
E. Csuhaj-Varjú, P. Dömösi, Gy. Vaszil (Eds.): 15th International

Conference on Automata and Formal Languages (AFL 2017)

EPTCS 252, 2017, pp. 157–169, doi:10.4204/EPTCS.252.16

c© L. Marais & L. Van Zijl

This work is licensed under the

Creative Commons Attribution License.

Descriptional Complexity of Non-Unary Self-Verifying

Symmetric Difference Automata

Laurette Marais

Department of Computer Science, Stellenbosch University, South Africa

Meraka Institute, CSIR, South Africa

Lynette van Zijl

Department of Computer Science, Stellenbosch University, South Africa

Previously, self-verifying symmetric difference automata were defined and a tight bound of 2n−1−1

was shown for state complexity in the unary case. We now consider the non-unary case and show

that, for every n≥ 2, there is a regular language Ln accepted by a non-unary self-verifying symmetric

difference nondeterministic automaton with n states, such that its equivalent minimal deterministic

finite automaton has 2n−1 states. Also, given any SV-XNFA with n states, it is possible, up to iso-

morphism, to find at most another |GL(n,Z2)|− 1 equivalent SV-XNFA.

1 Introduction

Symmetric difference nondeterministic finite automata (XNFA) are interesting from a state complexity

point of view. Determinising XNFA is done via the subset construction as for NFA, but instead of taking

the union of sets, the symmetric difference is taken. This means that 2n − 1 is an upper bound on the

state complexity of XNFA. This has been shown to be a tight bound for unary alphabets [10].

Self-verifying automata (SV-NFA) were described in [1, 3, 4] as having two kinds of final states:

accept states and reject states. Non-final states are called neutral states. It is required that for any word,

at least one such a final state is reached, and that only one kind of final state is reached on any path, so

that any word is either explicitly accepted or explicitly rejected by the automaton. It was shown in [4]

that eΘ
√

n lnn is an upper bound for the unary case, but not a tight bound, while in the non-unary case,

g(n), where g(n) grows like 3
n
3 , is a tight upper bound.

In [6], we extended the notion of self-verification (SV) to XNFA to obtain SV-XNFA. We showed

that 2n − 1 is not a tight upper bound for SV-XNFA in the case of a unary alphabet. A lower bound of

2n−1 −1 was established for the unary case, and we showed this to be a tight bound in [5].

In this paper, we now consider the state complexity of SV-XNFA with non-unary alphabets. We give

an upper bound of 2n −1 and a lower bound of 2n−1.

Furthermore, any XNFA can be transformed into an equivalent XNFA by performing a change of

basis operation [7]. We show that this holds also for SV-XNFA, and that for any given SV-XNFA, up to

isomorphism, at most another |GL(n,Z2)|−1 equivalent SV-XNFA can be found.

2 Preliminaries

An NFA N is a five-tuple N = (Q,Σ,δ ,Q0,F), where Q is a finite set of states, Σ is a finite alphabet,

δ : Q×Σ → 2Q is a transition function (where 2Q indicates the power set of Q), Q0 ⊆ Q is a set of initial

http://dx.doi.org/10.4204/EPTCS.252.16
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

158 Descriptional Complexity of Non-Unary SV-XNFA

states, and F ⊆ Q is the set of final, or acceptance, states. The transition function δ can be extended to

strings in the Kleene closure Σ∗ of the alphabet. Let w = σ0σ1 . . .σk, then

δ ′(q,w) = δ ′(q,σ0σ1 · · ·σk) = δ (δ (· · ·δ (q,σ0),σ1), . . . ,σk) .

For convenience, we write δ (q,w) to mean δ ′(q,w).
An NFA N is said to accept a string w ∈ Σ∗ if q0 ∈ Q0 and δ (q0,w) ∈ F , and the set of all strings

(also called words) accepted by N is the language L (N) accepted by N. Any NFA has an equivalent

DFA which accepts the same language. The DFA ND = (QD,Σ,δD,Q0D,FD) that is equivalent to a given

NFA is found by performing the subset construction [2]. In essence, the subset construction keeps track

of all the states that the NFA may be in at the same time, and forms the states of the equivalent DFA by

a grouping of the states of the DFA. In short,

δD(A,σ) =
⋃

q∈A

δ (q,σ)

for any A ⊆ Q and σ ∈ Σ. Any A is a final state in the DFA if A∩F 6= /0.

2.1 Symmetric difference automata (XNFA)

A symmetric difference NFA (XNFA) is defined similarly to an NFA (including the extended transition

function over Σ∗ as for NFA), except that the DFA equivalent to the XNFA is found by taking the sym-

metric difference (in the set theoretic sense) in the subset construction. That is, for any two sets A and B,

the symmetric difference is given by ⊕(A,B) = (A∪B)\(A∩B). The subset construction is then applied

as

δD(A,σ) =
⊕

q∈A

δ (q,σ)

for any A ⊆ Q and σ ∈ Σ.

For clarity, the DFA equivalent to an XNFA N is termed an XDFA and denoted with ND, where

ND = (QD,δD,Q0D,FD). Note that δD : 2Q × Σ → 2Q. It is customary to require that an XDFA final

state consist of an odd number of final XNFA states, as an analogy to the symmetric difference set

operation [9] – this is known as parity acceptance. XNFA accept the class of regular languages [9].

Given parity acceptance, XNFA have been shown to be equivalent to weighted automata over the

finite field of two elements, or GF(2) [7, 9]. For an XNFA N = (Q,Σ,δ ,Q0,F), the transitions for each

alphabet symbol σ can be represented as a matrix over GF(2). Each row represents a mapping from a

state q ∈ Q to a set of states P ∈ 2Q. P is written as a vector with a one in position i if qi ∈ P, and a zero

in position i if qi 6∈ P. Hence, the transition table is represented as a matrix Mσ of zeroes and ones (see

Example 1). This is known as the characteristic or transition matrix for σ of the XNFA. In the rest of this

paper, we consider only SV-XNFA with non-singular matrices, whose cycle structures do not include

transient heads, i.e. states that are only reached once before a cycle is reached.

Initial and final states are similarly represented by vectors, and appropriate vector and matrix multi-

plications over GF(2) represent the behaviour of the XNFA1. For instance, in the unary case we would

have a single matrix Ma that describes the transitions on a for some XNFA with n states. We encode the

initial states Q0 as vector of length n over GF(2), namely v(Q0) = [q00
q01

· · · q0n−1
], where q0i

= 1 if qi ∈
Q0 and 0 otherwise. Similarly, we encode the final states as a length n vector v(F) = [qF0

qF1
· · · qFn−1

].
Then v(Q0)Ma is a vector that encodes the states reached after reading the symbol a exactly once, and

1In GF(2), 1+1 = 0.

L. Marais & L. Van Zijl 159

v(Q0)M
k
a encodes the states reached after reading the symbol a k times. The weight of a word wk of

length k is given by

∆(wk) = v(Q0)M
k
av(F)T .

We can say that Ma represents the word a, and Mak = Mk
a represents the word ak. In the binary case, we

would have two matrices, Ma for transitions on a and Mb for transitions on b. Reading an a corresponds

to multiplying by Ma, while reading a b corresponds to multiplying by Mb. Let Mw be the result of the

appropriate multiplications of Ma and Mb representing some w ∈ {a,b}∗, then the weight of w is given

by ∆(w) = v(Q0)Mwv(F)T .

We now show that, in the unary case, a so-called change of basis is possible, where for some n× n

transition matrix Ma of an XNFA and any non-singular n× n matrix A, M′
a = A−1MaA is the transition

matrix of an equivalent XNFA with v(Q′
0) = v(Q0)A and v(F ′)T = A−1v(F)T . For any word wk of length

k, we have the following:

∆′(wk) = v(Q′
0)M

′k
a v(F ′)T

= v(Q0)A(A
−1MaA)kA−1v(F)T

= v(Q0)M
k
av(F)T

= ∆(wk) .

This also applies to the binary case. For some XNFA N, let Mw = ∏k
i=1 Mσi

represent a word w =
σ1σ2...σk, where Mσi

= Ma if σi = a, and similarly for b. Now, let N ′ be an XNFA whose transition

matrices are M′
a = A−1MaA and M′

b = A−1MbA for some non-singular A. Then w is represented by

M′
w =

k

∏
i=1

M′
σi

= M′
σ1

M′
σ2
· · ·M′

σk

= (A−1Mσ1
A)(A−1Mσ2

A) · · · (A−1Mσk
A)

= A−1Mσ1
Mσ2

· · ·Mσk
A

= A−1MwA .

And so the weight of any word wk on N ′ is

∆′(w) = v(Q′
0)M

′
wv(F ′)T

= v(Q0)A(A
−1MwA)A−1v(F)T

= v(Q0)Mwv(F)T

= ∆(w) .

Note that the above discussion does not rely on the fact that there are only two alphabet symbols, and so

applies in general to the r-ary case as well.

2.2 Self-verifying automata (SV-NFA)

Self-verifying NFA (SV-NFA) [1, 3, 4] are automata with two kinds of final states, namely accept states

and reject states, as well as neutral non-final states. It is required that for any word, one or more of the

160 Descriptional Complexity of Non-Unary SV-XNFA

paths for that word reach a single kind of final state, i.e. either accept states or reject states are reached,

but not both. Consequently, self-verifying automata reject words explicitly if they reach a reject state, in

contrast to NFA, where rejection is the result of a failure to reach an accept state.

Definition 1. A 6-tuple N = (Q,Σ,δ ,Q0,F
a,Fr) is a self-verifying nondeterministic finite automaton

(SV-NFA), where Q,Σ,δ and Q0 are defined as for standard NFA. Fa ⊆ Q and Fr ⊆ Q are the sets of

accept and reject states, respectively. The remaining states, that is, the states belonging to Q\(Fa∪Fr),
are called neutral states. For each input string w in Σ∗, it is required that there exists at least one path

ending in either an accept or a reject state; that is, δ (q0,w)∩ (Fa ∪Fr) 6= /0 for any q0 ∈ Q0, and there

are no strings w such that both δ (q0,w)∩Fa and δ (q1,w)∩Fr are nonempty, for any q0,q1 ∈ Q0.

Since any SV-NFA either accepts or rejects any string w ∈ Σ∗ explicitly, its equivalent DFA must do

so too. The path for each w in a DFA is unique, so each state in the DFA is an accept or reject state.

Hence, for any DFA state d, there is some SV-NFA state qi ∈ d such that qi ∈ Fa (and hence d ∈ Fa
D) or

qi ∈ Fr (and hence d ∈ Fr
D). Since each state in the DFA is a subset of states of the SV-NFA, accept and

reject states cannot occur together in a DFA state. That is, if d is a DFA state, then for any p,q ∈ d, if

p ∈ Fa then q /∈ Fr and vice versa. We refer to the equivalent DFA of some SV-XNFA as its equivalent

SV-XDFA to indicate that every state must accept or reject and that parity acceptance holds given the

subset construction. Any SV-XDFA is equivalent to an XDFA, so SV-XNFA accept the class of regular

languages.

2.3 Self-verifying symmetric difference automata (SV-XNFA)

In [6], self-verifying symmetric difference automata (SV-XNFA) were defined as a combination of the

notions of symmetric difference automata and self-verifying automata, but only the unary case was ex-

amined. We now restate the definition of SV-XNFA in order to present results on larger alphabets in

Section 4. Note, however, that the definition is slightly amended: in [6], the implicit assumption was

made that no SV-XNFA state could be both an accept state and a reject state. This assumption is ex-

plored in detail for the unary case in [5], but for our current purposes it suffices to say that such a

requirement removes the equivalence between XNFA and weighted automata over GF(2), which is es-

sential for certain operations on XNFA, such as minimisation [7]. This implies that parity acceptance

applies to SV-XNFA, where the condition for self-verification (SV-condition) is that for any word, an

odd number of paths end in either accept states or reject states, but not both. In terms of the equivalent

XDFA, this is equivalent to requiring that any XDFA state contain either an odd number of accept states

or an odd number of rejects states, but not both. If an XNFA state is both an accept state and a reject

state, it contributes to both counts.

Definition 2. A 6-tuple N = (Q,Σ,δ ,Q0,F
a,F r) is a self-verifying symmetric difference finite automaton

(SV-XNFA), where Q,Σ,δ and Q0 are defined as for XNFA, and Fa and Fr are defined as for SV-NFA,

except that Fa ∩Fr need not be empty. That is, each state in the SV-XDFA equivalent to N must contain

an odd number of states from either Fa or Fr, but not both, and some SV-XNFA states may belong to

both Fa and Fr.

The SV-condition for XNFA implies that if a state in the SV-XDFA of an SV-XNFA N contains an

odd number of states from Fa, it may also contain an even number of states from Fr, and hence belong

to Fa
D, and vice versa. An SV-XDFA state may contain any number of neutral states from N.

The choice of Fa and F r for a given SV-XNFA N is called an SV-assignment of N. An SV-assignment

where either Fa or Fr is empty, is called a trivial SV-assignment. Otherwise, if both Fa and Fr are

nonempty, the SV-assignment is non-trivial.

L. Marais & L. Van Zijl 161

M =















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 · · · 1

c0 c1 · · · cn−2 cn−1















Figure 1: Companion matrix for c(X) = Xn + cn−1Xn−1 + ...+ c1X + c0

3 XNFA and linear feedback shift registers

In [11] it is shown that unary XNFA are equivalent to linear feedback shift registers (LFSRs). Specifi-

cally, a matrix M with characteristic polynomial c(X) is associated with a certain cycle structure of sets

of XNFA states (or of XDFA states), and the choice of Q0 determines which cycle represents the be-

haviour of a specific unary XNFA. The cycle structure is induced by c(X), so any matrix that has c(X)
as its characteristic polynomial has the same cycle structure, although the states occurring in the cycles

differ according to each specific matrix.

For the r-ary case, the transition matrix for each symbol is associated with its own cycle structure,

and the choice of Q0 determines which cycle is realised in the r-ary XNFA for each symbol. There are

2n − 1 possible choices for Q0 (we exclude the empty set). Evidently, the cycles associated with each

symbol might overlap, and so the structure of the r-ary XNFA would not be cyclic itself, although the

transitions for each symbol would exhibit cyclic behaviour. Specifically, for an r-ary XNFA N and some

symbol σ ∈ Σ, we refer to the cycle structure of N on σ as the cycle structure resulting from considering

only transitions on σ . Our main results will be derived from examining the cycle structure induced by

each symbol of the alphabet of the automaton, as well as the ways in which the cycles overlap.

For any c(X) = Xn+cn−1Xn−1+ · · ·+c1X +c0 there is a normal form matrix M of the form given in

Fig. 1, such that c(X) = det(XI−M), where I is the identity matrix. We say that M is in canonical form.

In the next lemma, it will be convenient to represent XDFA states ds ⊆ Q as s= 〈sn−1,sn−2, ...,s1,s0〉,
where si = 1 if qi ∈ ds and 0 otherwise. The lemma is adapted from [8] on the basis of the equivalence

between unary XNFA and LFSRs.

Lemma 1. Let Mσ be a transition matrix representing transitions on σ for some XNFA N, with charac-

teristic polynomial cσ (X), and let Mσ be in canonical form. Let f be a bijection of the states of the equiv-

alent XDFA ND onto polynomials of degree n− 1, such that f maps the state s = 〈sn−1,sn−2, ...,s1,s0〉
into the polynomial f (s) = sn−1Xn−1 + sn−2Xn−2 + · · ·+ s1X + s0. Then f maps the state Mσ · s into the

polynomial X f (s) mod cσ (X).

Lemma 1 provides a mapping between polynomials over GF(2) and the states of XDFA. The XDFA

state arrived at after a transition from state s on σ corresponds to the polynomial which results from

multiplying f (s) by X in the polynomial algebra of GF(2)[X] modulo c(X).

Example 1. Let N be a binary XNFA (shown in Figure 1), where Ma is the normal form matrix of

ca(X) = X4+X2+X +1 and Mb is the normal form matrix of cb(X) = X4+X3+X +1. Ma and Mb are

given in Fig. 2 and 3. The resulting XDFA is shown in Figure 5, while some examples comparing state

transitions and polynomial multiplication are shown in Table 1. Note that, for now, the focus is on the

cyclic behaviour of the equivalent XDFA, and so we do not refer to any final states.

162 Descriptional Complexity of Non-Unary SV-XNFA

Ma =









0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0









Figure 2: Example 3, transition matrix for a

Mb =









0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 1









Figure 3: Example 3, transition matrix for b

q0start

q1

q2

q3

a,b a,b

a,ba,b

a,b
a

b

Figure 4: Example 1, N

q0start

q1

q2

q3

q0,q1,
q2

q0,q2,
q3

q0,q1,
q3

q1,q2,
q3

a,b

a,b

a,b

a

b
a

b

a

b

a

b

a,b

Figure 5: Example 1, ND

Table 1: Transitions on δ correspond to multiplication by X

δD(s,σ) X f (s) mod cσ (X)

δD({q0},a) = {q1} X(1) = X

δD({q3},a) = {q0,q1,q2} X(X3) = X4 mod ca(X)

= X2 +X +1

δD({q0,q2,q3},a) = {q0,q2,q3} X(X3+X2+1) = X4 +X3+X mod ca(X)

= X3 +X2+1

δD({q1},b) = {q2} X(X) = X2

δD({q0,q1,q3},b) = {q0,q2,q3} X(X3+X +1) = X4 +X2+X mod cb(X)

= X3 +X2+1

δD({q1,q2,q3},b) = {q0,q1,q2} X(X3+X2+X) = X4 +X3+X2 mod cb(X)

= X2 +X +1

L. Marais & L. Van Zijl 163

4 Non-unary SV-XNFA

The upper bound on state complexity is simply 2n −1, since this is the number of non-empty subsets for

any set of n XNFA states. We now work towards establishing a lower bound on state complexity. First,

we restate the following lemma from [6] for the unary case.

Lemma 2. Let c(X) = (X +1)φ(X) be a polynomial of degree n with non-singular normal form matrix

M, and let N be a unary XNFA with transition matrix M and Q0 = {q0}. Then the equivalent XDFA ND

has the following properties:

1. |QD|> n

2. |d| is odd for d ∈ QD

3. [q0], [q1], ..., [qn−1] ∈ QD

|d| is the number of XNFA states in the XDFA state d ⊆ Q, or the number of one’s in the representa-

tion of d as 〈sn−1,sn−2, ...,s1,s0〉 where si = 1 if qi ∈ d and 0 otherwise.

Theorem 1. Let Mσ1
, Mσ2

, ..., Mσr
be the normal form matrices of r polynomials cσ1

(X)= (X+1)φσ1
(X),

cσ2
(X) = (X + 1)φσ2

(X), ..., cσr
(X) = (X + 1)φσr

(X), respectively, and let Mσ1
, Mσ2

, ..., Mσr
be the

transition matrices of some r-ary XNFA N with Σ = {σ1,σ2, ...,σr} and Q0 = {q0}. Then the number of

states in the equivalent XDFA ND does not exceed 2n−1. Furthermore, any choice of Fa and Fr such that

Fa ∪Fr = Q and Fa ∩Fr = /0 is an SV-assignment.

Proof. By Lemma 2, |d| is odd for d ∈ QD in the unary case. That is, for any symbol with a transition

matrix whose polynomial has X +1 as a factor, a transition from an odd-sized XDFA state is to another

odd-sized XDFA state. Since Q0 = {q0} and |{q0}| is odd, and cσ1
(X), cσ2

(X),...cσr
(X), have X + 1 as

a factor, only odd-sized states are reachable on any transition. The number of XDFA states d such that

|d| is odd is 2n/2 = 2n−1, and so ND can have at most 2n−1 states. Since every XDFA state contains

an odd number of XNFA states, any choice of Fa and Fr such that Fa ∪Fr = Q and Fa ∩Fr = /0 is an

SV-assignment.

The following lemma provides further information on the cycle structure induced by polynomials

with X +1 as a factor.

Lemma 3. Let cσ (X) = (X + 1)φ(X). Then, in the normal form matrix Mσ of cσ (X), which is the

transition matrix on some symbol σ for an XNFA, the state mapped to φ(X) as described in Lemma 1,

i.e. dφ , is contained in a cycle of length one, when considering only transitions on σ .

Proof. Consider the following:

(X +1)φ(X) = cσ (X)

Xφ(X)+φ(X) = cσ (X)

Xφ(X) = φ(X)+ cσ (X)

Therefore, Xφ(X) = φ(X) in the representation of GF(2n) as polynomials over GF(2) modulo cσ (X).
By Lemma 1, this corresponds to δD(dφ ,σ) = dφ .

We now present a witness language for any n to show that 2n−1 is a lower bound on the state com-

plexity of SV-XNFA with non-unary alphabets. First, we restate the following theorem from [6].

Theorem 2. For any n ≥ 2, there is an SV-XNFA N whose equivalent ND has 2n−1 −1 states.

164 Descriptional Complexity of Non-Unary SV-XNFA

Ma =















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 · · · 1

c0 c1 · · · cn−2 cn−1















Figure 6: Lemma 4, transition matrix for a

Mb =















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 · · · 1

φ0 φ1 · · · φn−2 φn−1















Figure 7: Lemma 4, transition matrix for b

Lemma 4. Let φ(X) = Xn−1 +φn−2Xn−2 + · · ·+φ1X +φ0 be any primitive polynomial of degree n−1.

Let N be a binary XNFA, and let the transition matrix on a be the normal form matrix of ca(X) =
(X +1)φ(X) and the transition matrix on b be the normal form matrix of cb(X) = Xn +φ(X). Then the

equivalent XDFA of the XNFA with Q0 = {q0} contains exactly 2n−1 odd-sized states.

Proof. We write ca(X) and cb(X) in the following way:

ca(X) = Xn + cn−1Xn−1 + · · ·+ c1X + c0

cb(X) = Xn +φn−1Xn−1 +φn−2Xn−2 + · · ·+φ1X +φ0

Since φ(X) is primitive, it has no roots in GF(2), including 1, so it must have an odd number of non-zero

terms. Therefore, by Lemma 1, |dφ | is odd. Furthermore, cb(X) has an even number of non-zero terms,

and so has 1 as a root. Consequently, cb(X) has X +1 as a factor.

The transition matrices Ma and Mb are given in Fig. 6 and 7. Note that they are both non-singular. Let

Q0 = {q0}. Then by Theorem 2, the cycle structure on a is equivalent to an XDFA cycle with 2n−1 − 1

states, all of which, by Lemma 2, have odd size. Also, by Lemma 3, dφ is not contained in this cycle.

This means that on a, every odd-sized state in the XDFA is reached except for dφ . Now, from Mb it

follows directly that δD({qn−1},b) = dφ . Furthermore, since X +1 is a factor of cb, every transition from

an odd-sized state on b is to an odd-sized state. Consequently, the binary XNFA N is equivalent to an

XDFA that reaches all 2n−1 odd-sized states and none other.

Theorem 3. For any n ≥ 2, there is a language Ln so that some n-state binary SV-XNFA accepts Ln

and the minimal SV-XDFA that accepts Ln has 2n−1 states.

Proof. Let ca(X) = (X + 1)φ(X) and cb = Xn + φ(X), where φ(X) is a primitive polynomial and let

ca(X) and cb(X) have degree n. We construct an SV-XNFA N with n states whose equivalent XDFA

ND has 2n−1 states as in Lemma 4, and let Fa = {q0} and Fr = Q \Fa. Recall that for N, we have

δ : Q×Σ → 2Q, and for ND, we have δD : 2Q ×Σ → 2Q.

Let L 1
n = a(2

n−1−1)i+ j for i ≥ 0 and j ∈ J, where J is some set of integers, represent a subset of the

language accepted by N that consists only of strings containing a. Now, from the transition matrix of N

it follows that 0,n ∈ J, while 1,2, ...,n−1 /∈ J, since q0 ∈ δ (q0,a
n), but q0 /∈ δ (q0,a

m) for m < n.

If there is an N ′
D with fewer than 2n−1 −1 states that accepts L 1

n , then there must be some d j ∈ QD

such that {q0} ⊂ d j, q0 ∈ δD(d j,a
n) and there is no m < n so that q0 ∈ δD(d j,a

m). That is, if N ′
D exists,

then on ND, δD({q0},a) = δD(d j,a), and δD({q1},a) = δD(d j+1,a) etc.

Let dk be any state in ND such that dk 6= {q0}. Let max(dk) be the largest subscript of any SV-XNFA

state in dk. Then max(dk) > 0. Let m = n−max(dk), so m < n. Then, from the transition matrix of N,

L. Marais & L. Van Zijl 165

Ma =









0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 1









Figure 8: Example 2, transition matrix for a

Mb =









0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 1









Figure 9: Example 2, transition matrix for b

it follows that q0 ∈ δD(dk,a
m). That is, for any dk there is an m < n so that q0 ∈ δD(dk,a

m). Therefore,

there is no N ′
D with fewer than 2n−1 −1 states that accepts L 1

n .

Now, let L 2
n = bna∗, which is also a subset of the language accepted by N. In order to accept

this language, after reading bn, a state must have been reached whereafter every transition on a must

result in an accept state, i.e. an XDFA state containing q0. But there is only one such state, and that is

dφ , since δD(dφ ,a) = dφ , which is excluded from the cycle needed to accept L 1
n . Therefore, all 2n−1

odd-sized states are necessary to accept L 1 ∪L 2. Let Ln be the language accepted by N, then since

L 1
n ∪L 2

n ⊂ Ln, at least 2n−1 states are necessary to accept Ln.

We illustrate Theorem 3 for n = 4.

Example 2. Let φ(X) = X3 +X + 1, which is a primitive polynomial. Now, let N be an XNFA with

transition matrices Ma and Mb. Ma is the normal form matrix of ca(X)= (X +1)φ(X)=X4+X3+X2+1

and Mb the normal form matrix of cb(X) = X4 +φ(X) = X4 +X3 +X +1. Let Q0 = {q0} and let Fa =
{q0} and Fr = {q1,q2,q3}. Ma and Mb are shown in Figures 8 and 9, while N and its equivalent XDFA

ND are shown in Figures 10 and 11. We have L 1 = a7i+ j for i ≥ 0 and j ∈ {0,4,5} and L 2 = bbbba∗.

The following is a simple corollary of Theorem 3.

Corollary 3.1. For any m,n ≥ 2, there is a language L ′
n so that some n-state m-ary SV-XNFA accepts

L ′
n and the minimal SV-XDFA that accepts L ′

n has 2n−1 states.

We now show that any given SV-XNFA can be used to obtain another one via a so-called change of

basis.

Theorem 4. Given any SV-XNFA N = (Q,Σ,δ ,Q0,F
a,Fr) with n states and transition matrices Mσ1

,

Mσ2
, ..., Mσr

, and any non-singular n × n matrix A, we encode Q0 as a vector v(Q0) of length n

over GF(2) and Fa and Fr as vectors v(Fa) and v(F r) respectively. Then there is an SV-XNFA N ′ =
(Q,Σ,δ ′,Q′

0,F
′a,F ′r) where M′

σi
= A−1Mσi

A for 0 ≤ i ≤ r, v(Q′
0) = v(Q0)A, v(F ′a)T = A−1v(Fa)T and

v(F ′r)T = A−1v(F r)T , and N ′ accepts the same language as N.

Proof. In the discussion in Section 2.1 we showed that for XNFA, the change of basis described on an

XNFA N that results in N ′, ∆′(w) = ∆(w). We extend this to SV-XNFA by defining two new functions.

Recall that Mw represents the sequence of matrix multiplications for some w of length k, and that M′
w =

A−1MwA. Then, let

accept(w) = v(Q0)Mwv(Fa)T

re ject(w) = v(Q0)Mwv(F r)T .

166 Descriptional Complexity of Non-Unary SV-XNFA

q0start

q1

q2

q3

a,b a,b

a,ba,b

b
a

a,b

Figure 10: Example 2, N

q0start

q1

q2

q3

q0,q1,
q3

q1,q2,
q3

q0,q1,
q2

q0,q2,
q3

a,b

a,b

a,b

b

a

a

b
a

a

b

a

Figure 11: Example 2, ND

L. Marais & L. Van Zijl 167

The SV-condition is that accept(w) 6= re ject(w) for any w ∈ Σ∗. Similar to ∆(w), we have

accept ′(w) = v(Q′
0)M

′
wv(F ′a)T

= v(Q0)A(A
−1MwA)A−1v(Fa)

= v(Q0)Mwv(Fa)

= accept(w)

and

re ject ′(w) = v(Q′
0)M

′
wv(F ′r)T

= v(Q0)A(A
−1MwA)A−1v(Fr)

= v(Q0)Mwv(F r)

= re ject(w)

Clearly, the SV-condition is met by accept ′ and re ject ′, and so N ′ is an SV-XNFA that accepts the same

language as N.

The number of non-singular n×n matrices over GF(2) (including the identity matrix) is |GL(n,Z2)|=
∏n−1

k=0(2
n −2k), and so, up to isomorphism, for any SV-XNFA at most another |GL(n,Z2)|−1 equivalent

SV-XNFA can be found.

Example 3. Let N be an SV-XNFA with alphabet Σ = {a,b,c}, and the following transition matrices: Ma

is the normal form matrix of c(X) = X4+X3+X2+1, Mb is the normal form matrix of X4+X3+X +1,

and Mc is the normal form matrix of c(X) = X4 + X2 + X + 1. Let Q0 = {q0}, Fa = {q0,q2} and

Fr = {q1,q3}. Figure 12 shows N and the equivalent XDFA ND is given in Figure 13, where a double

edge indicates an accept state and a thick edge indicates a reject state. Consider the following matrix A:

A =









0 1 1 1

1 0 1 0

1 1 0 0

0 1 0 1









.

We use A to make a change of basis from N to N ′. Let N ′ be an XNFA with Σ = {a,b,c}, where M′
a =

A−1MaA, M′
b = A−1MbA and M′

c = A−1McA. Furthermore, let v(Q′
0) = v(Q0)A, i.e. Q′

0 = {q1,q2,q3}.

Finally, let v(F ′a)T = A−1v(Fa)T and v(F ′r)T = A−1v(F r)T , i.e. F ′a = {q0,q2} and F ′r = {q2,q3}.

Figure 14, shows N ′, with a double edge indicating an accept state, a thick edge indicating a reject state

and a thick double edge indicating a state that is both an accept state and a reject state. Figure 15 gives

the equivalent XDFA N ′
D. It is worth noting that, although N ′ has a different structure than N, N ′

D has

the same structure as ND, and accepts the same language. Also, note that in N ′
D, the state {q0,q1,q2} is

a reject state, because it contains an even number of accept states, namely q0 and q2, but an odd number

of reject states, namely q2.

5 Conclusion

We have given an upper bound of 2n − 1 on the state complexity of SV-XNFA with alphabets larger

than one, and a lower bound of 2n−1. We have also shown that, given any SV-XNFA with n states, it is

possible, up to isomorphism, to find at most another |GL(n,Z2)|−1 equivalent SV-XNFA via a change

of basis.

168 Descriptional Complexity of Non-Unary SV-XNFA

q0start

q1

q2

q3

a,b,c a,b,c

a,b,ca,b

b,c
a,c

a,b

Figure 12: Example 3, N

q0start

q1

q2

q3

q0,q2,
q3

q0,q1,
q3

q1,q2,
q3

q0,q1,
q2

a,b,c

a,b,c

a,b,c

a

b

c

a,b,c

a

b

c

a

b

c

a

b

c

Figure 13: Example 3, ND

q0start

q1

q2

q3

a,b

b,c

b,c

c

a,b

a

b

a,b,c

c

a

a,b

c

a,b,c

a,b,c

Figure 14: Example 3, N ′

q1,q2,
q3

start

q0,q2

q0,q1

q1,q3

q0,q1,
q2

q0

q2,q3,

q3

a,b,c

a,b,c

a,b,c

a

b

c

a,b,c

a

b

c

a

b

c

a

b

c

Figure 15: Example 3, N ′
D

L. Marais & L. Van Zijl 169

References

[1] Ira Assent & Sebastian Seibert (2007): An upper bound for transforming self-verifying automata into de-

terministic ones. RAIRO-Theoretical Informatics and Applications-Informatique Théorique et Applications

41(3), pp. 261–265, doi:10.1051/ita:2007017.

[2] John E. Hopcroft & Jeffrey D. Ullman (1990): Introduction to Automata Theory, Languages, and Computa-

tion, 1st edition. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[3] Juraj Hromkovic & Georg Schnitger (1999): On the Power of Las Vegas II. Two-Way Finite Automata. In Jirı́

Wiedermann, Peter van Emde Boas & Mogens Nielsen, editors: Automata, Languages and Programming,

26th International Colloquium, ICALP’99, Prague, Czech Republic, July 11-15, 1999, Proceedings, Lecture

Notes in Computer Science 1644, Springer, pp. 433–442, doi:10.1007/3-540-48523-6_40.

[4] Galina Jirásková & Giovanni Pighizzini (2011): Optimal simulation of self-verifying automata by deter-

ministic automata. Information and Computation 209(3), pp. 528 – 535. Special Issue: 3rd International

Conference on Language and Automata Theory and Applications (LATA 2009), doi:10.1016/j.ic.2010.

11.017.

[5] Laurette Marais & Lynette Van Zijl: State Complexity of Unary SV-XNFA with Different Acceptance Condi-

tions. Submitted for publication.

[6] Laurette Marais & Lynette van Zijl (2016): Unary Self-verifying Symmetric Difference Automata. In Cezar

Câmpeanu, Florin Manea & Jeffrey Shallit, editors: Descriptional Complexity of Formal Systems - 18th IFIP

WG 1.2 International Conference, DCFS 2016, Bucharest, Romania, July 5-8, 2016. Proceedings, Lecture

Notes in Computer Science 9777, Springer, pp. 180–191, doi:10.1007/978-3-319-41114-9_14.

[7] Brink Van der Merwe, Hellis Tamm & Lynette Van Zijl (2012): Minimal DFA for Symmetric Difference NFA.

In Martin Kutrib, Nelma Moreira & Rogério Reis, editors: Descriptional Complexity of Formal Systems -

14th International Workshop, DCFS 2012, Braga, Portugal, July 23-25, 2012. Proceedings, Lecture Notes in

Computer Science 7386, Springer, pp. 307–318, doi:10.1007/978-3-642-31623-4_24.

[8] Harold S Stone (1973): Discrete Mathematical Structures and their Applications. Science Research Asso-

ciates Chicago.

[9] Jean Vuillemin & Nicolas Gama (2009): Compact Normal Form for Regular Languages as Xor Automata.

In Sebastian Maneth, editor: Implementation and Application of Automata, 14th International Conference,

CIAA 2009, Sydney, Australia, July 14-17, 2009. Proceedings, Lecture Notes in Computer Science 5642,

Springer, pp. 24–33, doi:10.1007/978-3-642-02979-0_6.

[10] Lynette van Zijl (2005): Magic numbers for symmetric difference NFAS. Int. J. Found. Comput. Sci. 16(5),

pp. 1027–1038, doi:10.1142/S0129054105003455.

[11] Lynette van Zijl, John-Paul Harper & Frank Olivier (2000): The MERLin Environment Applied to *-NFAs. In

Sheng Yu & Andrei Paun, editors: Implementation and Application of Automata, 5th International Confer-

ence, CIAA 2000, London, Ontario, Canada, July 24-25, 2000, Revised Papers, Lecture Notes in Computer

Science 2088, Springer, pp. 318–326, doi:10.1007/3-540-44674-5_28.

http://dx.doi.org/10.1051/ita:2007017
http://dx.doi.org/10.1007/3-540-48523-6_40
http://dx.doi.org/10.1016/j.ic.2010.11.017
http://dx.doi.org/10.1016/j.ic.2010.11.017
http://dx.doi.org/10.1007/978-3-319-41114-9_14
http://dx.doi.org/10.1007/978-3-642-31623-4_24
http://dx.doi.org/10.1007/978-3-642-02979-0_6
http://dx.doi.org/10.1142/S0129054105003455
http://dx.doi.org/10.1007/3-540-44674-5_28

	1 Introduction
	2 Preliminaries
	2.1 Symmetric difference automata (XNFA)
	2.2 Self-verifying automata (SV-NFA)
	2.3 Self-verifying symmetric difference automata (SV-XNFA)

	3 XNFA and linear feedback shift registers
	4 Non-unary SV-XNFA
	5 Conclusion

