated.

Lemma 8 Let M be an OCA on inputw1w2 · · ·wn which is accepted aftert time steps. Then the length
of the corresponding valid computation isn+(n+1) ·n· t.

The next lemma is the key tool for the reductions.

Lemma 9 Let M be an OCA. Then language

VALC ′(M) = {$1x1x2 · · ·xm$2a20
bba21

bb· · ·bba2m−1
bb& | m≥ 1,x1x2 · · ·xm ∈ VALC(M)}

belongs toL (O(log(n))-DRCPCFA(4)).

Proof In [1] a O(n)-DRCPCFA(3) is constructed that accepts VALC(M). Basically, the master com-
ponentA1 and componentA2 are used to verify that after every subconfiguration the correct successor
subconfiguration is given, whereas componentA3 is used to check the correct format of the input. This
construction can be implemented identically for the present construction if we interpret$2 as the right
endmarker. Additionally, componentA4 is used in the same way as componentA3 in the construction
of Lemma 4, that is, initially it reads$1 andx1, storesx1 in its state, and waits at position 2 until it is
queried. After being reset to its initial state, it again reads the next input symbol, stores it, and waits.

Whenx1x2 · · ·xm ∈ VALC(M) is tested, the masterA1 and componentA2 are both located at$2. The
second part of the input is now tested along the line of the construction given in the proof of Lemma 4,

134 Measuring Communication in Parallel Communicating FiniteAutomata

where the master plays the role of the master, componentA2 the role of componentA2, and componentA4

the role of componentA3.
The length of a wordw∈ VALC ′(M) is |w|= 3m+3+∑m−1

i=0 2i = 2m+3m+2, for somem≥ 1. The
test whetherx1x2 · · ·xm belongs to VALC(M) requiresO(m) communications. For the remaining tests
additionalO(m) communications are necessary as the proof of Lemma 4 shows. So, altogether,O(m)
communications are sufficient which is of orderO(log(|w|)). �

The set ofinvalid computationsINVALC ′(M) is simply defined to be the complement of VALC′(M)
with respect to the alphabet{a,b,$1,$2,&}∪ (A×A).

Lemma 10 Let M be an OCA. Then language INVALC′(M) belongs toL (O(log(n))-DRCPCFA(4)).

Proof To accept the set of invalid computations INVALC′(M) almost the same construction as for
Lemma 9 can be used. The only adaption concerns acceptance and rejection. Since the only possibility
to accept is that the master halts in stateacceptwhile the other components are non-halting, accepting
computations can be made rejecting by sending the master into a halting non-accepting statere ject
instead. In order to make rejecting computations accepting, it is now sufficient to send the components
into some halting accepting state whenever they would halt rejecting. �

Theorem 11 For any degreek ≥ 4, emptiness, finiteness, infiniteness, universality, inclusion, equiva-
lence, regularity, and context-freeness are not semi-decidable forO(log(n))-DRCPCFA(k).

Proof All these problems are known to be non-semi-decidable for OCA [11]. By standard techniques
(cf., for example, [1]) the OCA problems are reduced toO(log(n))-DRCPCFA(k) via the valid and
invalid computations and Lemmas 9 and 10. �

4.2 Undecidability of Communication Boundedness

This subsection is devoted to questions concerning the decidability or computability of the communica-
tion bounds. In principle, we deal with three different types of problems. The first type is to decide for a
given DRCPCFA(k) A and a given functionf whether or notA is communication bounded byf . The next
theorem solves this problem negatively for all non-trivialcommunication bounds and all degreesk≥ 3.

Theorem 12 Let k≥ 3 be any degree,f ∈ o(n), andA be a DRCPCFA(k). Then it is not semi-decidable
whetherA is communication bounded byf .

Proof Let A be a DRCPCFA(k) with k ≥ 3 accepting some languageL(A) ⊆ Σ∗. We take two new
symbols{a,$}∩Σ = /0 and construct a DRCPCFA(k) A′ accepting languagea∗$L(A). The idea of the
construction is that, initially, all components move synchronously across the leadinga-block. During
this phase, the master component queries one of the non-master components in every time step. When
all components have read the separating symbol$, they enter the initial state of the corresponding com-
ponent ofA. Subsequently,A is simulated, thus testing whether the remaining input belongs toL(A). So,
on inputan$w with n≥ 1 andw∈ L(A), A′ performs at leastn communications. In particular, forn≥ |w|
we obtain words that show thatA′ is not communication bounded by any functionf ∈ o(n), unlessL(A)
is empty. So,A′ is a f -DRCPCFA(k) if and only if L(A) = /0.

Since in [1] it has been shown that emptiness is not semi-decidable for DRCPCFA with at least three
components, the theorem follows. �

H. Bordihn, M. Kutrib, A. Malcher 135

Mitrana considers in [13] thedegree of communicationof parallel communicating finite automata
systems. The degree of communication of an accepting computation is defined as the number of queries
posed. The degree of communicationComm(x) of a nondeterministic PCFAA on inputx is defined as
the minimal number of queries posed in accepting computations onx. The degree of communication
Comm(A) of a PCFAA is then defined as sup{Comm(x) | x ∈ L(A)}. Here we have the second type
of problems we are dealing with. Mitrana raised the questionwhether the degree of communication
Comm(A) is computable for a given nondeterministic PCFA(k) A. SinceComm(A) is either finite or
infinite, in our terms the question is to decide whether or notA is communication bounded by some
function f ∈ O(1) and, if it is, to compute the precise constant. The next theorem solves the problem.

Theorem 13 Let k ≥ 3 be an integer. Then the degree of communicationComm(A) is not computable
for DRCPCFA(k).

Proof For a given DRCPCFA(k) A and new input symbolsa and$, we construct a DRCPCFA(k) A′

accepting the languagea∗$L(A) as in the proof of Theorem 12.
Now, we claim thatComm(A′) = 0 if and only if L(A) = /0. If L(A) is empty, thenA′ accepts the

empty set and, thus,Comm(A′) = 0. On the other hand, ifL(A) is not empty, thenComm(A′) > 0 by
construction ofA′. Since emptiness is not semi-decidable for DRCPCFA(k) with k≥ 3 [1], the theorem
follows. �

Now we turn to the last type of problems we are dealing with in this section. The question is now
whether the degree of communication is computable for thelanguageaccepted by a given nondeter-
ministic PCFA(k) A. In [13] the degree of communicationCommX(L) of a languageL is defined as
inf{Comm(A) | A is device of typeX andL(A) = L}. Mitrana showed in [13] thatCommCPCFA(L(A))
for some nondeterministic CPCFAA is not computable. He leaves as an open question whether the de-
gree is computable for RCPCFA. Here we are going to show that the degree is not even computable for
deterministic RCPCFA.

Lemma 14 Let k ≥ 3 be an integer. Then the degree of communicationCommDRCPCFA(k)(L(A)) is not
computable.

Proof For a given DRCPCFA(k) A over alphabetΣ and new input symbolsb,0,1,$1,$2, we construct a
DRCPCFA(k) A′ accepting the language

{w1w2 · · ·wmbw1w2 · · ·wm | m≥ 1,wi ∈ {0,1},1≤ i ≤ m}$1$2L(A).

We present the construction fork= 3. The generalization to largerk is straightforward.
The idea of the construction is that in a first phase master componentA1 and a non-master compo-

nentA2 check the correctness of the prefixw1w2 · · ·wmbw1w2 · · ·wm. This is done as in the construction
of Lemma 5. ComponentA3 checks the correct format of the input up to the separating symbol $1 and
waits on symbol$2 until it is queried. At the end of this phase, the master is on the$1 and componentA2

stays on the symbolb.
In a second phase, the master component stays on$1 and repeatedly queries componentA2 until this

one has read$1 and, thus, stays on$2. Now the master reads$1 and queries componentA2. After being
reset to its initial state, componentA2 reads$2 and performs oneλ -step. Then it changes to the initial
state ofA2 in A. During thisλ -step, the master component reads$2 and queries componentA3. Then it
changes to the initial state of the master ofA. Finally, after being reset to its initial state, componentA3

reads$2 and changes into the initial state ofA3 in A.

136 Measuring Communication in Parallel Communicating FiniteAutomata

Now, all components are in their initial states on the first symbol of the input ofA and in a third
phaseA is simulated. We claim thatComm(L(A′)) = 0 if and only ifL(A) = /0. If L(A) is empty, thenA′

accepts the empty set andComm(L(A′)) =Comm(/0) = 0. If L(A) is not empty, we fix somex∈ L(A).
Assume contrarily thatComm(L(A′)) = 0. Then there exists a DRCPCFA(k) B acceptingL(A′) such
thatComm(B) = 0. FromB a DRCPCFA(k+1) B′ is constructed by providing an additional component
which checks whether the suffix is preciselyx, and halts non-accepting if an error is found. So,B′ accepts
the language

{w1w2 · · ·wmbw1w2 · · ·wm | m≥ 1,wi ∈ {0,1},1≤ i ≤ m}$1$2x

and we still haveComm(B′) = 0. Similar as in the proof of Lemma 5, it follows by an incompressibility
argument that this conclusion leads to a contradiction.

Since emptiness is not semi-decidable for DRCPCFA(k) with k≥ 3 [1], the degree of communication
CommDRCPCFA(k)(L(A)) is not computable. �

5 An Infinite Hierarchy

In this section, we are going to show that there is an infinite strict hierarchy of language classes in
betweenL (O(log(n))-DRCPCFA(k)) andL (O(

√
n)-DRCPCFA(k)), for anyk ≥ 4. To this end, we

consider functionsf : N→N that are time-computable by one-way cellular automata. That means, given
any unary input of lengthn≥ 1, sayan, the rightmost cell has to enter an accepting state exactly after f (n)
time steps and never before. Time-computable functions in OCA have been studied in [3], where it is
shown that, for anyr ≥ 1, there exists an OCA-time-computable functionf ∈ Θ(nr). We will use this
result in the sequel. So, letMr be an OCA that time-computesf ∈ Θ(nr), for r ≥ 1. We will use

Lr = {$1x1x2 · · ·xℓ$2w′
1w′

2 · · ·w′
mwm+1 · · ·wℓ$3w′

1w′
2 · · ·w′

mwm+1 · · ·wℓ$4a20
bba21

bb· · ·a2m−1
bb& |

m≥ 1,x1x2 · · ·xℓ is the valid computation ofMr on inputam,

w′
i ∈ {0′,1′},1≤ i ≤ m, wi ∈ {0,1},m+1≤ i ≤ ℓ}

as witness languages for the infinite hierarchy.

Lemma 15 Let r ≥ 1 be an integer. Then languageLr belongs toL (O(log(n)r+2)-DRCPCFA(4)).

Proof An O(log(n)r+2)-DRCPCFA(4)) A acceptingLr works in five phases.
As mentioned before, in [1] anO(n)-DRCPCFA(3) is constructed that accepts VALC(M), where the

master componentA1 and componentA2 are used to verify the subconfigurations, and componentA3 is
used to check the correct format of the input. In the first phase,A simulates this behavior where$2 plays
the role of the endmarker. Whenx1x2 · · ·xℓ ∈VALC(M) has been tested, the masterA1 and componentA2

are both located on the symbol after$2, that is, onw′
1. Additionally, componentA4 initially reads$1 and

waits onx1 to be queried. The total number of communications in this phase is of orderO(ℓ).
In the second phase, it is verified that there are as many symbols in between$1 and$2 as in be-

tween$2 and$3, that is, the lengthℓ is matched. Furthermore, it is checked whether there are exactly m
symbols of the second infix primed. Sincex1x2 · · ·xℓ describes an OCA computation on some unary
input am, the initial configuration of the OCA is of the form #(a′)m. Therefore, the valid computation
begins with[#,a′][a′,a′]m−1[a′,#] followed by symbols not containing primed versions of othersymbols.
As in the constructions before, the masterA1 moves to the right while querying componentA4 in every
step. Whenever componentA4 is reset to its initial state, it reads the next input symbol,remembers it,

H. Bordihn, M. Kutrib, A. Malcher 137

and waits. In this way, componentA4 is tracked over the valid computations. Moreover, the master A1

receives information about the symbols read byA4 and can check the number of primed symbols to bem.
The phase ends successfully whenA1 has read$3 and receives the information thatA4 has read$2 in this
moment, that is, both infixes have the same lengthℓ. This phase takesO(ℓ) communications. At its end,
the masterA1 is located on the symbol after$3 and componentsA2 andA4 are both located on the symbol
after$2.

The third phase is used to compare the word in between$2 and$3 with the word in between$3

and$4. Similar as in the phase before, to this end, the masterA1 moves to the right while querying
componentA2 in every step. Whenever componentA2 is reset to its initial state, it reads the next input
symbol, remembers it, and waits. So,A1 can check whether the currently read symbols are identical.
The phase ends successfully whenA1 has read$4 and receives the information thatA2 has read$3 in
this moment. Now, the masterA1 is located on the symbol after$4, A2 is located on the symbol after$3,
andA4 still on the symbol after$2. The total number of communications in this phase is of orderO(ℓ).

The fourth phase is used to track componentA2 to the position ofA1. So, the masterA1 loops on its
position while it queriesA2 in every step. In this way,A2 moves to the right. The phase ends whenA1

receives the information thatA2 has read$4. At this time step the masterA1 and componentA2 are located
on the symbol after$4 andA4 still on the symbol after$2. During this phaseO(ℓ) communications take
place.

The fifth and final phase is to check the suffix. The master knowsthat this phase starts and changes
into some appropriate state in aλ -step. The situation is similar for componentA2. It is in its initial
state on a symbola for the first time. So, both synchronously start the phase. Basically, here we can
use again the construction of the proof of Lemma 9. That is, the master component and componentA2

check that the lengths ofa-blocks are doubling. Communication takes place at both symbolsb. Reading
the firstb, componentA4 is queried and forced to proceed one input symbol in order to check the correct
numberm of a-blocks. Since componentA4 is tracked over an infix whose firstm symbols are primed
this can be done almost as before. Reading the secondb, the master queries componentA2 to ensure that
thea-blocks ended correctly. The total number of communications in this phase is of orderO(m). This
concludes the construction ofA.

The lengthℓ of the valid computation ofMr on input am is of order Θ(m2 · mr) = Θ(mr+2) by
Lemma 8. The length of an input isn= 3ℓ+2m−1+2m+5∈ Θ(2m). The total number of communi-
cations is of orderO(ℓ)+O(ℓ)+O(ℓ)+O(ℓ)+O(m)= O(mr+2). So, the number of communications is
of orderO(log(n)r+2). �

Lemma 16 Let r ≥ 1 be an integer. Then languageLr does not belong toL (O(log(n)r)-DRCPCFA(4)).

Proof The proof is along the line of the proof of Lemma 6. By way of contradiction, we assume thatLr

is accepted by someO(log(n)r)-DRCPCFA(4).
Let zbe a word inLr whose infixx= x1x2 · · ·xℓ is the valid computation ofMr on inputam. Then|z| is

of orderΘ(2m) andℓ is of orderΘ(mr+2). We will use an incompressibility argument and choose a string
w = w1w2 · · ·wℓ ∈ {0,1}∗ so that the Kolmogorov complexity isC(w) ≥ |w| = ℓ ∈ Θ(mr+2). Then the
word z′ = $1x$2w′

1w′
2 · · ·w′

mwm+1 · · ·wℓ$3w′
1w′

2 · · ·w′
mwm+1 · · ·wℓ$4a20

bba21
bb· · ·a2m−1

bb& belongs toLr

as well.
With the help of the accepting computation onz′ we write down a program that uniquely recon-

structsw. The order of magnitude of the size of the program is given by the product of the size of one
snapshot and the number of all snapshots. Since one snapshotcan be described byO(m) bits and the
number of snapshots is bounded byO(mr), we derive thatC(w) is of orderO(mr+1), a contradiction. �

138 Measuring Communication in Parallel Communicating FiniteAutomata

Combining Lemma 15 and Lemma 16 the desired infinite hierarchy of the next theorem follows.

Theorem 17 Let r ≥ 1 be an integer. Then the classL (O(log(n)r)-DRCPCFA(4)) is properly included
in the classL (O(log(n)r+2)-DRCPCFA(4)).

Since the proofs of Lemma 15 and Lemma 16 do not rely on a specific number of components as long
as at least four components are provided, the hierarchy follows for any number of componentsk≥ 4.

Corollary 18 Let k ≥ 4 and r ≥ 1 be two integers. Then the classL (O(log(n)r)-DRCPCFA(k)) is
properly included in the classL (O(log(n)r+2)-DRCPCFA(k)).

References

[1] Henning Bordihn, Martin Kutrib & Andreas Malcher (2011): Undecidability and Hierarchy Re-
sults for Parallel Communicating Finite Automata. Int. J. Found. Comput. Sci.22, pp. 1577–1592,
doi:10.1142/S0129054111008891.

[2] Henning Bordihn, Martin Kutrib & Andreas Malcher (2012): On the Computational Capac-
ity of Parallel Communicating Finite Automata. Int. J. Found. Comput. Sci.23, pp. 713–732,
doi:10.1142/S0129054112500062.

[3] Thomas Buchholz & Martin Kutrib (1998):On time computability of functions in one-way cellular automata.
Acta Inform.35, pp. 329–352, doi:10.1007/s002360050123.

[4] Ashish Choudhary, Kamala Krithivasan & Victor Mitrana (2007):Returning and non-returning parallel com-
municating finite automata are equivalent. RAIRO Inform. Théor.41, pp. 137–145, doi:10.1051/ita:2007014.

[5] John E. Hopcroft & Jeffrey D. Ullman (1979):Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley.

[6] Oscar H. Ibarra (1973):On Two-way Multihead Automata. J. Comput. System Sci.7, pp. 28–36,
doi:10.1016/S0022-0000(73)80048-0.

[7] Martin Kutrib (2008):Cellular Automata – A Computational Point of View. In: New Developments in Formal
Languages and Applications, chapter 6, Springer, pp. 183–227, doi:10.1007/978-3-540-78291-96.

[8] Martin Kutrib (2009):Cellular Automata and Language Theory. In: Encyclopedia of Complexity and System
Science, Springer, pp. 800–823, doi:10.1007/978-0-387-30440-354.

[9] Martin Kutrib & Andreas Malcher (2011): Two-Party Watson-Crick Computations. In: Im-
plementation and Application of Automata (CIAA 2010), LNCS 6482, Springer, pp. 191–200,
doi:10.1007/978-3-642-18098-921.

[10] Ming Li & Paul M. B. Vitányi (1993): An Introduction to Kolmogorov Complexity and Its Applications.
Springer, doi:10.1007/978-1-4757-3860-5

[11] Andreas Malcher (2002):Descriptional Complexity of Cellular Automata and Decidability Questions. J.
Autom., Lang. Comb.7, pp. 549–560.

[12] Carlos Martı́n-Vide, Alexandru Mateescu & Victor Mitrana (2002):Parallel Finite Automata Systems Com-
municating by States. Int. J. Found. Comput. Sci.13, pp. 733–749, doi:10.1142/S0129054102001424.

[13] Victor Mitrana (2000):On the Degree of Communication in Parallel Communicating Finite Automata Sys-
tems. J. Autom., Lang. Comb.5, pp. 301–314.

[14] Friedrich Otto (2013):Asynchronous PC systems of pushdown automata. In: Language and Automata Theory
and Applications (LATA 2013), LNCS 7810, Springer, pp. 456–467, doi:10.1007/978-3-642-37064-9 40.

[15] Marcel Vollweiler (2013):Asynchronous systems of parallel communicating finite automata. In: Fifth Work-
shop on Non-Classical Models for Automata and Applications(NCMA 2013), books@ocg.at294, Austrian
Computer Society, Vienna, pp. 243–257.

http://dx.doi.org/10.1142/S0129054111008891
http://dx.doi.org/10.1142/S0129054112500062
http://dx.doi.org/10.1007/s002360050123
http://dx.doi.org/10.1051/ita:2007014
http://dx.doi.org/10.1016/S0022-0000(73)80048-0
http://dx.doi.org/10.1007/978-3-540-78291-9_6
http://dx.doi.org/10.1007/978-0-387-30440-3_54
http://dx.doi.org/10.1007/978-3-642-18098-9_21
http://dx.doi.org/10.1007/978-1-4757-3860-5
http://dx.doi.org/10.1142/S0129054102001424
http://dx.doi.org/10.1007/978-3-642-37064-9_40

	1 Introduction
	2 Preliminaries and Definitions
	3 Computational Capacity
	4 Decidability and Undecidability Results
	4.1 Undecidability of Emptiness and Classical Questions
	4.2 Undecidability of Communication Boundedness

	5 An Infinite Hierarchy

