
E. Csuhaj-Varjú, P. Dömösi, Gy. Vaszil (Eds.): 15th International
Conference on Automata and Formal Languages (AFL 2017)
EPTCS 252, 2017, pp. 128–142, doi:10.4204/EPTCS.252.14

c© M. Holzer, M. Kutrib, A. Malcher & M. Wendlandt

Input-Driven Double-Head Pushdown Automata

Markus Holzer, Martin Kutrib, Andreas Malcher, Matthias Wendlandt
Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany
{holzer,kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

We introduce and study input-driven deterministic and nondeterministic double-head pushdown au-
tomata. A double-head pushdown automaton is a slight generalization of an ordinary pushdown
automaton working with two input heads that move in opposite directions on the common input tape.
In every step one head is moved and the automaton decides on acceptance if the heads meet. De-
manding the automaton to work input-driven it is required that every input symbol uniquely defines
the action on the pushdown store (push, pop, state change). Normally this is modeled by a partition
of the input alphabet and is called a signature. Since our automaton model works with two heads
either both heads respect the same signature or each head owes its own signature. This results in
two variants of input-driven double-head pushdown automata. The induced language families on
input-driven double-head pushdown automata are studied from the perspectives of their language
describing capability, their closure properties, and decision problems.

1 Introduction

Input-driven pushdown automata were introduced in [11] in the course of deterministic context-free
language recognition by using a pebbling strategy on the mountain range of the pushdown store. The idea
on input driven pushdown automata is that the input letters uniquely determine whether the automaton
pushes a symbol, pops a symbol, or leaves the pushdown unchanged. The follow-up papers [3] and [6]
studied further properties of the family of input-driven pushdown languages. One of the most important
properties on input-driven pushdown languages is that deterministic and nondeterministic automata are
equally powerful. Moreover, the language family accepted is closed under almost all basic operations in
formal language theory. Although the family of input-driven pushdown languages is a strict subset of the
family of deterministic context-free languages, the input-driven pushdown languages are still powerful
enough to describe important context-free-like structures and moreover share many desirable properties
with the family of regular languages. These features turned out to be useful in the context of program
analysis and led to a renewed interest [1] on input-driven pushdown languages about ten years ago.
In [1] an alternative name for input-driven pushdown automata and languages was coined, namely visibly
pushdown automata and languages. Sometimes input-driven pushdown languages are also called nested
word languages. Generally speaking, the revived research on input-driven pushdown languages triggered
the study of further input-driven automata types, such as input-driven variants of, e.g., (ordered) multi-
stack automata [5], stack automata [2], queue automata [9], etc.

We contribute to this list of input-driven devices, by introducing and studying input-driven double-
head pushdown automata. Double-head pushdown automata were recently introduced in [13].1 Instead
of reading the input from left to right as usual, in a double-head pushdown automata the input is pro-
cessed from the opposite ends of the input by double-heads, and the automaton decides on acceptance

1Originally these devices were named two-head pushdown automata in [13], but since this naming may cause confusion
with multi-head pushdown automata of [7], we use to refer to them as double-head pushdown automata instead.

http://dx.doi.org/10.4204/EPTCS.252.14

M. Holzer, M. Kutrib, A. Malcher & M. Wendlandt 129

when the two heads meet. Thus, double-head pushdown automata are a straight forward generalization
of Rosenberg’s double-head finite automata for linear context-free languages [15]—see also [12]. The
family of double-head nondeterministic pushdown languages is a strict superset of the family of context-
free languages and contains some linguistically important non-context-free languages. In fact, the family
of double-head nondeterministic pushdown languages forms is a mildly context-sensitive language fam-
ily because in addition to the aforementioned containment of important languages, the word problem of
double-head nondeterministic pushdown languages remains solvable in deterministic polynomial time as
for ordinary pushdown automata. Moreover, every double-head nondeterministic pushdown language is
semi-linear. Double-head pushdown automata are a moderate extension of ordinary pushdown automata
because languages accepted by double-head pushdown automata still satisfy an iteration or pumping
lemma. Thus, double-head pushdown automata and the properties of their accepted languages are inter-
esting objects to study.

In the next section we introduce the necessary notations on double-head pushdown automata and
their input-driven versions. Demanding the automaton to work input-driven it is required that every in-
put symbol uniquely defines the action on the pushdown store (push, pop, state change). Normally this
is modeled by a partition of the input alphabet and is called a signature. Since our automaton model
works with two heads either both heads respect the same signature or each head owes its own signature.
This results in (simple) input-driven and double input-driven double-head pushdown automata. Then
in Section 3 we investigate the computational capacity of (double) input-driven double-head pushdown
automata. We show that nondeterministic machines are more powerful than deterministic ones, for both
input-driven variants. Moreover, it turns out that the language families in question are incomparable
to classical language families such as the growing context-sensitive languages, the Church-Rosser lan-
guages, and the context-free languages. As a byproduct we also separate the original language families
of double-head deterministic and double-head nondeterministic pushdown languages. Section 4 is then
devoted to the closure properties of the families of input driven double-head pushdown languages and
finally in Section 5 we consider decision problems for the language families in question. Here it is worth
mentioning that although some problems are already not semidecidable even for deterministic machines,
the question of whether a given deterministic input-driven double-head pushdown automaton M is equiv-
alent to a given regular language is decidable. In contrast, the decidability of this question gets lost, if M
is a nondeterministic input-driven double-head pushdown machine. We have to leave open the status of
some decision problems such as equivalence and regularity. This is subject to further research.

2 Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word is denoted by λ , and
Σ+ = Σ∗ \{λ}. For convenience, throughout the paper we use Σλ for Σ∪{λ}. The set of words of length
at most n ≥ 0 is denoted by Σ≤n. The reversal of a word w is denoted by wR. For the length of w we
write |w|. For the number of occurrences of a symbol a in w we use the notation |w|a. Set inclusion is
denoted by ⊆ and strict set inclusion by ⊂. We write 2S for the power set and |S| for the cardinality of a
set S.

A double-head pushdown automaton is a pushdown automaton that is equipped with two read-only
input heads that move in opposite directions on a common input tape. In every step one head is moved.
The automaton halts when the heads would pass each other.

A pushdown automaton is called input-driven if the input symbols currently read define the next
action on the pushdown store, that is, pushing a symbol onto the pushdown store, popping a symbol from

130 Input-Driven Double-Head Pushdown Automata

the pushdown store, or changing the state without modifying the pushdown store. To this end, we assume
the input alphabet Σ joined with λ to be partitioned into the sets ΣN , ΣD, and ΣR, that control the actions
state change only (N), push (D), and pop (R).

Formally, a nondeterministic input-driven double-head pushdown automaton (ndet-ID2hPDA) is a
system M = 〈Q,Σ,Γ,q0,F,⊥,δD,δR,δN〉, where Q is the finite set of states, Σ is the finite set of input
symbols partitioned into the sets ΣD, ΣR, and ΣN , Γ is the finite set of pushdown symbols, q0 ∈ Q is
the initial state, F ⊆ Q is the set of accepting states, ⊥ /∈ Γ is the empty pushdown symbol, δD is the
partial transition function mapping from Q×(ΣD∪{λ})2×(Γ∪{⊥}) to 2Q×Γ, δR is the partial transition
function mapping from Q× (ΣR∪{λ})2× (Γ∪{⊥}) to 2Q, δN is the partial transition function mapping
from Q× (ΣN ∪{λ})2× (Γ∪{⊥}) to 2Q, where all transition functions are defined only if the second or
third argument is λ , and none of the transition functions is defined for Q×{λ}2× (Γ∪{⊥}).

A configuration of an ndet-ID2hPDA M = 〈Q,Σ,Γ,q0,F,⊥,δD,δR,δN〉 is a triple (q,w,s), where
q ∈Q is the current state, w ∈ Σ∗ is the unread part of the input, and s ∈ Γ∗ denotes the current pushdown
content, where the leftmost symbol is at the top of the pushdown store. The initial configuration for an
input string w is set to (q0,w,λ). During the course of its computation, M runs through a sequence of
configurations. One step from a configuration to its successor configuration is denoted by `. Let a ∈ Σ,
w ∈ Σ∗, z′ ∈ Γ, s ∈ Γ∗, and z =⊥ if s = λ and z = z1 if s = z1s1 ∈ Γ+. We set

1. (q,aw,s) ` (q′,w,z′s), if a ∈ ΣD and (q′,z′) ∈ δD(q,a,λ ,z),

2. (q,wa,s) ` (q′,w,z′s), if a ∈ ΣD and (q′,z′) ∈ δD(q,λ ,a,z),

3. (q,aw,s) ` (q′,w,s′), if a ∈ ΣR and q′ ∈ δR(q,a,λ ,z),
where s′ = λ if s = λ and s′ = s1 if s = z1s1 ∈ Γ+.

4. (q,wa,s) ` (q′,w,s′), if a ∈ ΣR and q′ ∈ δR(q,λ ,a,z),
where s′ = λ if s = λ and s′ = s1 if s = z1s1 ∈ Γ+.

5. (q,aw,s) ` (q′,w,s), if a ∈ ΣN and q′ ∈ δN(q,a,λ ,z),

6. (q,wa,s) ` (q′,w,s), if a ∈ ΣN and q′ ∈ δN(q,λ ,a,z),

So, whenever the pushdown store is empty, the successor configuration is computed by the transition
functions with the special empty pushdown symbol ⊥, and at most one head is moved. As usual, we
define the reflexive and transitive closure of ` by `∗. The language accepted by the ndet-ID2hPDA M is
the set L(M) of words for which there exists some computation beginning in the initial configuration and
halting in a configuration in which the whole input is read and an accepting state is entered. Formally:

L(M) = {w ∈ Σ
∗ | (q0,w,λ) `∗ (q,λ ,s) with q ∈ F,s ∈ Γ

∗ }.

The partition of an input alphabet into the sets ΣD, ΣR, and ΣN is called a signature. We also consider
input-driven double-head pushdown automata, where each of the two heads may have its own signature.
To this end, we provide the signatures ΣD,l , ΣR,l , and ΣN,l as well as ΣD,r, ΣR,r, and ΣN,r and require
for double input-driven double-head pushdown automata (double-ID2hPDA) that they obey the first
signature whenever the left head is moved and the second signature whenever the right head is moved.

If there is at most one choice of action for any possible configuration, we call the given (double)
input-driven double-head pushdown automaton deterministic (det-ID2hPDA or det-double-ID2hPDA).

In general, the family of all languages accepted by an automaton of some type X will be denoted
by L (X).

In order to clarify this notion we continue with an example.

M. Holzer, M. Kutrib, A. Malcher & M. Wendlandt 131

Example 1 The Gladkij language {w#wR#w | w ∈ {a,b}∗ } is not growing context sensitive [4] and,
thus, is neither context free nor Church-Rosser [10]. The same is true for its marked variant

L1 = {w#h1(w)R#h2(w) | w ∈ {a,b}∗ },

where the homomorphisms h1 and h2 are defined by h1(a) = ā, h1(b) = b̄, h2(a) = â, and h2(b) = b̂.
However, language L1 is accepted by the det-ID2hPDA

M = 〈{q0,q1,qa,qb,q+},ΣD∪ΣR∪ΣN ,{A,B},q0,{q+},⊥,δD,δR,δN〉,

where ΣD = {a,b}, ΣR = {ā, b̄}, ΣN = {#, â, b̂}, and the transition functions are defined as follows. Let
X ∈ {A,B,⊥}.

(1) δD(q0,a,λ ,X) = (q0,A)
(2) δD(q0,b,λ ,X) = (q0,B)

(3) δR(q1, ā,λ ,A) = qa

(4) δR(q1, b̄,λ ,B) = qb

(5) δN(q0,#,λ ,X) = q1
(6) δN(qa,λ , â,X) = q1

(7) δN(qb,λ , b̂,X) = q1
(8) δN(q1,#,λ ,⊥) = q+

The idea of the construction is as follows. In a first phase, M reads and pushes the input prefix w
(Transitions 1 and 2). On reading the left symbol # automaton M enters state q1 which is used in the
second phase. Basically, in the second phase the left and right head are moved alternately. When the
left head is moved, the input symbol read is compared with the symbol on the top of the pushdown
store. If both coincide, state qa or qb is entered to indicate that the right head has to read symbol â or b̂
(Transitions 3 and 4). If the right head finds the correct symbol, state q1 is entered again (Transitions 6
and 7). The second phase ends when the left head reads the second symbol #. In that case state q+ is
entered and M halts (Transition 8). If in this situation the input has been read entirely and the pushdown
store is empty, clearly, the w pushed in the first phase has successfully be compared with the factor
h1(w)R and the suffix h2(w). So, the input belongs to L1. In any other case, M halts without entering the
sole accepting state q+. �

3 Computational capacity

In order to explore the computational capacity of input-driven double-head pushdown automata we first
turn to show that nondeterminism is better than determinism. As witness language for that result we use
the language Ldta = {anbncn$lcib jak | i, j,k,n≥ 0}∪{aib jck$rcnbnan | i, j,k,n≥ 0}.

Lemma 2 The language Ldta is not accepted by any deterministic double-head pushdown automaton.

Proof In contrast to the assertion assume that Ldta is accepted by some deterministic double-head push-
down automaton M. For all m,n ≥ 0 and x ∈ {l,r} we consider the input words ambmcm$xcnbnan

that belong to Ldta. Since M is deterministic, the computations on the words ambmcm$lcnbnan and
ambmcm$rcnbnan are identical until one of the heads reaches the center marker $x. So, we can define
the set

R = {(m,n) | on input ambmcm$xcnbnan the right head of M reaches $x not after the left head}.

Thus, the initial part of such a computation is in the form (q0,ambmcm$xcnbnan,λ) `∗ (q1,u$x,z) `
(q2,u,z′), where q1,q2 ∈ Q, z,z′ ∈ Γ∗, u is a suffix of ambmcm, and the last transition applied is of the

132 Input-Driven Double-Head Pushdown Automata

form δ (q1,λ ,$x,z1). That is, in the last step the right head of M reads $x while seeing z1 on top of the
pushdown store, and the pushdown store content z is replaced by z′. Next, the set R is further refined into
R(m) = {n | (m,n) ∈ R}, for all m≥ 0. Clearly, we have R =

⋃
m≥0(m,R(m)).

Now assume that there is an m ≥ 0 such that |R(m)| is infinite. We sketch the construction of a
deterministic pushdown automaton M1 that accepts the language L1 = {a jb jc j$r | j ∈ R(m)} as fol-
lows. On a given input a jb jc j$r, M1 basically simulates a computation of M on input ambmcm$rc jb ja j.
Since m is fixed, M1 handles the prefix ambmcm in its finite control. Moreover, since the left head of M
reaches the center marker not before the right head, M1 handles the left head and its moves in the finite
control as well. So, whenever M moves its right head to the left, M1 moves its sole head to the right.
Let [u,q] denote a state of M1 that says that q is the simulated state of M and u is the still unprocessed
suffix of the prefix ambmcm. Then the simulation of M is straightforward: If M performs a computa-
tion (q0,ambmcm$rc jb ja j,λ) ` (q1,u$rv,z), where u is a suffix of ambmcm and v is a prefix of c jb ja j,
then M1 performs a computation ([ambmcm,q0],c jb ja j$r,λ) ` ([u,q1],($rv)R,z). When M1 has read the
symbol $r, it continues the simulation of M with λ -steps, where now all head movements are handled in
the finite control. Finally, M1 accepts if and only if M accepts. So, since M1 is a deterministic pushdown
automaton, L1 must be a context-free language. However, since |R(m)| is assumed to be infinite, lan-
guage L1 is infinite. A simple application of the pumping lemma for context-free languages shows that
any infinite subset of {akbkck$r | k≥ 0} is not context free. From the contradiction we derive that |R(m)|
is finite, for all m≥ 0.

In particular, this means that for every m≥ 0 there is at least one n≥ 0 such that M accepts the input
ambmcm$lcnbnan, whereby the right head reaches the center marker not before the left head. Based on
this fact, we now can construct a nondeterministic pushdown automaton M2 that accepts the language
L2 = {a jb jc j$l | j ≥ 0} as follows.

On a given input a jb jc j$l , M2 simulates a computation of M on input a jb jc j$lckblam, whereby M2
guesses the suffix ckblam step-by-step. So, whenever M moves its left head to the right, M2 moves its
sole head to the right as well. Whenever M moves its right head to the left, M2 guesses the next symbol
from the suffix. If M2 guesses the center marker and, thus, in the simulation the right head would see the
center marker before the left head, M2 rejects. If in the simulation the left head sees the center marker
before the right head, the simulation continues with λ -steps until M2 guesses that both heads meet. In
this case, M2 accepts if and only if M accepts. Considering the language accepted by M2, one sees that on
some input a jb jc j$l , j ≥ 0, M2 can guess a suffix cnbnan such that M accepts the input a jb jc j$lcnbnan,
whereby the right head reaches the center marker not before the left head (it follows from above that
such a suffix exists). So, M2 accepts any word of the form a jb jc j$l , j ≥ 0. Conversely, if an input w$l
is not of the form a jb jc j$l , then there is no computation of M2 that accepts any word with prefix w$l
(due to the center marker $l , w is verified to have form a jb jc j). Therefore, the simulation cannot ending
accepting and, thus, M2 rejects.

So, since M2 is a pushdown automaton, L2 must be a context-free language. From the contradiction
we derive that Ldta is not accepted by any deterministic double-head pushdown automaton. �

The next example shows that the language Ldta is accepted even by input-driven double-head push-
down automata provided that nondeterminism is allowed.

Example 3 The language Ldta = {aib jck$rcnbnan | i, j,k,n ≥ 0} ∪ {anbncn$lcib jak | i, j,k,n ≥ 0} is
accepted by the ndet-ID2hPDA

M = 〈{s0, p1, p2, . . . , p7,q1,q2, . . . ,q7,s+},ΣD∪ΣR∪ΣN ,{D,G,A},s0,{p4,q4,s+},⊥,δD,δR,δN〉,

M. Holzer, M. Kutrib, A. Malcher & M. Wendlandt 133

where ΣD = {a,$l,$r}, ΣR = {b}, ΣN = {c}, and the transition functions are defined as follows. In its
first step, M guesses whether the input contains a symbol $r or a symbol $l . Dependent on the guess one
of the two subsets in the definition of Ldta are verified, and M starts to read the prefix from the left or the
suffix from the right. The states p` are used in the case of a $r, the states q` are used in the case of a $l ,
and the remaining states are used for both cases. Recall that i, j,k and n may be zero.

(1) δD(s0,a,λ ,⊥) 3 (p1,D)
(2) δR(s0,b,λ ,⊥) 3 p2
(3) δN(s0,c,λ ,⊥) 3 p3
(4) δD(s0,$r,λ ,⊥) 3 (p4,G)

(5) δD(s0,λ ,a,⊥) 3 (q1,D)
(6) δR(s0,λ ,b,⊥) 3 q2
(7) δN(s0,λ ,c,⊥) 3 q3
(8) δD(s0,λ ,$l,⊥) 3 (q4,G)

We continue to construct the transition functions for the first case, the construction for the second case
is symmetric. So, while M processes the prefix aib jck it has to verify the form of the prefix and has to
obey the action associated to the symbols. The actual pushdown content generated in this phase does not
matter. Therefore, M pushes dummy symbols D and a special symbol G when it has reached the $r. The
form of the prefix is verified with the help of the states p1, p2, and p3:

(9) δD(p1,a,λ ,D) 3 (p1,D)
(10) δR(p1,b,λ ,D) 3 p2
(11) δN(p1,c,λ ,D) 3 p3
(12) δD(p1,$r,λ ,D) 3 (p4,G)

(13) δR(p2,b,λ ,D) 3 p2
(14) δN(p2,c,λ ,D) 3 p3
(15) δD(p2,$r,λ ,D) 3 (p4,G)

(16) δN(p3,c,λ ,D) 3 p3
(17) δD(p3,$r,λ ,D) 3 (p4,G)

In the next phase, M has to verify the suffix cnbnan. To this end, it moves its both heads alternately where
for each but the first a an A is pushed. For the first a (if it exists) a symbol G is pushed. So, if both heads,
one after the other, arrive at the b-sequence, the number n of a’s coincides with the number of c’s and
the pushdown content is of the form An−1GGD∗, if n ≥ 1. If n = 0, M halts in the accepting state p4.
If n ≥ 1, in the final phase the b-sequence is read and its length is compared with the number of A’s at
the top of the stack. The final step reads the last b and the G from the pushdown store and enters the
accepting state s+, for which no further transitions are defined. So, a correct input is accepted and an
incorrect input is not:

(18) δD(p4,λ ,a,G) 3 (p5,G)
(19) δN(p5,c,λ ,A) 3 p6
(20) δN(p5,c,λ ,G) 3 p6

(20) δD(p6,λ ,a,A) 3 (p5,A)
(21) δD(p6,λ ,a,G) 3 (p5,A)

(20) δR(p6,λ ,b,A) 3 p7
(21) δR(p6,λ ,b,G) 3 s+

(22) δR(p7,λ ,b,A) 3 p7
(23) δR(p7,λ ,b,G) 3 s+

�

By Lemma 2 and Example 3 we conclude the next theorem.

Theorem 4 The family L (det-ID2hPDA) is strictly included in the family L (ndet-ID2hPDA) and the
family L (det-double-ID2hPDA) is strictly included in the family L (ndet-double-ID2hPDA).

Next, we compare the computational capacities of ID2hPDAs and double-ID2hPDAs, that is, the
capacity gained in providing (possibly different) signatures to each of the heads. As witness language
for the result that two signatures are better than one we use the language Lta = {anbnan | n≥ 1}.

134 Input-Driven Double-Head Pushdown Automata

Example 5 The language Lta = {anbnan | n≥ 1} is accepted by the det-double-ID2hPDA

M = 〈{q0,q1,q2,qa,q+},ΣD,l ∪ΣD,r ∪ΣR,l ∪ΣR,r ∪ΣN,l ∪ΣN,r,{A,G},q0,{q+},⊥,δD,δR,δN〉,

where ΣD,l = {a}, ΣD,r = /0, ΣR,l = {b}, ΣR,r = {b}, ΣN,l = /0, ΣN,r = {a}, and the transition functions are
defined as follows. In its first step, M reads an a with its left head and pushes the special symbol G into
the pushdown store. Subsequently, it reads an a with its right head while the pushdown store remains
unchanged. Next, M moves its both heads alternately where for each a read by the left head (in state q1)
an A is pushed and for each a read by the right head (in state qa) the pushdown store remains unchanged.
Let X ∈ {A,G}.

(1) δD(q0,a,λ ,⊥) = (qa,G)
(2) δD(q1,a,λ ,X) = (qa,A)

(3) δN(qa,λ ,a,X) = q1

So, after having read n≥ 1 symbols a with the left as well as with the right head, M is in state q1 and the
pushdown store contains the word An−1G. The next phase starts when the right head reads a b in state q1.
In this phase, the right head is not used. The left head reads the b’s while for each b an A is popped.
When M reads a b with the special symbol G on top of the pushdown store, the sole accepting state q+
is entered.

(4) δR(q1,b,λ ,A) = q2
(5) δR(q1,b,λ ,G) = q+

(6) δR(q2,b,λ ,A) = q2
(7) δR(q2,b,λ ,G) = q+

In this way, clearly, any word from Lta is accepted by M. Conversely, in order to reach its sole accepting
state q+, M has to read at least one a from the left as well as from the right, otherwise it cannot enter
state q1. Moreover, whenever it reads an a from the left it must read an a from the right, otherwise
it would halt in state qa. Since the transition functions are undefined for input symbol b and states q0
and qa, M cannot accept without having read a b. In order to enter the accepting state q+ it must have
read as many b’s as a’s from the prefix which, in turn, have been read from the suffix as well. Since the
transition functions are undefined for state q+, M necessarily halts when this state is entered. If in this
situation the input has been read entirely, M accepts. This implies that any word accepted by M belongs
to Lta. �

Lemma 6 The language Lta is not accepted by any nondeterministic input-driven double-head pushdown
automaton.

By Example 5 and Lemma 6 we conclude the next theorem.

Theorem 7 The family L (det-ID2hPDA) is strictly included in the family L (det-double-ID2hPDA)
and the family L (ndet-ID2hPDA) is strictly included in the family L (ndet-double-ID2hPDA).

So far, we have shown that nondeterminism is better than determinism for a single as well as for dou-
ble signatures, and that double signatures are better than a single signature for deterministic as well as
nondeterministic computations. Moreover, Lemma 6 shows that language Lta is not accepted by any non-
deterministic input-driven double-head pushdown automaton, while Example 5 shows that language Lta

is accepted, even by a deterministic input-driven double-head pushdown automaton, provided that dou-
ble signatures are available. Conversely, Example 3 reveals that language Ldta is accepted even with a

M. Holzer, M. Kutrib, A. Malcher & M. Wendlandt 135

nondeterministic input-driven double-head pushdown automaton with a single signature, while Lemma 2
shows that, to this end, determinism is not sufficient. This implies the next corollary.

Corollary 8 The families L (det-double-ID2hPDA) and L (ndet-ID2hPDA) are incomparable.

Next we turn to compare the four language families under consideration with some other well-known
language families.

A context-sensitive grammar is said to be growing context sensitive if the right-hand side of ev-
ery production is strictly longer than the left-hand side. The family of growing context-sensitive lan-
guages (GCSL) lies strictly in between the context-free and context-sensitive languages. Another lan-
guage family lying properly in between the regular and the growing context-sensitive languages are the
Church-Rosser languages (CRL), which have been introduced in [10]. They are defined via finite, conflu-
ent, and length-reducing Thue systems. Church-Rosser languages are incomparable to the context-free
languages [4] and have neat properties. For example, they parse rapidly in linear time, contain non-
semilinear as well as inherently ambiguous languages [10], are characterized by deterministic automata
models [4, 14], and contain the deterministic context-free languages (DCFL) as well as their reversals
(DCFLR) properly [10].

Theorem 9 Each of the families L (det-ID2hPDA), L (ndet-ID2hPDA), L (det-double-ID2hPDA),
and L (ndet-double-ID2hPDA) is incomparable with GCSL as well as with CRL.

Proof Example 1 shows that the marked Gladkij language L1 = {w#h1(w)R#h2(w) |w∈ {a,b}∗ }, where
the homomorphisms h1 and h2 are defined by h1(a) = ā, h1(b) = b̄, h2(a) = â, and h2(b) = b̂, is accepted
by some det-ID2hPDA. Language L1 is not growing context sensitive and, thus, is not a Church-Rosser
language [4].

Conversely, the unary language {a2n | n≥ 0} is not semilinear, but a Church-Rosser language [10].
Since every language accepted even by some nondeterministic double-head pushdown is semilinear [13]
the incomparabilities claimed follow. �

The inclusion structure of the families in question is depicted in Figure 1.

4 Closure properties

We investigate the closure properties of the language families induced by nondeterministic and deter-
ministic input-driven 2hPDAs. Table 1 summarizes our results.

∪ ∩ ∪REG ∩REG · ∗ h h−1 R
L (2hPDA) no yes no yes yes no no yes ? yes

L (det-ID2hPDA) yes no no yes yes no no no no yes
L (ndet-ID2hPDA) no no no yes yes no no no no yes

Table 1: Closure properties of the language classes in question.

In [13] it was shown that the family of languages accepted by ordinary nondeterministic double-
head pushdown automata is closed under union, homomorphism, and reversal, but it is not closed under
intersection, complement, concatenation, and iteration. Furthermore it was shown that the languages

L1 = {anbncndnen | n≥ 1}, L2
2, and L∗2, for L2 = {anbncndn | n≥ 1}

136 Input-Driven Double-Head Pushdown Automata

det-double-ID2hPDA ndet-ID2hPDA CRL CFL

CSL

ndet-double-ID2hPDA GCSL

det-ID2hPDA DCFL

REG

Figure 1: Inclusion structure of language families. The arrows indicate strict inclusions. All nodes
not connected by a directed path are incomparable, where the incomparability with the (deterministic)
context-free languages is a conjecture.

cannot be accepted by any nondeterministic double-head pushdown automaton. We start our investiga-
tion with the language families L (det-ID2hPDA) and L (ndet-ID2hPDA).

Our first result is an easy observation that if the input heads of a (input-driven) 2hPDA change their
roles, the accepted language is the reversal of the original language. Hence we show closure under
reversal of the language families in question.

Theorem 10 Both language families L (det-ID2hPDA) and L (ndet-ID2hPDA) are closed under re-
versal.

Proof Let M = 〈Q,Σ,Γ,q0,F,⊥,δD,δR,δN〉 be an ndet-ID2hPDA. We construct an ndet-ID2hPDA
M′= 〈Q,Σ,Γ,q0,F,⊥,δ ′D,δ ′R,δ ′N〉, where the transition function is defined as follows: for every q,q′ ∈Q,
z,z′ ∈ Γ∗, and x,y ∈ Σ we set

• (q′,z′) ∈ δ ′D(q,y,x,z), if (q′,z′) ∈ δD(q,x,y,z),

• q′ ∈ δ ′R(q,y,x,z), if q′ ∈ δR(q,x,y,z), and

• q′ ∈ δ ′N(q,y,x,z), if q′ ∈ δN(q,x,y,z).

Then it is easy to see by induction on the length of the computation that M′ accepts the reversal of the
language L(M), that is, L(M′) = L(M)R. Observe, that M′ is deterministic, if M was. Thus, we have
shown closure of both language families under the reversal operation. �

The above mentioned result that the family of languages accepted by double-head pushdown au-
tomata is not closed under intersection carries over to the input-driven case as well.

Theorem 11 Both families L (det-ID2hPDA) and L (ndet-ID2hPDA) are not closed under intersec-
tion.

M. Holzer, M. Kutrib, A. Malcher & M. Wendlandt 137

Proof In [13] the non-closure of L (2hPDA) under intersection was shown with the help of the 2hPDA
languages L = {anbncndme` | m,n, ` ≥ 1} and L′ = {amb`cndnen | n,m, ` ≥ 1}, since their intersection
L∩L′ = {anbncndnen | n ≥ 1} is not member of L (2hPDA). Thus, in order to prove our non-closure
result on intersection it suffices to show that both languages L and L′ can already be accepted by a
det-ID2hPDA.

We only give a brief description of a det-ID2hPDA M that accepts the language L. By a similar ar-
gumentation one can construct a det-ID2hPDA for the language L′, too. On input w the det-ID2hPDA M
proceeds as follows: the right head of M moves from right to left until it reaches the first c and checks
whether the input has a suffix of the dme`, for some m, ` ≥ 1. This can be done without using the push-
down store and without moving the left head. Afterwards it again moves only its right head and pushes
a C for every letter c into the pushdown store. When it reaches the first b it starts alternately moving
the left and the right head, reading letter b from the right and a from the left, beginning with the right
head, while it pops for every movement of the right head a C from the pushdown store. If the pushdown
store is empty and the left head moves to the right, it enters an accepting state. The alphabets of M are
ΣD = {c},ΣR = {b},ΣN = {a,d,e}. A detailed construction of M is left to the reader. This proves the
stated claim. �

Before we continue with the complementation operation, we first establish that every deterministic
and nondeterministic input-driven double-head pushdown automaton can be forced to read the entire
input. This property turns out to be useful for the following construction showing the closure under
complementation for deterministic input-driven double-head pushdown automata.

Lemma 12 Let M be an ndet-ID2hPDA. Then one can construct an equivalent ndet-ID2hPDA M′, that
is, L(M′) = L(M), that decides on acceptance/rejection after it has read the entire input. If M is deter-
ministic, then so is M′.

The family of languages accepted by double-head pushdown automata are not closed under comple-
mentation. We show that the family of languages accepted by deterministic input-driven double-head
pushdown automata is closed under complementation, while the nondeterministic family is not closed.

Theorem 13 The family L (det-ID2hPDA) is closed under complementation.

Proof Let M = 〈Q,Σ,Γ,q0,F,⊥,δD,δR,δN〉 be a det-ID2hPDA. By the previous lemma we can assume
w.l.o.g. that M decides on acceptance/rejection after it has read the entire input. But then, if we exchange
accepting and non-accepting states we accept the complement of L(M). Thus, the det-ID2hPDA M′ =
〈Q,Σ,Γ,q0,F ′,⊥,δD,δR,δN〉 with F ′ = Q \F is an acceptor for the language L(M). This proves our
statement. �

Since the family of languages accepted by det-ID2hPDA is not closed under intersection, it can be
concluded that it is not closed under union.

Theorem 14 The family L (det-ID2hPDA) is not closed under union.

Let us come back to the complementation operation. For the language family induced by ndet-
ID2hPDA we obtain non-closure under complementation in contrast to the above given theorem on the
deterministic language family in question.

Theorem 15 The family L (ndet-ID2hPDA) is not closed under complementation.

138 Input-Driven Double-Head Pushdown Automata

Proof In [13] it has been shown that the language L1 = {anbncndnen | n ≥ 1} cannot be accepted even
by any double-head pushdown automata. We briefly show that the language L1 is accepted by an ndet-
ID2hPDA M. The complement of L1 can be described as follows: a word is in L1 if and only if (i)
it belongs to complement of the regular language a+b+c+d+e+ or (ii) it belongs to one of the context-
free languages {an1bn2cn3dn4en5 | n1,n2, . . . ,n5 ≥ 1 and ni 6= n j }, for some pair (i, j)∈ {1,2, . . . ,5}2 with
i 6= j. Thus, on input w the ndet-ID2hPDA M guesses which of the above cases (i) or (ii) applies. In
the first case M simulates a finite automaton without using its pushdown store. In the second case,
automaton M guesses appropriate i and j with i 6= j from {1,2, . . . ,5} and moves its two heads to the
corresponding blocks of letters. Then it checks whether ni 6= n j by alternately moving the left and right
head without using the pushdown store. If ni 6= n j and the heads meet, the automaton accepts, otherwise
it rejects. Since M is not using the pushdown store at all, only the transition function δN is defined. Thus,
the signature is ΣN = Σ and ΣD = ΣR = /0.

Since M accepts L1, but L1 cannot be accepted by any double-head pushdown automata, the language
family L (ndet-ID2hPDA) is not closed under complementation. �

Now, L2 can be used to show that the family of languages accepted by deterministic and nondeter-
ministic input-driven double-head pushdown automata are not closed under concatenation and iteration.

Theorem 16 Both language families L (det-ID2hPDA) L (ndet-ID2hPDA) are not closed under con-
catenation and iteration.

While both families L (det-ID2hPDA) and L (ndet-ID2hPDA) are not closed under union and in-
tersection, they are closed under the union and intersection with regular languages.

Theorem 17 Both families L (det-ID2hPDA) and L (ndet-ID2hPDA) are closed under intersection
and union with regular languages.

Next, we consider the closure under homomorphism.

Theorem 18 Both families L (det-ID2hPDA) and L (ndet-ID2hPDA) are not closed under (length
preserving) homomorphisms.

Proof Consider the language L = {anbncn | n ≥ 1}. It is easy to show that L is accepted by some
det-ID2hPDA with signature ΣN = {a,$}, ΣD = {c}, and ΣR = {b}. The details are left to the reader.
Further consider the homomorphism h defined by h(a) = a, h($) = $, h(b) = a, and h(c) = a that leads to
the language h(L) = {ananan | n≥ 1}. We show that h(L) cannot be accepted by any ndet-ID2hPDA.

Assume to the contrary that there is an ndet-ID2hPDA M accepting the language h(L). Observe, that
the input contains only the letters a and two $s. Then we consider three cases, according to which set of
the signature the letter a belongs to:

1. Letter a ∈ ΣN . Then M possibly can use the pushdown store only for the two $ letters. In this case,
the whole computation of M can be mimicked by a finite automaton.

2. Letter a ∈ ΣD. Then the pushdown of M can arbitrarily increase in height during a computation
(if the a-blocks on both sides of the word are long enough), and can be decreased at most twice
with the help of the letters $. Again, the whole computation of M can be simulated by a finite
automaton.

3. Letter a ∈ ΣR. Again, the computation of M can be done by a finite state machine, since the
pushdown height is bounded by two and can be stored in the finite control of an automaton. The
letters a force a pop and the letters $ may increase the pushdown height by at most two.

M. Holzer, M. Kutrib, A. Malcher & M. Wendlandt 139

By our consideration we conclude that M can always be replaced by a finite state automaton and therefore
the language h(L) is regular, which is a contradiction to the pumping lemma of regular languages and to
our above given assumption. Hence h(L) cannot be accepted by any ndet-ID2hPDA. �

From the Boolean operations, the union operation applied to L (ndet-ID2hPDA) is still missing.

Theorem 19 The family L (ndet-ID2hPDA) is not closed under union.

Proof Consider the language L = {anb2nan | n ≥ 1}. Using the signature ΣN = /0, ΣD = {a}, and
ΣR = {b} it is not hard to see that L is accepted by a det-ID2hPDA. Note that the an-prefix and -suffix
of the input word is compared by the use of the two input heads, while the b2n-infix is checked against
the content of the pushdown, which is previously filled by reading the a’s from the input. Similarly, the
language where the a’s and b’s are exchanged, that is, L′ = {bna2nbn | n ≥} is also accepted by some
det-ID2hPDA.

Next, we consider the union L∪ L′. We show that it cannot be accepted by any ndet-ID2hPDA.
Assume to the contrary that there is an ndet-ID2hPDA M′′= 〈Q′′,{a,b},Γ,q,F,⊥,δD,δR,δn〉 that accepts
the language L∪L′, that is, L(M′′) = L∪L′. With the same argumentation as in the proof of Theorem 18
we conclude that M′′ cannot accept L∪L′ without using the pushdown store. Thus, one of the two input
symbols a or b force M′′ to push and the other symbol to pop. W.l.o.g. we assume that ΣD = {a} and
ΣR = {b}; the other case can be treated in a similar way. Recall that Q′′ is the state set of M′′. Then
consider the input word w = bna2nbn, for n > |Q′′|. Note that while the input heads cross over the bn-
prefix and -suffix of w the automaton M′′ is forced to pop from the pushdown store and thus empties it.
Since w ∈ L∪L′, there is an accepting computation of M′′ on w, which is of the form

(q0,bna2nbn,λ) `∗ (s,bn−ia2nbn− j,λ) `∗ (s,bn−i−i′a2nbn− j− j′ ,λ) `∗ (q f ,λ ,γ),

where s ∈Q′′, q f ∈ F , γ ∈ Γ∗, and moreover, i+ i′ ≤ n and j+ j′ ≤ n and i′+ j′ ≥ 1. But then by cutting
out the loop computation on the state s also the word bn−i′a2nbn− j′ is accepted by M′′ via the computation

(q0,bn−i′a2nbn− j′ ,λ) `∗ (s,bn−i−i′a2nbn− j− j′ ,λ) `∗ (q f ,λ ,γ).

Since this word is not a member of L∪L′ we get a contradiction to our assumption. Therefore, the lan-
guage L∪L′ cannot be accepted by any ndet-ID2hPDA. Thus, the language family L (ndet-ID2hPDA)
is not closed under union. �

For the inverse homomorphism we also get a non-closure result.

Theorem 20 Both families L (det-ID2hPDA) and L (ndet-ID2hPDA) are not closed under inverse
homomorphisms.

Proof Consider the det-ID2hPDA language L = {anb2nan | n≥ 1} from Lemma 19. Let h be the homo-
morphism defined by h(a) = a and h(b) = bb. Then h−1(L) = {anbnan | n≥ 1}. This is the language Lta

from Lemma 6 that cannot be accepted by any ndet-ID2hPDA. This shows that both language families
L (det-ID2hPDA) and L (ndet-ID2hPDA) are not closed under inverse homomorphisms. �

140 Input-Driven Double-Head Pushdown Automata

5 Decidability questions

In this section, we investigate the usually studied decidability questions for deterministic and nonde-
terministic input-driven 2hPDAs. It turns out that the results are similar to those obtained for conven-
tional deterministic and nondeterministic pushdown automata. In particular, we obtain the decidability
of emptiness and finiteness for det-ID2hPDAs and ndet-ID2hPDAs as well as the decidability of equiva-
lence with a regular set, inclusion in a regular set, and inclusion of a regular set. On the other hand, inclu-
sion turns out to be not even semidecidable for det-ID2hPDAs and universality, equivalence, and regular-
ity are not semidecidable for ndet-ID2hPDA as well. Finally, the decidability and non-semidecidability
results can be translated to hold for double-ID2hPDAs correspondingly.

Theorem 21 Let M be an ndet-2hPDA. Then, it is decidable whether or not L(M) is empty or finite.

Proof In [13] Nagy shows that for every ndet-2hPDA a classical NPDA accepting a letter-equivalent
context-free language can effectively be constructed. Thus, the emptiness and finiteness problems for
an ndet-2hPDA can be reduced to the corresponding problems for an NPDA which are known to be
decidable. �

Corollary 22 Let M be an ndet-ID2hPDA or det-ID2hPDA. Then, it is decidable whether or not L(M)
is empty or finite.

To obtain undecidability results we will use the technique of valid computations of Turing machines
which is presented, for example, in [8]. This technique allows to show that some questions are not only
undecidable, but moreover not semidecidable, where we say that a problem is semidecidable if and only if
the set of all instances for which the answer is “yes” is recursively enumerable (see, for example, [8]). Let
M = 〈Q,Σ,T,δ ,q0,B,F〉 be a deterministic Turing machine, where T is the set of tape symbols including
the set of input symbols Σ and the blank symbol B, Q is the finite set of states and F ⊆ Q is the set of
final states. The initial state is q0 and δ is the transition function. Without loss of generality, we assume
that Turing machines can halt only after an odd number of moves, halt whenever they enter an accepting
state, make at least three moves, and cannot print blanks. At any instant during a computation, M can
be completely described by an instantaneous description (ID) which is a string tqt ′ ∈ T ∗QT ∗ with the
following meaning: M is in the state q, the non-blank tape content is the string tt ′, and the head scans
the first symbol of t ′. The initial ID of M on input x ∈ Σ∗ is w0 = q0x. An ID is accepting whenever
it belongs to T ∗FT ∗. The set VALC(M) of valid (accepting) computations of M consists of all finite
strings of the form w0#w2# · · ·#w2n$wR

2n+1# · · ·#wR
3#wR

1 where #,$ /∈ T ∪Q, wi, 0 ≤ i ≤ 2n + 1, are
instantaneous description of M, w0 is an initial ID, w2n+1 is an accepting (hence halting) configuration,
wi+1 is the successor configuration of wi, 0≤ i≤ 2n. The set of invalid computations INVALC(M) is the
complement of VALC(M) with respect to the alphabet T ∪Q∪{#,$}.

Theorem 23 Let M1 and M2 be two det-ID2hPDAs. Then, the question L(M1)∩ L(M2) = /0 is not
semidecidable.

Proof We will first show that the set of valid computation VALC(M) of a Turing machine M is the
intersection of two languages L1 and L2 where each language is accepted by some det-ID2hPDA. We
define L1 to consist of all strings of the form w0#w2# · · ·#w2n$wR

2n+1# · · ·#wR
3#wR

1 , where wi+1 is the
successor configuration of wi for all even 0 ≤ i ≤ 2n. Language L2 is defined as the set of all strings
of the form w0#w2# · · ·#w2n$wR

2n+1# · · ·#wR
3#wR

1 , where wi+1 is the successor configuration of wi for

M. Holzer, M. Kutrib, A. Malcher & M. Wendlandt 141

all odd 1 ≤ i ≤ 2n− 1. Moreover, w0 is an initial ID and w2n+1 is an accepting ID. It is clear that
L1∩L2 = VALC(M). Next, we sketch how L1 can be accepted by some det-ID2hPDA M1. The partition
of the input alphabet is ΣD = ΣR = /0 and ΣN = T ∪Q∪ {#,$}. Thus, we will not make use of the
pushdown store in our construction. The basic idea is that both heads of M1 move successively to the
right resp. left checking that the ID that is seen by the right head is indeed the successor configuration
seen by the left head. This is possible since the changes between a configuration and its successor
configuration are only local and hence can be checked using the state set of M1. Moreover, the state
set is also used to check the correct format of the input, where the left head checks the input part to the
left of the marker $, whereas the right head checks the input part to the right of $. The computation
ends accepting when both heads meet at the marker $ and all previous checks have been successful. A
det-ID2hPDA M2 for L2 works similarly. First, the left head has to skip the initial ID w0. Then, both
heads of M2 move successively to the right resp. left checking that the ID that is seen by the left head
is indeed the successor configuration seen by the right head. Again, the correct format of the input is
implicitly checked. When the left head has reached the marker $, the right head has to skip the accepting
ID w2n+1 and the computation ends accepting when both heads meet at the marker $ and all previous
checks have been successful. Since L1∩L2 = VALC(M) and the emptiness problem for Turing machines
is not semidecidable (see, for example, [8]), the claim of the theorem follows. �

Since L (det-ID2hPDA) is closed under complementation owing to Theorem 13, we immediately
obtain that the inclusion problem is not semidecidable.

Corollary 24 Let M1 and M2 be two det-ID2hPDAs. Then, it is not semidecidable whether or not
L(M1)⊆ L(M2).

However, in case of regular languages we can decide inclusion and equivalence.

Theorem 25 Let M be a det-ID2hPDA and R be a regular language. Then, it is decidable whether or
not L(M) = R, R⊆ L(M), or L(M)⊆ R.

Proof First, we note that R⊆ L(M) if and only if R∩L(M) = /0 and that L(M)⊆ R if and only if L(M)∩
R = /0. Since L (det-ID2hPDA) is closed under complementation and under intersection with regular
languages by Theorem 13 and Theorem 17, the regular languages are closed under complementation, and
emptiness is decidable for det-ID2hPDAs owing to Theorem 21, all claims of the theorem follow. �

The decidability of the latter questions gets lost if the given ID2hPDA is nondeterministic, since in
this case even the universality question is not semidecidable.

Theorem 26 Let M be an ndet-ID2hPDA. Then, the questions of universality, equivalence, and regular-
ity are not semidecidable.

Owing to Theorem 21 it is clear that emptiness and finiteness are decidable for det-double-ID2hPDAs
and ndet-double-ID2hPDAs as well. Since the language family accepted by det-double-ID2hPDAs is
also closed under complementation and intersection with regular languages, we obtain that decidable
questions for det-ID2hPDAs are also decidable for det-double-ID2hPDAs. On the other hand, the non-
semidecidability results obtained for ID2hPDAs in the single mode obviously hold for the double mode as
well. It is currently an open problem whether equivalence and regularity are decidable for det-ID2hPDAs
or det-double-ID2hPDAs, whereas both problems are known to be decidable for DPDAs.

142 Input-Driven Double-Head Pushdown Automata

Acknowledgment

We would like to thank Dávid Angyal who brought double-head pushdown automata close to us while
his visit of our institute. He participated in the discussions and his ideas were significant contributions to
this paper. We consider him truly a co-author, but he insisted not to put his name on the list.

References
[1] Rajeev Alur & P. Madhusudan (2009): Adding nesting structure to words. J. ACM 56, pp. 16:1–16:43,

doi:10.1145/1516512.1516518.
[2] Suna Bensch, Markus Holzer, Martin Kutrib & Andreas Malcher (2012): Input-Driven Stack Automata. In

Jos C. M. Baeten, Thomas Ball & Frank S. de Boer, editors: Theoretical Computer Science (TCS 2012),
LNCS 7604, Springer, pp. 28–42, doi:10.1007/978-3-642-33475-7 3.

[3] Burchard von Braunmühl & Rutger Verbeek (1983): Input-Driven Languages are Recognized in logn Space.
In Marek Karpinski, editor: Fundamentals of Computation Theory (FCT 1983), LNCS 158, Springer, pp.
40–51, doi:10.1007/3-540-12689-9 92.

[4] Gerhard Buntrock & Friedrich Otto (1998): Growing Context-Sensitive Languages and Church-Rosser Lan-
guages. Inform. Comput. 141(1), pp. 1–36, doi:10.1006/inco.1997.2681.

[5] Dario Carotenuto, Aniello Murano & Adriano Peron (2016): Ordered multi-stack visibly pushdown automata.
Theoret. Comput. Sci. 656, pp. 1–26, doi:10.1016/j.tcs.2016.08.012.

[6] Patrick W. Dymond (1988): Input-Driven Languages are in logn Depth. Inform. Process. Lett. 26, pp.
247–250, doi:10.1016/0020-0190(88)90148-2.

[7] Michael A. Harrison & Oscar H. Ibarra (1968): Multi-Tape and Multi-Head Pushdown Automata. Inform.
Control 13, pp. 433–470, doi:10.1016/S0019-9958(68)90901-7.

[8] John E. Hopcroft & Jeffrey D. Ullman (1979): Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading, Massachusetts.

[9] Martin Kutrib, Andreas Malcher, Carlo Mereghetti, Beatrice Palano & Matthias Wendlandt (2015): De-
terministic Input-Driven Queue Automata: Finite Turns, Decidability, and Closure Properties. Theoret.
Comput. Sci. 578, pp. 58–71, doi:10.1016/j.tcs.2015.01.012.

[10] Robert McNaughton, Paliath Narendran & Friedrich Otto (1988): Church-Rosser Thue Systems and Formal
Languages. J. ACM 35, pp. 324–344, doi:10.1145/42282.42284.

[11] Kurt Mehlhorn (1980): Pebbling Moutain Ranges and its Application of DCFL-Recognition. In J. W.
de Bakker & Jan van Leeuwen, editors: International Colloquium on Automata, Languages and Program-
ming (ICALP 1980), LNCS 85, Springer, pp. 422–435, doi:10.1007/3-540-10003-2 89.

[12] Benedek Nagy (2012): A class of 2-head finite automata for linear languages. Triangle 8, (Languages,
Mathematical Approaches), pp. 89–99.

[13] Benedek Nagy (2015): A family of two-head pushdown automata. In Rudolf Freund, Markus Holzer, Nelma
Moreira & Rogério Reis, editors: Non-Classical Models of Automata and Applications (NCMA 2015),
books@ocg.at 318, Austrian Computer Society, Vienna, pp. 177–191.

[14] G. Niemann & F. Otto (2005): The Church-Rosser languages are the deterministic variants of the growing
context-sensitive languages. Inform. Comput. 197, pp. 1–21, doi:10.1016/j.ic.2004.09.003.

[15] Arnold L. Rosenberg (1967): A Machine Realization of the Linear Context-Free Languages. Inform. Control
10, pp. 175–188, doi:10.1016/S0019-9958(67)80006-8.

http://dx.doi.org/10.1145/1516512.1516518
http://dx.doi.org/10.1007/978-3-642-33475-7_3
http://dx.doi.org/10.1007/3-540-12689-9_92
http://dx.doi.org/10.1006/inco.1997.2681
http://dx.doi.org/10.1016/j.tcs.2016.08.012
http://dx.doi.org/10.1016/0020-0190(88)90148-2
http://dx.doi.org/10.1016/S0019-9958(68)90901-7
http://dx.doi.org/10.1016/j.tcs.2015.01.012
http://dx.doi.org/10.1145/42282.42284
http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1016/j.ic.2004.09.003
http://dx.doi.org/10.1016/S0019-9958(67)80006-8

	1 Introduction
	2 Preliminaries
	3 Computational capacity
	4 Closure properties
	5 Decidability questions

