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We show that some results from the theory of group automata and monoid automata still hold for

more general classes of monoids and models. Extending previous work for finite automata over

commutative groups, we prove that the context-free language L1
∗ = {anbn : n ≥ 1}∗ can not be rec-

ognized by any rational monoid automaton over a finitely generated permutable monoid. We show

that the class of languages recognized by rational monoid automata over finitely generated com-

pletely simple or completely 0-simple permutable monoids is a semi-linear full trio. Furthermore,

we investigate valence pushdown automata, and prove that they are only as powerful as (finite) va-

lence automata. We observe that certain results proven for monoid automata can be easily lifted to

the case of context-free valence grammars.

1 Introduction

A group automaton is a nondeterministic finite automaton equipped with a register which holds an el-

ement of a group. The register is initialized with the identity element of the group, and modified by

applying the group operation at each step. An input string is accepted if the register is equal to the iden-

tity element at the end of the computation. This model has implicitly arisen under various names such as,

for instance, nondeterministic blind counter machines [8], and finite automata with multiplication [10].

The notion of group automata has been actively investigated in the last decade, especially in the case

of commutative groups and in the case of free (non commutative) groups, where remarkable results on

the structure of the languages accepted by such automata have been proven [1, 3, 16]. Subsequently, the

notion of group automaton has been extended in at least two meaningful ways. The first one is that of

monoid automaton, also known as valence automaton, by assuming that the register associated with the

model is a monoid [6, 12, 13]. The second one is that of valence pushdown automaton introduced in [6],

where the underlying model of computation is a pushdown automaton.

The notions of monoid and group automata are also strictly related to that of valence grammar intro-

duced by Pǎun in [20]. A valence grammar is a formal grammar in which every rule of the grammar is
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equipped with an element of a monoid called the valence of the rule. Words generated by the grammar

are defined by successful derivations. A successful derivation is a derivation, that starts from the start

symbol of the grammar and such that the product of the valences of its productions (taken in the obvious

order) is the identity of the monoid.

In the case of context-free grammars, a thorough study of several remarkable structural properties

of the languages generated by the corresponding valence grammars has been done in [6], over arbitrary

monoids and in particular over commutative groups.

In the case of monoid automata where the corresponding monoid is not a group, the requirement that

a successful computation should end with the identity element limits the extent to which we can make

use of the algebraic structure. In order to overcome this obstacle, a new model called monoid automaton

with targets has been introduced and studied. The targets of the automaton are two subsets of the monoid

associated with the model, called respectively the initial set and the terminal set, that define its successful

computations. Precisely, at the beginning of the computation, the register is initialized with an element

from the initial set and a computation is successful if the register holds an element of the terminal set

at the end of the computation. If the targets of the automaton are rational subsets of the monoid, the

corresponding model is called rational monoid automaton. The idea of allowing more general accepting

configurations has been also applied to valence grammars, leading to the concept of valence grammars

with target sets [5].

In this paper, our aim is to show that some of the results from the theory of monoid automata and

group automata still hold for more general models and more general classes of monoids. In the first

part, we will extend some results proven in [16] for finite automata over commutative groups to rational

monoid automata defined by finitely generated inverse permutable semigroups, which are a remarkable

generalization of some commutative semigroups. We prove a lemma similar to the Interchange Lemma

proven in [16] which helps us to show that the language L1
∗ = {anbn : n ≥ 1}∗ can not be recognized by

any rational monoid automaton over a finitely generated permutable monoid. It is also shown that the

class of languages recognized by rational monoid automata over finitely generated completely simple

or completely 0-simple permutable monoids is a semi-linear full trio. In the second part of the paper,

we investigate valence pushdown automata and context-free valence grammars. Using the well known

equivalence between pushdown automata and finite automata over polycyclic monoids, valence push-

down automata and finite valence automata turn out to be equivalent in terms of language recognition

power. We also show that the results proven in [21] for monoid automata can be easily verified for

context-free valence grammars.

2 Background

Let M be a monoid. We denote by ◦ the binary operation of product of M and by 1 its identity. An

(extended) finite automaton over M [15] (also named an M-automaton) is a 6-tuple

E = (Q,Σ,M,δ ,q0,Qa),

where Q is the set of states, Σ is the input alphabet, q0 ∈ Q denotes the initial state, Qa ⊆ Q denotes the

set of accept states and the transition function δ is defined as

δ : Q×Σε → P(Q×M),

where P denotes the power set and Σε = Σ∪{ε} where ε denotes the empty string. For every (q×σ) ∈
Q×Σε , (q′,m) ∈ δ (q,σ) means that when E reads σ in state q, it will move to state q′, and write x ◦m
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in the register, where x is the old content of the register. The initial value of the register is the identity

element of M. The string is accepted if, after completely reading the string, E enters an accept state with

the content of the register being equal to 1.

Extended finite automata over monoids are sometimes called monoid automata as well. We will

denote the family of languages accepted by M-automata by L1(M). In the cases where the monoid is a

group, such models are called group automata.

Let M be a monoid. An M-automaton is said to be with targets if it is equipped with two subsets

I0, I1 ⊆ M called the initial set and the terminal set respectively. An input string w ∈ Σ∗ is accepted by the

automaton if there exists a computation from the initial state to some accepting state such that x0x ∈ I1,

where x0 ∈ I0 and x ∈ M is the content of the register of the machine after the reading of w. Recall

that the rational subsets of a monoid are the closure of its finite subsets under the rational operations

union, product and Kleene star. In the case that I0 and I1 are rational subsets of M, the model is called

rational monoid automaton defined by M [21, 22]. The family of languages accepted by rational monoid

automata defined by a monoid M will be denoted by LRat(M). Note that the family of languages accepted

by rational monoid automata where I0 = I1 = {1} coincides with the set of languages recognized by

ordinary M-automata.

Rational semigroup automata are defined analogously by taking M as a semigroup instead of a

monoid.

Let G = (N,T,P,S) be a context-free grammar where N is the nonterminal alphabet, T is the terminal

alphabet, P⊆N×(N∪T )∗ is the set of rules or productions, and S∈N is the start symbol. We will denote

by ⇒ and ⇒∗ the step derivation relation and its regular closure respectively. L(G) denotes the language

{w ∈ T ∗ : S ⇒∗ w} of words generated by G.

Let us now recall the notion of valence context-free grammar introduced in [6]. Given a monoid M,

a context-free valence grammar over M is a five-tuple G = (N,T,P,S,M), where N,T,S are defined as

before and P ⊆ N × (N ∪T)∗×M is a finite set of objects called valence rules. Every valence rule can

be thus described as an ordered pair p = (A → α ,m), where (A → α) ∈ N × (N ∪T)∗ and m ∈ M. The

element m is called the valence of p.

The step derivation (⇒) of the valence grammar is defined as follows: if (w,m),(w′,m′) ∈ T ∗×M,

then (w,m) ⇒ (w′,m′) if there exists a valence rule (A → α ,n) such that w = w1Aw2 and w′ = w1αw2

and m′ = mn. The regular closure of ⇒ will be denoted by ⇒∗. A derivation of G will be said successful

or valid if it is of the form (S,1)⇒∗ (w,1), that is, it transforms the pair (S,1) into the pair (w,1), after

finitely many applications of the step derivation relation. The language generated by G is the set L(G)
of all the words w of T ∗ such that (S,1)⇒∗ (w,1).

A context-free valence grammar is said to be regular if all of its rules are right-linear, that is, every

valence rule (A → α ,n) is such that α = uX , where u ∈ T ∗ and X ∈ N. The language families generated

by context-free and regular valence grammars over M are denoted by L(Val,CF,M) and L(Val,REG,M),
respectively.

Let us finally recall the notion of valence pushdown automaton introduced in [6]. Let

P = (Q,Σ,Γ,δ ,q0,Qa)

be a finite nondeterministic pushdown automaton, where Q is the set of states, Σ is the input alphabet, Γ

is the stack alphabet, q0 is the initial state, Qa is the set of accept states, and

δ : Q×Σε ×Γε → P(Q×Γε)

is the transition function, where Γε = Γ∪{ε}. Given a monoid M, a nondeterministic valence pushdown

automaton (PDA) over M is the model of computation obtained from P as follows: with every transition
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of P is assigned an element of M, called valence of the transition. Then the valence of an arbitrary

computation is defined as the product of the valences of all the transitions of the computation (taken

in the obvious order). A word of Σ∗ is said to be accepted by the model if there exists an accepting

computation for the word whose valence is the identity of M. The set of all the accepted words is

defined as the language accepted by the valence pushdown automaton. The family of languages accepted

by valence PDA over M is denoted L(Val,PDA,M). It is worth noticing that the equivalence between

valence pushdown automata and valence context-free grammars does not hold for an arbitrary monoid.

However a remarkable result of [6] shows that such equivalence is true if M is a commutative monoid.

Let us finally recall that in the case the pushdown automaton P is a finite state automaton, the corre-

sponding valence model has been called valence automaton over M, and this model coincides with that

of M-automaton. In particular, the family L(Val,NFA,M) of languages accepted by valence automata

coincides with L1(M), and one can prove that L(Val,NFA,M) = L(Val,REG,M) [6].

Throughout the paper, we will denote by REG and CF the class of regular and context-free languages

respectively.

3 Rational monoid automata over permutable monoids

In this part of the paper, we will generalize some results proved in [16]. This generalization is based

upon two different concepts: the permutation property for semigroups and monoid automata with rational

targets.

3.1 Permutation property for semigroups

Let us talk about the notion of permutation property. We assume that the reader is familiar with the

algebraic theory of semigroups (see [9, 14]). The interested reader can find in [4] an excellent survey on

this topic.

Let n be a positive integer and let Sn be the symmetric group of order n.

Let S be a semigroup and let n be an integer with n ≥ 2. We say that S is n-permutable, or that S

satisfies the property Pn, if, for every sequence of n elements s1, . . . ,sn of S, there exists a permutation

σ ∈ Sn, different from the identity, such that

s1s2 · · · sn = sσ(1)sσ(2) · · · sσ(n).

A semigroup S is said to be permutable or that S satisfies the permutation property if there exists

some n ≥ 2 such that S is n-permutable.

Obviously the property P2 is equivalent to commutativity. If S is a finite semigroup of cardinality

n, then one immediately verifies that S is r-permutable, with r ≥ n+ 1. The permutation property was

introduced and studied by Restivo and Reutenauer in 1984 [23] as a finiteness condition for semigroups.

Let us recall that an element s of a semigroup S is said to be periodic if there exist two integers i, j,

with 1 ≤ i < j, such that si = s j. In particular, if s = s2, s is called idempotent. Moreover, if S is a group

and 1 is its identity, then x is periodic if and only if xn = 1, for some positive integer n. If every element

of S is periodic, then S is said to be periodic.

The following result holds.

Fact 1. [23] Let S be a finitely generated and periodic semigroup. Then S is finite if and only if S is

permutable.
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In the case of finitely generated groups, Curzio, Longobardi and Maj proved a remarkable algebraic

characterization of permutable groups.

Fact 2. [2] Let G be a finitely generated group. Then G is permutable if and only if G is Abelian-by-finite,

i.e. G has a (normal) Abelian subgroup of finite index.

One of the most important class of semigroups is that of inverse monoids (see [9, 14, 19]). A monoid

M is said to be inverse if every element m ∈ M possesses a unique element m′, called the inverse of m,

such that m = mm′m and m′ = m′mm′ (see [9, 19]). An important class of inverse monoids called the

polycyclic monoids will be further explored in Section 4.

A remarkable result of Okniński provides a characterization of the permutation property for finitely

generated inverse monoids [19].

Fact 3. [19] Let M be a finitely generated inverse monoid. Then the following conditions are equivalent:

(i) M is permutable.

(ii) The set of idempotent elements E(M) of M is finite and every subgroup of M is finitely generated

and Abelian-by-finite.

The following result is a straightforward consequence of Fact 3 and some basic facts of inverse

monoids. For this purpose, we recall that the algebraic structure of a monoid M is described by its

Green’s relations: L ,R,H ,D , and J . In particular, we recall that, for every m,m′ ∈ M, m R m′

(resp., m L m′) if mM = m′M (resp., Mm = Mm′), and H = R∩L (the interested reader is referred to

Ch. II and Ch. V of [9], or Ch. III of [4]).

Proposition 1. Let M be a finitely generated inverse monoid. Then M is finite if and only if M is

permutable and every finitely generated subgroup of M is periodic.

Proof. If M is finite then trivially it is periodic and, by Fact 1 it is permutable.

Let us prove the converse. Suppose M is permutable and every finitely generated subgroup of M is

periodic.

As an immediate consequence of a well-known property of finitely generated semigroups ([4], Ch.

III Prop. 3.2.4 or [14] Lem. 3.4), the He-class of an arbitrary idempotent e of M is a finitely generated

maximal subgroup of M. Since every finitely generated subgroup of M is periodic, He is periodic. Since

M is inverse and permutable, by Fact 3, the set of idempotent elements E(M) of M is finite and every

finitely generated subgroup of M is Abelian-by-finite. Therefore, He is Abelian-by-finite. Now by Fact

2, it follows that He is permutable. Since He is periodic and permutable, we conclude that He is finite

by Fact 1.

Moreover, always as a consequence of the fact that M is inverse, every R-class and every L -class

of M contain exactly one idempotent ([9], Ch. V Thm. 1.2). Since E(M) is finite, it follows that the

number of R-classes and L -classes of M is finite which implies that the number of H -classes of M is

finite. Recall now that, for every R-class R of M, the cardinality of an arbitrary H -class contained in

R equals the cardinality of the unique He-class contained in R, whose representative is an idempotent e

([9], Ch. II Lem. 2.3). Since we have proved that, for every idempotent e, the He-class is finite, by the

latter, we then get that every H -class is finite which implies that M is finite.

3.2 New results on rational monoid automata over permutable monoids

Let M be the family of finitely generated inverse permutable monoids. We now prove that some mean-

ingful properties proved in [16] in the case of extended finite automata over finitely generated Abelian

groups can be lifted to rational monoid automata defined by monoids of M .

We start with the following basic facts.
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Lemma 1. Let M be a monoid of M . Then one has:

(i) LRat(M) contains the family REG.

(ii) If M has an infinite subgroup, then LRat(M) contains the language L1 = {anbn : n ≥ 1}, over the

alphabet Σ = {a,b}.

Proof. (i) Let L be a regular language accepted by a finite automaton A = (Q,Σ,M,δ ,q0,Qa). We

can turn A into a rational monoid automaton B by setting I0 = I1 = {1} and, for every state q ∈ Q

and for every letter a ∈ Σε , by replacing the state q′ such that q′ ∈ δ (q,a) into the ordered pair

(q′,1). Then one easily checks that L is accepted by B.

(ii) Let G be an infinite subgroup of M. Since M is inverse and permutable, by Fact 3, G is finitely

generated and Abelian-by-finite. By Fact 2, it follows that G is permutable. Since G is infinite, by

Fact 1, G has an element x which is not periodic. Let e be the identity of G. Let x′ be the inverse

of x in G. Let A be the rational monoid automaton over two states q0,q1, where q0 is the (unique)

initial state, q1 is the (unique) final state, I0 = I1 = {e} and the transition function δ of A is defined

as: δ (q0,a) = (q0,x),δ (q0,b) = (q1,x
′),δ (q1,b) = (q1,x

′),δ (q1,a) = /0. Then one easily checks

that L1 is accepted by A .

In Thm. 1 of [16], it is proven that for any group G, L(G) = REG if and only if all finitely generated

subgroups of G are finite. The following proposition gives a similar characterization for rational monoid

automata defined over finitely generated inverse permutable monoids.

Proposition 2. Let M be a monoid of M . Then LRat(M) = REG if and only if every finitely generated

subgroup of M is periodic.

Proof. Let us prove the necessity. By contradiction, assume the contrary. Hence there exists a subgroup

of M with an element which is not periodic. By Lemma 1, one gets {anbn : n ≥ 1} ∈ LRat(M), so

LRat(M) 6= REG.

Let us prove the sufficiency. By Proposition 1, M is finite. If a language belongs to the set LRat(M),
then it is accepted by a rational monoid automaton with initial set I0 = {1} [21]. Let us show that an

arbitrary rational monoid automaton A = (Q,Σ,M,δ ,q0,Qa) with rational targets I0 = {1} and I1, can be

simulated by a finite automaton. Indeed, let B = (Q×M,Σ, δ̂ ,q0 × I0,Qa × I1) be the nondeterministic

finite automaton (with ε-moves), where the transition function δ̂ of B is defined as

δ̂ (〈q,m〉,a) := {〈q′,m′〉 ∈ Q×M : (q′,x) ∈ δ (q,a) with m′ = mx}

for every 〈q,m〉 ∈ Q×M, and for every a ∈ Σε . Since M is finite, B is well defined and it can be easily

checked, by induction on the length of the computation that spells a word u, that u is accepted by A if

and only if u is accepted by B. This proves LRat(M)⊆ REG. Since by Lemma 1, REG⊆ LRat(M), from

the latter, we get REG= LRat(M).

We now prove that the language L1
∗ = {anbn : n ≥ 1}∗ is not in the family of LRat(M ). In order to

achieve this result, we prove a lemma that is similar to the “Interchange Lemma” proven in [16] Lem. 2

for Abelian groups.
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Lemma 2. Let M be a k-permutable monoid and let L ∈ LRat(M). Then there exists a positive integer

m such that, for every word w ∈ L, with |w| ≥ m, and, for every factorization of w = w1w2 · · ·wm, |wi| ≥
1 (1 ≤ i ≤ m), there exist integers 0 ≤ i0 < i1 < i2 < · · ·< ik < ik+1 ≤ m such that

w = λW1W2 · · ·Wkµ , (1)

where

λ = w1 · · ·wi0 , µ = wik+1
· · ·wm,

1 (2)

and, for every j = 1, . . . ,k,

Wj = w1+i j−1
· · ·wi j

(3)

there is a permutation σ ∈Sk, different from the identity, such that the word wσ = λWσ(1)Wσ(2) · · ·Wσ(k)µ

is in L.

Proof. By hypothesis, there exists a rational monoid automaton A , defined by a k-permutable monoid M,

that accepts L. Let A = (Q,Σ,M,δ ,q0,Qa) with rational targets I0 and I1. If c is an arbitrary computation

of A , the element of M associated with c will be denoted by m(c).

Let w be a word of L and let c be a successful computation of A such that c spells w. In particular,

there exists some i0 ∈ I0 where i0m(c) ∈ I1.

Let m = max{k,n}2 + 1 where n is the number of states of A . Suppose now that |w| ≥ m2. By

using the pigeonhole principle, there exists a state q of A such that c can be factorized as the product of

computations

c = cλ c1c2 · · ·ckcµ ,

where

• cλ = q0 → q, is a computation that spells λ ;

• cµ = q → q f , with q f ∈ Qa, is a computation that spells µ ;

• for every i = 1, . . . ,k, ci = q → q, is a computation that spells Wi, (1 ≤ i ≤ k),

and λ ,µ , and Wi, with 1 ≤ i ≤ k, are defined as in (2) and (3) respectively. Hence, from the latter, and

taking into account that M is k-permutable, we have that there exists a permutation σ ∈ Sk \{id.}, such

that

m(c) = m(cλ )m(c1) · · ·m(ck)m(cµ) = m(cλ )m(cσ(1)) · · ·m(cσ(k))m(cµ). (4)

Let cσ be the product of computations cσ = cλ cσ(1) · · ·cσ(k)cµ . Observe that, by the definition of the

computation ci,1 ≤ i ≤ k, cσ is well defined as a computation of A , cσ = s0 → s f , from s0 to s f .

Moreover, by (4), one has m(cσ ) = m(c). Since cσ spells wσ , one has wσ ∈ L. This completes the

proof.

It is shown that L1
∗ = {anbn : n ≥ 1}∗ can not be recognized by any finite automaton over an Abelian

group in [16] Prop. 2. Now we prove that the same language is not in LRat(M) when M is a finitely

generated permutable monoid.

Corollary 1. Let M be a finitely generated permutable monoid. Then L1
∗ = {anbn : n ≥ 1}∗ /∈ LRat(M).

1it is understood that if i0 = 0 (resp., ik+1 = m), then λ = ε (resp., µ = ε).
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Proof. By contradiction, assume the contrary. Thus there exists a rational monoid automaton A de-

fined by a permutable monoid such that L1
∗ is accepted by A . Let us consider the word of L1

∗,

w = (ab)(a2b2) · · · (aℓbℓ), for ℓ ∈ N sufficiently large. Let us consider the following factorization for

w:

a ·ba2 ·b2a3 · · ·bi−1ai ·biai+1 · · ·aℓ−1 ·bℓ−1aℓ ·bℓ, (5)

that is, w = w1 · · ·wℓ+1, where wi = bi−1ai, i = 1, . . . , ℓ, and wℓ+1 = bℓ. Let us apply Lemma 2 to w

with respect to the factorization (5). Hence we can write w = λW1W2 · · ·Wkµ in the form of the fac-

torization (1) of Lemma 2, and there exists a permutation σ ∈ Sk \ {id.}, such that the word wσ =
λWσ(1)Wσ(2) · · ·Wσ(k)µ is in L1

∗.

Let k = {1, . . . ,k} and let i be the minimal number of k such that σ(i) 6= i. Since σ 6= id., this number

exists and i < k. Moreover the number j ∈ k such that i = σ( j) is strictly larger than i. Indeed, otherwise

j ≤ i, would imply j < i, so contradicting the minimality of i. Now, according to (2) and (3) of Lemma

2, and taking into account that i < j, there exist positive integers α ,β , with β > 1+α such that

λW1 · · ·Wi−1 = a(ba2) · · · (bα a1+α),

where

Wj = (bβ a1+β ) · · · (bγa1+γ), β ≤ γ .

Hence we get

wσ = λW1 · · ·Wi−1WjWσ(i+1) · · ·Wσ(k)µ

= (aba2 · · ·bα a1+α)(bβ a1+β · · ·bγa1+γ)u, u ∈ A∗,

so that aba2 · · ·bα a1+α bβ is a prefix of wσ . Since β > 1+α , the latter contradicts the fact that wσ ∈ L1
∗.

Hence L1
∗ /∈ LRat(M).

We can conclude that the following closure properties proven in [16] Thm. 8 for finite automata over

commutative groups also hold for rational monoid automata over finitely generated inverse permutable

monoids.

Corollary 2. Let M be a monoid of M . Then either LRat(M) =REG, or LRat(M) is closed neither under

Kleene star ∗, nor under substitutions.

Proof. If every finitely generated subgroup of M is periodic, by Proposition 2, LRat(M) = REG. Oth-

erwise, by Lemma 1, LRat(M) contains the language L1 = {anbn : n ≥ 1} and, by Corollary 1, L1
∗ /∈

LRat(M). The non-closure under substitutions follows since LRat(M) contains REG and it is not closed

under Kleene star.

We finally discuss a property of the class of languages recognized by rational monoid automata.

First, let us recall some definitions about semigroups.

Let S be a semigroup. S1 is the semigroup obtained from S by adjoining an identity element to S.

Similarly S0 is the semigroup obtained from S by adjoining a zero element to S.

An ideal I of a semigroup S is a subset of S with the property that S1IS1 ⊆ I. A semigroup is called

simple if it contains no proper ideal. A semigroup S with a zero element is called 0-simple if the only

ideals of S are {0} and S itself, and SS 6= {0}.

An idempotent element is called primitive if for every non-zero idempotent f , e f = f e = f implies

that e= f . A semigroup is completely simple (completely 0-simple) if it is simple (0-simple) and contains

a primitive idempotent.
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Among the closure properties fulfilled by LRat(M), it is known that, for an arbitrary finitely generated

monoid M, LRat(M) is a full trio [21]. We recall that a family of languages is said to be a full trio if it

is closed under taking morphisms, intersection with regular languages, and inverse morphisms. This can

be reinforced in the case of monoids that are completely simple or completely 0-simple (see [9], Ch. III

for a basic introduction to such structures).

For this purpose, let us recall the following theorem of [22].

Fact 4. [22] Let M be a completely simple or completely 0-simple monoid with maximal non-zero sub-

group G. Then LRat(M) = LRat(G) = L1(G).

A subset S ⊆ N
n is a linear set if S = {v0 + Σk

i=1civi|c1, . . . ,ck ∈ N} for some v0, . . . ,vk ∈ N
n. A

semi-linear set is a finite union of linear sets. A full trio is called semi-linear if the Parikh image of every

language of the family is semi-linear. Moreover a language L ⊆ A∗ is said to be bounded if there exist

words u1, . . . ,un ∈ A+ such that L ⊆ u∗1 · · ·u
∗
n. A bounded language is said to be (bounded) semi-linear

if there exists a semi-linear set B of Nn such that L = {u
b1

1 · · ·ubn
n : (b1, . . . ,bn) ∈ B}. We have then the

following corollary.

Corollary 3. Let M be a finitely generated completely simple or completely 0-simple monoid with max-

imal non-zero subgroup G. If M is permutable, then LRat(M) is a semi-linear full trio. In particular,

every bounded language in LRat(M) is (bounded) semi-linear.

Proof. Let G be the maximal subgroup of M. By Fact 4, LRat(M) = L1(G). Since M is a finitely

generated semigroup, then G is a finitely generated group as well ([4], Ch. III Prop. 3.2.4 or [14] Lem.

3.4). Moreover, since G is permutable, by Fact 2, G has a finitely generated Abelian subgroup H of

finite index in G. By Cor. 3.3 of [1], L1(G) = L1(H) and by Thm. 7 of [16], one has L1(H) = L1(Z
m)

for some m ≥ 1, where Z
m is the free Abelian group over m generators. We now recall that, by a result

of [8] L1(Z
m) is a semi-linear full trio. Let L be a bounded language in LRat(M). By the previous

considerations, L ∈ L1(Z
m) and the fact that L is (bounded) semi-linear follows from a classical theorem

of Ibarra [11].

4 Valence grammars and valence automata

In this section, we are going to focus on valence grammars and valence automata. We start by making a

connection between valence automata and valence PDA, proving that valence PDA are only as powerful

as valence automata. Then, we extend some results proven for regular valence grammars to context-free

valence grammars.

4.1 Equivalence of finite and pushdown automata with valences

A well known class of inverse monoids is that of the polycyclic monoids. Let X be a finite alphabet and

let X∗ be the free monoid of words over X . For each symbol x ∈ X , let Px and Qx be functions from X∗

into X∗ defined as follows: for every u ∈ X∗,

Px(u) = ux, Qx(ux) = u.

Note that Qx is a partial function from X∗ into X∗ whose domain is the language X∗x. The submonoid

of the monoid of all partial functions on X∗ generated by the set of functions {Px, Qx | x ∈ X} turns

out to be an inverse monoid, denoted by P(X), called the polycyclic monoid on X . It was explicitly
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studied by Nivat and Perrot in [18] and, in the case |X |= 1, the monoid P(X) coincides with the well-

known structure of bicyclic monoid which will be denoted by B (see [9]). Polycyclic monoids have

several applications in formal language theory and, in particular, define an interesting storage model of

computation for the recognization of formal languages [1, 7, 13, 17, 18].

For any element x ∈ X , PxQx = 1 where 1 is the identity element of P(X) and for any two distinct

elements x,y ∈ X , PxQy is the empty partial function which represents the zero element of P(X). The

partial functions {Px,Qx} model the operation of pushing and popping x in a PDA, respectively. In order

to model popping and pushing the empty string, let us define Pε and Qε as Pε = Qε = 1. The equivalence

between PDA with stack alphabet X and P(X)-automata is investigated in various papers [1, 7, 13]. Note

that a P(X)-automaton is a valence automaton over P(X).

We will focus on the polycyclic monoid of rank 2, which will be denoted by P2, since it contains

every polycyclic monoid of countable rank.

Theorem 1. For any monoid M, L(Val,PDA,M) = L(Val,NFA, P2 ×M).

Proof. Let L ∈ L(Val,PDA,M) and P = {Q,Σ,X ,δ ,q0,F,M} be a valence PDA recognizing L. We

know that a PDA with stack alphabet X is equivalent to a valence automaton over P(X). Hence, P
can be seen as an NFA where two distinct valences (one in P(X) and one in M) are assigned to each

transition. An equivalent valence automaton M = {Q,Σ,P(X)×M,δ ′,q0,F} can be constructed, where

a valence from the monoid P(X)×M is assigned to each transition. Recall that the partial functions Qa

and Pb model the operations of popping a and pushing b respectively. A transition of P of the form

(q′,b,m) ∈ δ (q,σ ,a) where a,b ∈ Xε , q,q′ ∈ Q, σ ∈ Σε and m ∈ M can be expressed equivalently as

(q′,〈QaPb,m〉) ∈ δ ′(q,σ) where 〈QaPb,m〉 ∈ P(X)×M.

A string is accepted by M if and only if the product of the valences labeling the transitions in M
is equal to 〈1,1〉, equivalently when the product of the valences labeling the transitions in P is equal to

the identity element of M and the stack is empty. Since any polycyclic monoid is embedded in P2, we

conclude that L ∈ L(Val,NFA,P2 ×M).

Conversely, let L∈L(Val,NFA,P2×M) and let M = {Q,Σ,P2×M,δ ,q0,F} be a valence automaton

over P2 ×M recognizing L. Suppose that 〈p,m〉 ∈ P2 ×M is a valence labeling a transition of M . The

product of the labels of a computation which involves a transition labeled by the zero element of P2 can

not be equal to the identity element. Hence we can remove such transitions. Any nonzero element p

of P2 can be written as Qx1
Qx2

. . .Qxn
Py1

Py2
. . .Pyo

for some n,o ∈ N and xi,yi ∈ Xε , after canceling out

elements of the form PaQa and PbQb, where X = {a,b} is the generator set for P2. The product can be

interpreted as a series of pop operations followed by a series of push operations performed by a PDA,

without consuming any input symbol. Hence, an equivalent valence PDA P = {Q′,Σ,X ,δ ′,q0,F,M}
can be constructed where a valence from M is assigned to each transition. Let (q′,〈p,m〉) ∈ δ (q,σ)
where q,q′ ∈ Q, σ ∈ Σε , 〈p,m〉 ∈ P2 ×M and p = Qx1

Qx2
. . .Qxn

Py1
Py2

. . .Pyo
be a transition in M . In

P , we need an extra n+o states {q1, . . . ,qn+o} /∈ Q and the following transitions to mimic that specific

transition of M .

(q1,ε ,m) ∈ δ ′(q,σ ,x1)

(q2,ε ,1) ∈ δ ′(q1,ε ,x2)

...

(qn+1,ε ,1) ∈ δ ′(qn,ε ,xn)
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(qn+2,y1,1) ∈ δ ′(qn+1,ε ,ε)

(qn+3,y2,1) ∈ δ ′(qn+2,ε ,ε)

...

(q′,yo,1) ∈ δ ′(qn+o,ε ,ε)

A string is accepted by P if and only if the product of the valences labeling the transitions in P is

equal to the identity element of M and the stack is empty, equivalently when the product of the valences

labeling the transitions in M is equal to 〈1,1〉. We conclude that L ∈ L(Val,PDA,M).

Note that when M is commutative, the equality L(Val,CF,M) = L(Val,NFA,P2 ×M) also holds.

Corollary 4. Let M be a polycyclic monoid of rank 2 or more. Then L(Val,PDA,M) is the class of

recursively enumerable languages.

Proof. It is known that L(Val,NFA,M×M) is the class of recursively enumerable languages [13] when

M is a polycyclic monoid of rank 2 or more. Since L(Val,PDA,M) = L(Val,NFA,P2×M), by Theorem

1, the result follows.

4.2 Context-free valence languages

It is known that the class of languages generated by regular valence grammars and the class of languages

recognized by valence automata coincide [6]. In this section, we are going to prove that the results

proven in [21] which hold for valence automata and therefore regular valence grammars, also hold for

context-free valence grammars. Although the proofs are almost identical, they are presented here for

completeness. Note that the same proofs can be also adapted to valence PDA.

Let I be an ideal of a semigroup S. The binary relation ρI defined by

aρIb ⇐⇒ either a = b or both a and b belong to I

is a congruence. The equivalence classes of S mod ρI are I itself and every one-element set {x} with

x ∈ S\ I. The quotient semigroup S/ρI is written as S/I and is called the Rees quotient semigroup [9].

S/I = {I}∪{{x}|x ∈ S\ I}

In [21] Prop. 4.1.1, it is shown that the elements belonging to a proper ideal of a monoid do not have

any use in the corresponding monoid automaton. We show that the same result holds for context-free

valence grammars.

Proposition 3. Let I be a proper ideal of a monoid M. Then L(Val,CF,M) = L(Val,CF,M/I).

Proof. Let L ∈ L(Val,CF,M) and let G be a context-free grammar over the monoid M such that L(G) =
L. The product of the valences which appear in a derivation containing a rule with valence x∈ I, will itself

belong to I. Since I is a proper ideal and 1 /∈ I, such a derivation is not valid. Hence any such rules can

be removed from the grammar and we can assume that G has no such rules. For any x1,x2, . . . ,xn ∈ M\ I,

it follows that x1 . . .xn = 1 in M if and only if {x1}{x2} . . .{xn}= {1} in M/I. Let G′ be the context-free

grammar with valences in M/I, obtained from G by replacing each valence x ∈ M with {x}. It follows

that a string w has a valid derivation in G if and only if the product of the valences is mapped to {1} in

G′. Hence L(G′) = L.
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Conversely let L ∈ L(Val,CF,M/I) and let G′ be a context-free grammar over the monoid M/I such

that L(G′) = L. Suppose that there exists a valid derivation consisting of a rule with I as the valence.

Then the product of the valences of the whole derivation will be I, which is not possible. Let G be the

context-free grammar with valences in M, obtained from G′ by replacing each valence {x} ∈ M/I with

x. Since {x1}{x2} . . .{xn}= {1} in M/I if and only if x1 . . .xn = 1 in M, a string w has a valid derivation

in G if and only if the product of the valences is mapped to {1} in G′. Hence L(G) = L.

Let S be a semigroup. S is the null semigroup if it has an absorbing element zero and if the product

of any two elements in S is equal to zero. A null semigroup with two elements is denoted by O2.

The following corollary is analogous to [21] Cor. 4.1.2.

Corollary 5. For every monoid M, there is a simple or 0-simple monoid N such that

L(Val,CF,M) = L(Val,CF,N).

Proof. If M has no proper ideals then it is simple. Otherwise, let I be the union of all proper ideals

of M and let N = M/I. We can conclude from the proof of Cor. 4.1.2 [21] that N2 = 0 or N is 0-

simple. If N2 = 0, then N is O2 and the semigroup O2 does not add any power to the grammar since it

does not even contain the identity element. Hence, L(Val,CF,O2) = L(Val,CF,{1}) where {1} is the

trivial monoid which is simple. In the latter case N is 0-simple and by Proposition 3, L(Val,CF,M) =
L(Val,CF,M/I) = L(Val,CF,N).

Prop. 4.1.3 of [21] states that a finite automaton over a monoid with a zero element is no more

powerful then a finite automaton over a version of the same monoid from which the zero element has

been removed, in terms of language recognition. The result is still true for context-free valence grammars

since the same proof idea applies. The following notation is used: M0 =M∪{0} if M has no zero element

and M0 = M otherwise.

Proposition 4. Let M be a monoid. Then L(Val,CF,M0) = L(Val,CF,M).

Proof. Since M ⊆ M0, it follows that L(Val,CF,M)⊆ L(Val,CF,M0). Suppose L ∈ L(Val,CF,M0) and

let G be a context-free grammar with valences in M0 and L(G) = L. Note that a valid derivation can not

contain a rule with a zero valence since otherwise the product of the valences would be equal to zero.

Any such rules can be removed from G to obtain G′, a context-free grammar with valences in M, without

changing the language, and L ∈ L(G′).

Fact 5. [21] A simple (0-simple) monoid with identity 1 is either a group (respectively, a group with 0

adjoined) or contains a copy of the bicyclic monoid as a submonoid having 1 as its identity element.

Now we are ready to prove the main theorem of the section which will allow us to determine the

properties of the set of languages generated by context-free valence grammars. We need the following

proposition which is the grammar analogue of Prop. 1 of [12].

Proposition 5. Let M be a monoid, and suppose that L is accepted by a context-free valence grammar

over M. Then there exists a finitely generated submonoid N of M such that L is accepted by a context-free

valence grammar over N.

Proof. There are only finitely many valences appearing in the rules of a grammar since the set of rules

of a grammar is finite. Hence, the valences appearing in derivations are from the submonoid N of M

generated by those elements. So the grammar can be viewed as a context-free valence grammar over

N.



246 Generalized Results on Monoids as Memory

Recall that a group G is locally finite if every finitely generated subgroup of G is finite.

Theorem 2. Let M be a monoid. Then L(Val,CF,M) either

(i) equals CF,

(ii) contains L(Val,CF,B),

(iii) contains L(Val,CF,Z) or

(iv) is equal to L(Val,CF,G) for G an infinite periodic group which is not locally finite.

Proof. Let M be a monoid. By Corollary 5, L(Val,CF,M) = L(Val,CF,N) for some simple or 0-simple

monoid N. By Fact 5, N either contains a copy of the bicyclic monoid as a submonoid or N is a group (a

group with 0 adjoined). In the former case (ii) holds.

In the latter case, if N is a group with zero adjoined, then by Proposition 4 we know that for some

group G, L(Val,CF,N) = L(Val,CF,G). If G is not periodic, then it has an element of infinite order

which generates a subgroup isomorphic to Z and hence (iii) follows. Otherwise, suppose that G is

locally finite. By Proposition 5, every language in L(Val,CF,G) belongs to L(Val,CF,H) for some

finitely generated subgroup H of G. Since G is locally finite, H is finite. Any language L(Val,CF,H) is

context-free by a result from [24] and hence (i) holds. The only remaining case is that G is a periodic

group which is not locally finite, in which case (iv) holds.

For instance, the result about valence grammars over commutative monoids in [6], now follows as a

corollary of Theorem 2.

Corollary 6. Let M be a commutative monoid. Then L(Val,CF,M) = L(Val,CF,G) for some group G.

Proof. Since no commutative monoid M can contain a copy of the bicyclic monoid as a submonoid, the

result follows by the proof of Theorem 2.

5 Future work

Is it possible to prove a pumping lemma for rational monoid automata over permutable monoids?

In Section 4.1, we prove that a valence PDA over M is equivalent to a valence automaton over P2×M.

Can we prove a similar equivalence result for context-free valence grammars?

In Theorem 2, we conclude that when M is a monoid that contains B, L(Val,CF,M) contains the

class L(Val,CF,B). Since B is not commutative, no correspondence with valence PDA exists, and little

is known about the class L(Val,CF,B), except that it contains the set of partially blind one counter

languages. What can we say further about L(Val,CF,B)?

References

[1] Jon M. Corson (2005): Extended finite automata and word problems. International Journal of Algebra and

Computation 15(03), pp. 455–466, doi:10.1016/0022-0000(83)90003-X.

[2] Mario Curzio, Patrizia Longobardi & Mercede Maj (1983): Su di un problema combinatorio in teoria dei

gruppi. Atti della Accademia Nazionale dei Lincei. 74(3), pp. 136–142.

[3] Jürgen Dassow & Victor Mitrana (2000): Finite automata over free groups. International Journal of Algebra

and Computation 10(06), pp. 725–737, doi:10.1016/S0218-1967(00)00031-5.

http://dx.doi.org/10.1016/0022-0000(83)90003-X
http://dx.doi.org/10.1016/S0218-1967(00)00031-5
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