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We investigate the descriptional complexity of operations on semilinear sets. Roughly speaking,

a semilinear set is the finite union of linear sets, which are built by constant and period vectors.

The interesting parameters of a semilinear set are: (i) the maximal value that appears in the vectors

of periods and constants and (ii) the number of such sets of periods and constants necessary to

describe the semilinear set under consideration. More precisely, we prove upper bounds on the

union, intersection, complementation, and inverse homomorphism. In particular, our result on the

complementation upper bound answers an open problem from [G. J. LAVADO, G. PIGHIZZINI,

S. SEKI: Operational State Complexity of Parikh Equivalence, 2014].

1 Introduction

A subset of Nk, where N refers to the set of non-negative integers, of the form

L(C,P) =

{

~c+ ∑
~xi∈P

λi ·~xi

∣

∣

∣

∣

∣

~c ∈C and λi ∈ N

}

,

for finite sets of periods and constants P,C ⊆Nk, is said to be linear if C is a singleton set. In this case we

just write L(~c,P), where~c is the constant vector. This can be seen as a straightforward generalization of

an arithmetic progression allowing multiple differences. Moreover, a subset of Nk is said to be semilinear

if it is a finite union of linear sets. Semilinear sets were extensively studied in the literature and have

many applications in formal language and automata theory.

Let us recall two famous results from the very beginning of computer science, where semilinear sets

play an important role. The Parikh image of a word w ∈ Σ∗ is defined as the function ψ : Σ∗ → N|Σ|

that maps w to a vector whose components are the numbers of occurrences of letters from Σ in w.

Parikh’s theorem states that the Parikh image of every context-free language L, that is, {ψ(w) | w ∈ L},

is a semilinear set [11]. A direct application of Parikh’s theorem is that every context-free language

is letter equivalent to a regular language. Another famous result on semilinear sets is their definability

in Presburger arithmetic [6], that is, the first order theory of natural numbers with addition but without

multiplication. Since Presburger arithmetic is decidable, corresponding questions on semilinear sets

are decidable as well, because the conversion between semilinear set representations by vectors and

Presburger formulas and vice versa is effectively computable.

Recently, semilinear sets appeared particularly in two different research directions from automata

theory. The first research direction is that of jumping automata, a machine model for discontinuous in-

formation processing, recently introduced in [10]. Roughly speaking, a jumping finite automaton is an

ordinary finite automaton, which is allowed to read letters from anywhere in the input string, not neces-

sarily only from the left of the remaining input. Since a jumping finite automaton reads the input in a
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discontinuous fashion, obviously, the order of the input letters does not matter. Thus, only the number

of symbols in the input is important. In this way, the behavior of jumping automata is somehow related

to the notions of Parikh image and Parikh equivalence. As already mentioned regular and context-free

languages cannot be distinguished via Parikh equivalence, since both language families have semilinear

Parikh images. This is in fact the starting point of the other recent research direction, the investigation

of several classical results on automata conversions and operations subject to the notion of Parikh equiv-

alence. For instance, in [8] it was shown that the cost of the conversion of an n-state nondeterministic

finite automaton into a Parikh equivalent deterministic finite state device is of order eΘ(
√

n ln n)—this is in

sharp contrast to the classical result on finite automata determinization which requires 2n states in the

worst case. A close inspection of these results reveals that there is a nice relation between Parikh images

and Parikh equivalence of regular languages and jumping finite automata via semilinear sets. Thus one

can read the above mentioned results as results on semilinear sets as well.

Here we investigate the descriptional complexity of the operation problem on semilinear sets. Recall

that semilinear sets are closed under Boolean operations. The operands of the operations are semilinear

sets of the form
⋃

i∈I L(~ci,Pi)⊆Nk. Our resulting semilinear sets are of the form S=
⋃

j∈J L(C j,Q j)⊆Nk.

We investigate upper bounds for the cardinality |J| of the index set and for the norms ||Q j|| and ||C j||,
these are the maximal values that appear in the vectors of periods Q j and constants C j. From this, one can

automatically get upper bounds for the cardinalities of periods and constants through |Q j| ≤ (||Q j||+1)k

and |C j| ≤ (||C j||+1)k. One can also write the resulting set S in the form S =
⋃

j∈J,~c∈C j
L(~c,Q j), which

is a finite union of linear sets. In this form the index set has cardinality ∑ j∈J |C j|. Upper bounds are

proved for the Boolean operations and inverse homomorphism on semilinear sets. For instance, roughly

speaking we show that intersection increases the size description polynomially, while complementation

increases it double exponentially. A summary of our results can be found in Table 1. The precise bound

of the former result improves a recent result shown in [9], and the latter result on the complementation

answers an open question stated in [9], too.

Parameters of the resulting semilinear set
⋃

j∈J L(C j,Q j)

Operation |J| max{||C j||, ||Q j||}
Union |I1|+ |I2| ν

Intersection |I1| · |I2| O(m2νk+2 +ν)

Complementation 2(ν+2)O(m)·|I1|log(3k+2)
2(ν+2)O(m)·|I1 |log(3k+2)

Inverse Homom. |I1| O
(

(||H||+1)min(k1,k)(m+1)(ν +1)k+1
)

Table 1: Descriptional complexity results on the operation problem for semilinear subsets of Nk. We

assume k to be a constant in this table. The operands of the operations are semilinear sets of the

form
⋃

i∈Iε
L(~ci,Pi) ⊆ Nk, where ε ∈ {1,2} for the first two operations and ε = 1 for the last two op-

erations. The parameter ν is the maximal value that appears in the vectors of periods and constants in

the operands. The parameter m is the maximal cardinality |Pi| of all the period sets appearing in the

operands. The inverse homomorphism is given by the matrix H ∈Nk×k1 , where k1 is also assumed to be

a constant in this table. The parameter ||H|| is the maximal value that appears in H .

It is worth mentioning that independently in [2] the operation problem for semilinear sets over the

integers Z were studied. The obtained results there rely on involved decomposition techniques for semi-

linear sets. In contrast to that, our results are obtained by careful inspections of the original proofs on

the closure properties. An application of the presented results on semilinear sets to the descriptional
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complexity of jumping automata and finite automata subject to Parikh equivalence is given in [1].

2 Preliminaries

Let Z be the set of integers and N = {0,1,2, . . .} be the set of non-negative integers. For the notion of

semilinear sets we follow the notation of Ginsburg and Spanier [5]. For a natural number k ≥ 1 and

finite C,P ⊆ Nk let L(C,P) denote the subset

L(C,P) =

{

~c+ ∑
~xi∈P

λi ·~xi

∣

∣

∣

∣

∣

~c ∈C and λi ∈ N

}

of Nk. Here the ~c ∈ C are called the constants and the ~xi ∈ P the periods. If C is a singleton set we

call L(C,P) a linear subset of Nk. In this case we simply write L(~c,P) instead of L({~c},P). A subset

of Nk is said to be semilinear if it is a finite union of linear subsets. We further use |P| to denote the size

of a finite subset P ⊆ Nk and ||P|| to refer to the value max{||~x|| |~x ∈ P}, where ||~x|| is the maximum

norm of~x, that is, ||(x1,x2, . . . ,xk)||= max{|xi| | 1 ≤ i ≤ k}. Observe, that

|P| ≤ (||P||+1)k.

Analogously we write ||A|| for the maximum norm of a matrix A with entries in Z, i.e. the maximum of

the absolute values of all entries of A. The elements of Nk can be partially ordered by the ≤-relation on

vectors. For vectors~x,~y ∈Nk we write~x ≤~y if all components of~x are less or equal to the corresponding

components of~y. In this way we especially can speak of minimal elements of subsets of Nk. In fact, due

to [3] every subset of Nk has only a finite number of minimal elements.

Most results on the descriptional complexity of operations on semilinear sets is based on a size

estimate of minimal solutions of matrix equations. We use a result due to [7, Theorem 2.6], which is

based on [4], and can slightly be improved by a careful inspection of the original proof. The generalized

result reads as follows:

Theorem 1 Let s, t ≥ 1 be integers, A ∈ Zs×t be a matrix of rank r, and~b ∈ Zs be a vector. Moreover,

let M be the maximum of the absolute values of the r× r sub-determinants of the extended matrix (A |~b),
and S ⊆ Nt be the set of minimal elements of {~x ∈ Nt \{~0} | A~x =~b}. Then ||S|| ≤ (t +1) ·M.

We will estimate the value of the above mentioned (sub)determinants with a corollary of Hadamard’s

inequality:

Theorem 2 Let r ≥ 1 be an integer, A ∈ Zr×r be a matrix, and mi, for 1 ≤ i ≤ r, be the maximum of the

absolute values of the entries of the ith column of A. Then |det(A)| ≤ rr/2 ∏r
i=1 mi.

3 Operational complexity of semilinear sets

In this section we consider the descriptional complexity of operations on semilinear sets. We investigate

the Boolean operations union, intersection, and complementation w.r.t. Nk. Moreover, we also study the

operation of inverse homomorphism on semilinear sets.
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3.1 Union on semilinear sets

For the union of semilinear sets, the following result is straightforward.

Theorem 3 Let
⋃

i∈I L(~ci,Pi) and
⋃

j∈J L(~c j,Pj) be semilinear subsets of Nk, for some k ≥ 1. Assume

that I and J are disjoint finite index sets. Then the union

(

⋃

i∈I

L(~ci,Pi)

)

∪
(

⋃

j∈J

L(~c j,Pj)

)

=
⋃

i∈I∪J

L(~ci,Pi)

can be described by a semilinear set with index sets size |I|+ |J|, the maximal number of elements m =
maxi∈I∪J |Pi| in the period sets, and the entries in the constant vectors are at most ℓ= maxi∈I∪J ||~ci|| and

in the period vectors at most n = maxi∈I∪J ||Pi||.

Thus, the size increase for union on semilinear sets is only linear with respect to all parameters.

3.2 Intersection of semilinear sets

Next we consider the intersection operation on semilinear sets. The outline of the construction is as

follows: we analyse the proof that semilinear sets are closed under intersection from [5, Theorem 6.1].

Due to distributivity it suffices to look at the intersection of linear sets. Those coefficients of the periods

of our linear sets, which deliver a vector in the intersection, are described by systems of linear equations.

For the intersection of the linear sets we get a semilinear set, where the periods and constants are built out

of the minimal solutions of these systems of equations. We will estimate the size of the minimal solutions

with the help of Theorems 1 and 2 in order to obtain upper bounds for the norms of the resulting periods

and constants.

Theorem 4 Let
⋃

i∈I L(~ci,Pi) and
⋃

j∈J L(~c j,Pj) be semilinear subsets of Nk, for some k ≥ 1. As-

sume that I and J are disjoint finite index sets. We set n = maxi∈I∪J ||Pi||, m = maxi∈I∪J |Pi|, and

ℓ= maxi∈I∪J ||~ci||. Then for every (i, j) ∈ I × J there exist Pi, j,Ci, j ⊆ Nk with

||Pi, j|| ≤ 3m2kk/2nk+1,

||Ci, j|| ≤ (3m2kk/2nk+1 +1)ℓ,

and
(
⋃

i∈I L(~ci,Pi)
)

∩
(
⋃

j∈J L(~c j,Pj)
)

=
⋃

(i, j)∈I×J L(Ci, j, Pi, j).

Proof : We analyse the proof that semilinear sets are closed under intersection from [5, Theorem 6.1].

Let i ∈ I and j ∈ J be fixed and let Pi = {~x1,~x2, . . . ,~xp}, and Pj = {~y1,~y2, . . . ,~yq}. Denote by X and Y the

subsets of Np+q defined by

X =

{

(λ1, . . . ,λp,µ1, . . . ,µq) ∈ Np+q

∣

∣

∣

∣

∣

~ci +
p

∑
r=1

λr~xr =~c j +
q

∑
s=1

µs~ys

}

and

Y =

{

(λ1, . . . ,λp,µ1, . . . ,µq) ∈ Np+q

∣

∣

∣

∣

∣

p

∑
r=1

λr~xr =
q

∑
s=1

µs~ys

}

.

Let C and P be the sets of minimal elements of X and Y \{~0}. In the proof of [5, Theorem 6.1] it was

shown that X = L(C,P).
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In order to estimate the size of ||C|| and ||P|| we use an alternative description of the vectors in X

and Y in terms of matrix calculus. Let us define the matrix H = (~x1 |~x2 | · · ·~xp | −~y1 | −~y2 | · · · | −~yq)
in Zk×(p+q). Then it is easy to see that

~x ∈ X if and only if H~x =~c j −~ci,

and

~y ∈ Y if and only if H~y =~0.

With ||Pi||, ||Pj|| ≤ n, we derive from Theorem 2 that the maximum of the absolute values of any r× r

sub-determinant, for 1 ≤ r ≤ k, of the extended matrix (H |~0) is bounded from above by kk/2nk, because

the maximum of the absolute values of the entries of the whole extended matrix (H |~0) is n. Then by

Theorem 1 we conclude that

||P|| ≤ (p+q+1)kk/2nk ≤ 3mkk/2nk.

Analogously we can estimate the value of the maximum of the absolute values of any r× r sub-deter-

minant, for 1 ≤ r ≤ k, of the extended matrix (H | ~c j −~ci) by Theorem 2. It is bounded by kk/2nkℓ,
because the maxima of the absolute values of the columns of (H |~c j −~ci) are bounded by n and ℓ. Thus

we have

||C|| ≤ (p+q+1)kk/2nkℓ≤ 3mkk/2nkℓ

by Theorem 1.

Let τ : Np+q → Nk be the linear function given by (λ1, . . . ,λp,µ1, . . . ,µq) 7→ ∑
p
r=1 λr~xr. Then we

have L(~ci,Pi)∩L(~c j,Pj) =~ci + τ(X). The linearity of τ implies that τ(X) is equal to the semilinear

set L(τ(C),τ(P)) (see, for example, [5]). So we get L(~ci,Pi)∩L(~c j,Pj) = L(~ci + τ(C),τ(P)). Because

of p ≤ m and ||Pi|| ≤ n we obtain

||τ(P)|| ≤ m · ||P|| ·n ≤ 3m2kk/2nk+1

and

||τ(C)|| ≤ m · ||C|| ·n ≤ 3m2kk/2nk+1ℓ.

It follows that ||~ci + τ(C)|| ≤ ℓ+ ||τ(C)||= (3m2kk/2nk+1 +1)ℓ.
Because

(
⋃

i∈I L(~ci,Pi)
)

∩
(
⋃

j∈J L(~c j,Pj)
)

is equal to the semilinear set
⋃

(i, j)∈I×J L(~ci,Pi)∩L(~c j,Pj)
our theorem is proved.

The index set of the semilinear set for the intersection has size |I| · |J| and the norms of the periods

and constants are in O(m2νk+2 + ν) if dimension k is constant. Here ν is the maximum of n and ℓ,
which means that it is the maximum norm appearing in the two operands of the intersection. So the size

increase for intersection is polynomial with respect to all parameters.

Now we turn to the intersection of more than two semilinear sets. The result is later utilized to

explore the descriptional complexity of the complementation. First we have to deal with the intersection

of two semilinear sets of the form
⋃

i∈I L(Ci,Pi) instead of
⋃

i∈I L(~ci,Pi) as in the previous theorem. The

following lemma is proved by writing a semilinear set of the form L(Ci,Pi) as
⋃

~ci∈Ci
L(~ci,Pi) and applying

Theorem 4.

Lemma 5 Let
⋃

i∈I L(Ci,Pi) and
⋃

j∈J L(C j,Pj) be semilinear subsets of Nk, for some k ≥ 1. As-

sume that I and J are disjoint finite index sets. We set p = max{|I|, |J|}, n = maxi∈I∪J ||Pi||, and

ℓ= maxi∈I∪J ||Ci||. Define ak = 4k+1kk/2. Then there exists an index set H with

|H| ≤ p2(ℓ+1)2k
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such that, for each h ∈ H, there are Ph,Ch ⊆ Nk with

||Ph|| ≤ akn3k+1,

||Ch|| ≤ (akn3k+1 +1)ℓ,

and
(

⋃

i∈I L(Ci,Pi)
)

∩
(
⋃

j∈J L(C j,Pj)
)

=
⋃

h∈H L(Ch, Ph).

Proof : Let i ∈ I, j ∈ J,~c ∈ Ci, and ~d ∈ C j be fixed. The proof of Theorem 4 shows that there ex-

ist C
i, j,~c, ~d , P

i, j,~c, ~d ⊆ Nk with

||P
i, j,~c, ~d || ≤ 3m2kk/2nk+1,

||C
i, j,~c, ~d || ≤ (3m2kk/2nk+1 +1)ℓ,

and L(~c,Pi)∩L(~d,Pj) = L(C
i, j,~c, ~d , P

i, j,~c, ~d), where m is the maximum of |Pi| and |Pj|. Since Pi, Pj ⊆ Nk,

we have m ≤ (n+1)k ≤ (2n)k, for n > 0. This gives us

||P
i, j,~c, ~d || ≤ 3m2kk/2nk+1 ≤ 3(2n)2kkk/2nk+1 = 3 ·4kkk/2n3k+1 ≤ akn3k+1

and ||C
i, j,~c, ~d || ≤ (akn3k+1 +1)ℓ. With

(

⋃

i∈I

L(Ci,Pi)

)

∩
(

⋃

j∈J

L(C j,Pj)

)

=
⋃

(i, j)∈I×J

L(Ci,Pi)∩L(C j,Pj)

and

L(Ci,Pi)∩L(C j,Pj) =

(

⋃

~c∈Ci

L(~c,Pi)

)

∩





⋃

~d∈C j

L(~d,Pj)



=
⋃

(~c,~d)∈Ci×C j

L(~c,Pi)∩L(~d,Pj)

our result is proven because of |Ci ×C j| ≤ (ℓ+1)2k.

Now we present the result on the intersection of a finite number of semilinear sets.

Theorem 6 Let k ≥ 1 and X 6= /0 be a finite index set. For every x ∈ X let
⋃

i∈Ix
L(Ci,Pi) be a semilin-

ear subset of Nk. Assume that Ix, Iy are disjoint finite index sets for x, y ∈ X with x 6= y. We set n =
maxx∈X , i∈Ix

||Pi|| and ℓ = maxx∈X , i∈Ix
||Ci||. Define p = maxx∈X |Ix|, q = ⌈log2 |X |⌉, and ak = 4k+1kk/2.

Then there exists an index set J with

|J| ≤ p2q

(ℓ+1)k·2q+1

(akn+1)4(3k+2)q+1

, (1)

such that, for each j ∈ J, there are Pj,C j ⊆ Nk with

||Pj|| ≤ (akn)(3k+1)q

,

||C j|| ≤ (akn+1)(3k+2)q

ℓ,

and
⋂

x∈X

(
⋃

i∈Ix
L(Ci,Pi)

)

=
⋃

j∈J L(C j,Pj).



S. Beier, M. Holzer & M. Kutrib 47

Proof : We prove this by induction on q. For q = 0 we have |X | = 1, so let X be the set {x}. Then we

choose J = Ix and get

|J|= p ≤ p1(ℓ+1)2k(akn+1)4(3k+2)1

= p2q

(ℓ+1)k·2q+1

(akn+1)4(3k+2)q+1

and

||Pj|| ≤ n ≤ (akn)1 = (akn)(3k+1)q

,

||C j|| ≤ ℓ≤ (akn+1)1ℓ= (akn+1)(3k+2)q

ℓ

for every j ∈ J = Ix. This proves the statement for q = 0.

For q = 1 we have |X |= 2. In this case our statement follows directly from Lemma 5. Now let q > 1.

We build pairs of the indices in X . This gives us ⌊|X |/2⌋ pairs of indices and an additional single index,

if |X | is odd. Due to Lemma 5 we get for each such pair (x,y) of indices an index set Hx,y with

|Hx,y| ≤ p2(ℓ+1)2k (2)

and for each h ∈ Hx,y sets Ch, Ph ⊆ Nk with

||Ph|| ≤ akn3k+1, ||Ch|| ≤ (akn3k+1 +1)ℓ, (3)

and
(

⋃

i∈Ix

L(Ci,Pi)

)

∩





⋃

j∈Iy

L(C j,Pj)



=
⋃

h∈Hx,y

L(Ch, Ph).

So we have such a semilinear set for each of our pairs of indices and additionally a semilinear set

for a single index out of X , if |X | is odd. If we now intersect these ⌈|X |/2⌉ semilinear sets, we

get
⋂

x∈X

(
⋃

i∈Ix
L(Ci,Pi)

)

. Because of ⌈log2⌈|X |/2⌉⌉ = ⌈log2 |X |⌉ − 1 = q− 1, we can build this in-

tersection by induction. This gives us an index set J and for each j ∈ J sets C j, Pj ⊆ Nk with

⋂

x∈X

(

⋃

i∈Ix

L(Ci,Pi)

)

=
⋃

j∈J

L(C j,Pj).

To get a bound for |J| we use Inequality 1, where we replace q by q− 1. Inequalities 2 and 3 give us

bounds for p, ℓ, and n. So we have

|J| ≤ (p2(ℓ+1)2k)2q−1

((akn3k+1 +1)ℓ+1)k·2q

(a2
kn3k+1 +1)4(3k+2)q

≤ p2q

(ℓ+1)k·2q

((akn3k+1 +1)(ℓ+1))k·2q

(akn+1)4(3k+1)(3k+2)q

.

By ordering the factors we get the upper bound

p2q

(ℓ+1)k(2q+2q)(akn+1)(3k+1)k·2q+4(3k+1)(3k+2)q

= p2q

(ℓ+1)k·2q+1

(akn+1)4((3k+1)k·2q−2+(3k+1)(3k+2)q).

Then

(3k+1)k ·2q−2 +(3k+1)(3k+2)q ≤ (3k+2)q +(3k+1)(3k+2)q = (3k+2)q+1

gives us

|J| ≤ p2q

(ℓ+1)k·2q+1

(akn+1)4(3k+2)q+1

.
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For each j ∈ J we get

||Pj|| ≤ (a2
kn3k+1)(3k+1)q−1 ≤ (akn)(3k+1)q

and

||C j|| ≤ (a2
kn3k+1 +1)(3k+2)q−1

(akn3k+1 +1)ℓ≤ (akn+1)(3k+1)(3k+2)q−1+3k+1ℓ.

Because of (3k + 1)(3k + 2)q−1 + 3k + 1 ≤ (3k + 1)(3k + 2)q−1 + (3k + 2)q−1 = (3k + 2)q we finally

obtain the bound ||C j|| ≤ (akn+1)(3k+2)q

ℓ.

3.3 Complementation of semilinear sets

The next Boolean operation is the complementation. Our result is based on [5, Lemma 6.6, Lemma 6.8,

and Lemma 6.9], which we slightly adapt. First we complement a linear set where the constant is the

null-vector and the periods are linearly independent in Lemma 7. We continue by complementing a

linear set with an arbitrary constant and linearly independent periods in Corollary 8. To complement a

semilinear set where all the period sets are linearly independent in Theorem 9 we use DeMorgan’s law:

a semilinear set is a finite union of linear sets, so the complement is the intersection of the complements

of the linear sets. For this intersection we use Theorem 6. Then we convert an arbitrary linear set to a

semilinear set with linearly independent period sets in Lemma 10. Finally we insert the bounds from

Lemma 10 into the bounds from Theorem 9 to complement an arbitrary semilinear set in Theorem 11.

Lemma 7 Let n, k ≥ 1, and P ⊆ Nk be linearly independent with ||P|| ≤ n. Then there exists an index

set I with |I| ≤ 2k + k−1 such that, for each i ∈ I, there are subsets Pi,Ci ⊆Nk with

||Pi||, ||Ci|| ≤ (2k+1)kk/2nk

and Nk \L(~0,P) =
⋃

i∈I L(Ci,Pi).

Proof : Let P = {~x1,~x2, . . . ,~xp}. Since the vectors in P are linearly independent, we conclude p ≤ k.

For i ∈ {1,2, . . . ,k} let~ei ∈ Nk be the unit vector defined by (~ei)i = 1 and (~ei) j = 0 for i 6= j. By elemen-

tary vector space theory there exist~xp+1,~xp+2, . . . ,~xk ∈ {~e1,~e2, . . . ,~ek} such that~x1,~x2, . . . ,~xk are linearly

independent. Let ∆ be the absolute value of the determinant of the matrix (~x1 |~x2 | · · · |~xk). Moreover,

let π : Nk ×Nk → Nk be the projection on the first factor. For J, K ⊆ {1,2, . . . ,k} we define

AJ = {(~y,~a) ∈ Nk ×Nk | a j > 0 for all j ∈ J }

and

BK =

{

(~y,~a) ∈Nk ×Nk

∣

∣

∣

∣

∣

∆~y+ ∑
i∈K

ai~xi = ∑
i∈{1,...,k}\K

ai~xi

}

.

Let QK and DK,J be the sets of minimal elements of BK \{~0} and BK ∩AJ. Looking at the proof of [5,

Theorem 6.1] we see that BK ∩AJ = L(DK,J ,QK). The linearity of π implies

π(BK ∩AJ) = L(π(DK,J),π(QK)).

Next define

B′
K =

{

(~y,~a) ∈ Nk ×Nk

∣

∣

∣

∣

∣

~y+ ∑
i∈K

ai~xi = ∑
i∈{1,...,k}\K

ai~xi and~y = ∆~z for some~z ∈ Nk

}
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and Q′
K and D′

K,J to be the sets of minimal elements of B′
K \ {0} and B′

K ∩ AJ. Then the mapping

f : B′
K → BK , defined via (~y,~a) 7→ (~y/∆,~a) is a bijection. The proof of [4] and Theorem 2 show that

||Q′
K ||, ||D′

K,J || ≤ (2k∆+1)kk/2nk ≤ ∆ · (2k+1)kk/2nk.

With QK = f (Q′
K) and DK,J = f (D′

K,J) we get

||π(QK)||, ||π(DK,J)|| ≤ (2k+1)kk/2nk.

Set G1 =
⋃

/06=K⊆{1,...,k} π(BK ∩AK).

Because~x1,~x2, . . . ,~xk are linearly independent every~y ∈Nk can be written uniquely as~y = ∑k
i=1 λy,i~xi

with λy,i ∈ Q, for i ∈ {1,2, . . . ,k}. Then ~y ∈ L(~0,P) if and only if λy,i ∈ N, for every i ∈ {1,2, . . . , p}
and λy,i = 0, for every i ∈ {p+1, p+2, . . . ,k}. In the proof of [5, Lemma 6.7] it was shown that ∆~y can

be written uniquely as ∆~y = ∑k
i=1 µy,i~xi with µy,i ∈ Z, for i ∈ {1,2, . . . ,k}. Because of λy,i = µy,i/∆ we get

that~y ∈ L(~0,P) if and only if µy,i is a non-negative multiple of ∆, for every i ∈ {1,2, . . . , p} and µy,i = 0,

for every i ∈ {p+ 1, p+ 2, . . . ,k}. The set G1 consists of all ~y ∈ Nk such that at least one of the µy,i is

negative. This implies G1 ⊆ Nk \L(~0,P).
Now we set G2 =

⋃k
i=p+1 π(B /0 ∩A{i}). This set consists of all ~y ∈ Nk such that all the µy,i are non-

negative and there exists i∈ {p+1, p+2, . . . ,k} such that µy,i is positive. This implies G2 ⊆Nk \L(~0,P).
For i ∈ {1,2, . . . , p} and r ∈ {0,1, . . . ,∆−1} we set

Ei,r =

{

(~y,~a) ∈ Nk ×Np

∣

∣

∣

∣

∣

∆~y =
p

∑
j=1

a j~x j and ai mod ∆ = r

}

.

Let Ri,r be the set of minimal elements of Ei,r \ {~0}. According to the proof of [5, Theorem 6.1] we

get Ei,r = L(Ri,r,Ri,0), for r > 0. We set π ′ : Nk ×Np → Nk to be the projection on the first factor.

Then π ′(Ei,r) = L(π ′(Ri,r),π
′(Ri,0)), for r > 0, and

∆−1
⋃

r=1

π ′(Ei,r) = L(
∆−1
⋃

r=1

π ′(Ri,r),π
′(Ri,0)).

Let (~y,~a) ∈ Ri,r. Then we have ||~a|| ≤ ∆. This implies ||~y|| ≤ pn. So we obtain ||π ′(Ri,r)|| ≤ pn.

Define G3 =
⋃p

i=1

⋃∆−1
r=1 π ′(Ei,r). This is the set of all vectors ~y ∈ Nk such that µy, j = 0, for every j ∈

{p+ 1, p+ 2, . . . ,k}, µy, j ≥ 0, for every j ∈ {1,2, . . . , p}, and µy, j is not divisible by ∆ for at least one

j ∈ {1,2, . . . , p}. Thus we have G1 ∪G2 ∪G3 = Nk \L(~0,P).

The next lemma gives a size estimation for the set Nk \L(~x0,P), for an arbitrary vector~x0, instead of

the null-vector, as in the previous theorem.

Lemma 8 Let k ≥ 1, subset P ⊆ Nk be linearly independent, and ~x0 ∈ Nk. Then there exists an index

set I with |I| ≤ 2k +2k−1 such that, for each i ∈ I, there are Pi,Ci ⊆Nk with

||Pi|| ≤ (2k+1)kk/2(||P||+1)k,

||Ci|| ≤ (2k+1)kk/2(||P||+1)k + ||~x0||,
|Ci| ≤ max(4kkk2/2+k(||P||+1)k2

, ||~x0||),

and Nk \L(~x0,P) =
⋃

i∈I L(Ci,Pi).
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Proof : For j ∈ {1,2, . . . ,k} let

D j = {~y ∈ Nk | yℓ = 0 for ℓ 6= j and y j < (~x0) j }

and Q j = {~e1, . . . ,~e j−1,~e j+1, . . . ,~ek}, where the ~eℓ are defined as in the proof of Lemma 7. Define the

set G=
⋃k

j=1 L(D j,Q j). This is the set of all~y∈Nk such that~x0 ≤~y is false. So we have G⊆Nk\L(~x0,P).

Now let Y = {~y ∈ Nk |~x0 ≤~y}. Then Nk \L(~x0,P) = G∪ (Y \ L(~x0,P)). We have Y \ L(~x0,P) =
(Nk \L(~0,P))+~x0. Due to Lemma 7 we have an index set J with |J| ≤ 2k + k− 1 and for each j ∈ J

subsets C j, Pj ⊆ Nk with ||C j||, ||Pj|| ≤ (2k+1)kk/2(||P||+1)k such that Nk \L(~0,P) =
⋃

j∈J L(C j,Pj).

This gives us (Nk \L(~0,P))+~x0 =
⋃

j∈J L(C j +~x0,Pj). Because of C j ⊆ Nk we obtain

|C j +~x0|= |C j| ≤ ((2k+1)kk/2(||P||+1)k +1)k ≤ (4kk/2+1(||P||+1)k)k = 4kkk2/2+k(||P||+1)k2

.

This proves the stated claim.

Now we are ready to deal with the complement of a semilinear set with linearly independent period

sets.

Theorem 9 Let k ≥ 1 and
⋃

i∈I L(~xi,Pi) be a semilinear subset of Nk with I 6= /0 and linearly independent

sets Pi. We set n = maxi∈I ||Pi|| and ℓ = maxi∈I ||~xi||. Define q = ⌈log2 |I|⌉. Then there exists an index

set J with

|J| ≤ (4k(n+1))5(k+2)(3k+2)q+1

(ℓ+1)k·2q+1

such that, for each j ∈ J, there are Pj,C j ⊆ Nk with

||Pj|| ≤ (4k(n+1))(k+2)(3k+1)q

,

||C j|| ≤ (4k(n+1))(k+2)(3k+2)q+k(ℓ+1),

and Nk \⋃i∈I L(~xi,Pi) =
⋃

j∈J L(C j,Pj).

Proof : Due to DeMorgan’s law we have

Nk \
⋃

i∈I

L(~xi,Pi) =
⋂

i∈I

(

Nk \L(~xi,Pi)
)

.

Because of Lemma 8 for every i∈ I there exists an index set Hi with |Hi| ≤ 2k+1 such that, for each h∈Hi,

there are Ch, Ph ⊆ Nk with

||Ph|| ≤ (2k+1)kk/2(n+1)k ≤ 3kk/2+1(n+1)k,

||Ch|| ≤ (2k+1)kk/2(n+1)k + ℓ≤ 3kk/2+1(n+1)k + ℓ,

and Nk \L(~xi,Pi) =
⋃

h∈Hi
L(Ch,Ph). Theorem 6 gives us an index set J and for each j ∈ J sets C j, Pj ⊆Nk

with
⋃

j∈J

L(C j,Pj) =
⋂

i∈I

(

⋃

h∈Hi

L(Ch,Ph)

)

= Nk \
⋃

i∈I

L(~xi,Pi)

and

|J| ≤ (2k+1)2q

(3kk/2+1(n+1)k + ℓ+1)k·2q+1

(4k+1kk/2 ·3kk/2+1(n+1)k +1)4(3k+2)q+1

≤ 2(k+1)·2q

(4kk/2+1(n+1)k(ℓ+1))k·2q+1

(4k+2kk+1(n+1)k)4(3k+2)q+1

.
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Now we order the factors and get that this is less than or equal to

2(k+1)·2q+2k·2q+1+8(k+2)(3k+2)q+1

(k(n+1))(k+1)k·2q+1+4(k+1)(3k+2)q+1

(ℓ+1)k·2q+1

.

Because of (5k+1) ≤ (k+2)(3k+2) we have

(k+1) ·2q +2k ·2q+1 +8(k+2)(3k+2)q+1 = (5k+1) ·2q +8(k+2)(3k+2)q+1 ≤ 9(k+2)(3k+2)q+1 .

Furthermore k ·2q+1 ≤ (3k+2)q+1 gives us

(k+1)k ·2q+1 +4(k+1)(3k+2)q+1 ≤ 5(k+1)(3k+2)q+1.

So we get

|J| ≤ 29(k+2)(3k+2)q+1

(k(n+1))5(k+1)(3k+2)q+1

(ℓ+1)k·2q+1 ≤ (4k(n+1))5(k+2)(3k+2)q+1

(ℓ+1)k·2q+1

.

For each j ∈ J we have

||Pj|| ≤ (4k+1kk/2 ·3kk/2+1(n+1)k)(3k+1)q ≤ (4k(n+1))(k+2)(3k+1)q

and

||C j|| ≤ (4k+1kk/2 ·3kk/2+1(n+1)k +1)(3k+2)q

(3kk/2+1(n+1)k + ℓ)

≤ (4k+2kk+1(n+1)k)(3k+2)q

(4kk/2+1(n+1)k(ℓ+1)).

From k(k+1)(3k+2)q

kk/2+1 = k(k+1)(3k+2)q+k/2+1 ≤ k(k+1)(3k+2)q+k+(3k+2)q

= k(k+2)(3k+2)q+k we finally de-

duce ||C j|| ≤ (4k(n+1))(k+2)(3k+2)q+k(ℓ+1).

Next we convert an arbitrary linear set to a semilinear set with linearly independent period sets. The

idea is the following: If the periods are linearly dependent we can rewrite our linear set as a semilinear

set, where in each period set one of the original periods is removed. By doing this inductively the period

sets get smaller and smaller until they are finally linearly independent.

Lemma 10 Let L(~x0,P) be a linear subset of Nk for some k ≥ 1. We set m = |P| and n = ||P||. Then

there exists an index set I with

|I| ≤ (m+1)! ·m!/2m · (kk/2nk +1)m−1

and, for each i ∈ I, a linearly independent subset Pi ⊆ Nk with ||Pi|| ≤ n and a vector~xi ∈Nk with

||~xi|| ≤ ||~x0||+(m+1)(m+2)/2 · kk/2nk+1

such that
⋃

i∈I L(~xi,Pi) = L(~x0,P).

Proof : We prove this by induction on m. The statement of the lemma is clearly true for m = 0 or m = 1.

So let m ≥ 2 now. If P is linearly independent the statement of the lemma is trivial. Thus we as-

sume P to be linearly dependent. Then there exists p ∈ {1,2, . . . ,⌊m/2⌋} and pairwise different vec-

tors x1,x2, . . . ,xp,y1,y2, . . . ,ym−p ∈ P such that X =
{

~a ∈ Nm \{~0}
∣

∣

∣
H ·~a =~0

}

, where H ∈ Zk×m is

the matrix (x1|x2| . . . |xp| − y1| − y2| . . . | − ym−p), is not empty. Let ~a be a minimal element of X .

From Theorem 1 and Theorem 2 we deduce ||~a|| ≤ (m + 1)kk/2nk. For j ∈ {1,2, . . . , p} let C j =
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{

~x0 +λ~x j

∣

∣ λ ∈ {0,1, . . . ,a j −1}
}

, if a j > 0, and C j = {~x0}, otherwise. Furthermore let Q j = P\{~x j}.

In the proof of [5, Lemma 6.6] it was shown that
⋃p

j=1 L(C j,Q j) = L(~x0,P). We can rewrite this set

as
⋃

j∈{1,2,...,p},~c∈C j
L(~c,Q j). Here the size of the index set is smaller than or equal to m/2 · ||~a|| ≤

(m+ 1)m/2 · kk/2nk and for each such ~c we have ||~c|| ≤ ||~x0||+ ||~a|| · n ≤ ||~x0||+(m+ 1)kk/2nk+1. Be-

cause of |Q j| = m− 1 for each j ∈ {1,2, . . . , p} and ~c ∈ C j, by induction, there exists an index set I j,~c

with

|I j,~c| ≤ m! · (m−1)!/2(m−1) · (kk/2nk +1)m−2

and, for each i ∈ I j,~c, a linearly independent subset Ri ⊆ Nk with ||Ri|| ≤ n and a vector~zi ∈ Nk with

||~zi|| ≤ ||~c||+m(m+1)/2 · kk/2nk+1

such that
⋃

i∈I j,~c
L(~zi,Ri) = L(~c,Q j). This gives us

⋃

j∈{1,2,...,p},~c∈C j , i∈I j,~c

L(~zi,Ri) = L(~x0,P).

The size of this index set is smaller than or equal to

(m+1)m/2 · kk/2nk ·m! · (m−1)!/2(m−1) · (kk/2nk +1)m−2 ≤ (m+1)! ·m!/2m · (kk/2nk +1)m−1.

With

||~zi|| ≤ ||~x0||+(m+1)kk/2nk+1 +m(m+1)/2 · kk/2nk+1 ≤ ||~x0||+(m+1)(m+2)/2 · kk/2nk+1

the lemma is proved.

With Theorem 9 and Lemma 10 we are ready to complement an arbitrary semilinear set.

Theorem 11 Let k ≥ 1 and
⋃

i∈I L(~xi,Pi) be a semilinear subset of Nk with I 6= /0. We set n = maxi∈I ||Pi||,
m = maxi∈I |Pi|, and ℓ= maxi∈I ||~xi||. Define b(k,n,m, I) as

(√
k(n+2)

)k·log2(3k+2)·(3m+1)+3

· (3k+2)−(2log2(e)+1)m+7 · |I|log2(3k+2).

Then there exists an index set J with

|J| ≤ 2b(k,n,m,I) · (ℓ+2)(
√

k(n+2))
k·(3m+1)+8·(2e2)

−m·|I|

such that, for each j ∈ J, there are Pj,C j ⊆ Nk with

||Pj|| ≤ 2b(k,n,m,I),

||C j|| ≤ 2b(k,n,m,I) · (ℓ+1),

and Nk \⋃i∈I L(~xi,Pi) =
⋃

j∈J L(C j,Pj).

Proof : Because of Lemma 10 there exists an index set H 6= /0 with

|H| ≤ (m+1)! ·m!/2m · (kk/2nk +1)m−1 · |I|

and, for each h ∈ H , a linearly independent subset Ph ⊆ Nk with ||Ph|| ≤ n and a vector~xh ∈Nk with

||~xh|| ≤ ℓ+(m+1)(m+2)/2 · kk/2nk+1
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such that
⋃

h∈H L(~xh,Ph) =
⋃

i∈I L(~xi,Pi). With Stirling’s formula we get

(m+1)! ≤ (m+1)m+3/2e−m and m! ≤ (m+1)m+1/2e−m+1.

This gives us (m+1)! ·m! ≤ (m+1)2m+2e−2m+1 ≤ ((n+1)k +1)2m+2e−2m+1 and we get

|H| ≤ (m+1)! ·m!/2m · (kk/2nk +1)m−1 · |I|
≤ ((n+1)k +1)2m+2e−2m+1/2m · (kk/2nk +1)m−1 · |I|
≤ (kk/2(n+2)k)2m+2e−2m+1/2m · (kk/2(n+2)k)m−1 · |I|

= e ·
(√

k(n+2)
)k·(3m+1)

·
(

2e2
)−m · |I|.

We shall use Theorem 9 to get upper bounds for the complement. So we set q = ⌈log2 |H|⌉. In all three

bounds of Theorem 9 the exponent of 4k(n+1) is bounded from above by (3k+2)q+3. We have

(3k+2)q+3 ≤ (3k+2)log2 |H|+4

= (3k+2)4 · |H|log2(3k+2)

≤ (3k+2)4 ·
(

e ·
(√

k(n+2)
)k·(3m+1)

·
(

2e2
)−m · |I|

)log2(3k+2)

=
(√

k(n+2)
)k·log2(3k+2)·(3m+1)

· (3k+2)−(2log2(e)+1)m+log2(e)+4 · |I|log2(3k+2)

≤
(√

k(n+2)
)−3

· (3k+2)−1 ·b(k,n,m, I).

Because of log2(4k(n+1))≤
(√

k(n+2)
)2

we get

(4k(n+1))(3k+2)q+3 ≤ 2(
√

k(n+2))
−1·(3k+2)−1·b(k,n,m,I). (4)

For the sets Pj from Theorem 9 this implies ||Pj|| ≤ 2b(k,n,m,I) . For each h ∈ H we have

||~xh||+1 ≤ ℓ+(m+1)(m+2)/2 · kk/2nk+1 +1

≤ ℓ+ kk/2(n+2)k(n+3)knk+1/2+1

≤ ℓ+
(√

kn(n+2)(n+3)
)k+1

/2+1

≤ ℓ+
(√

k(n+2)3
)k+1

= ℓ+2(k+1)·log2(
√

k(n+2)3)

≤ 2(k+1)·log2(
√

k(n+2)3) · (ℓ+1).

From (3k+2)q+3 ≤
(√

k(n+2)
)−3

· (3k+2)−1 ·b(k,n,m, I) we get

(k+1) · log2

(√
k(n+2)3

)

≤
(√

k(n+2)
)3

≤ (3k+2)−1 ·b(k,n,m, I).

This leads to ||~xh||+1 ≤ 2(3k+2)−1·b(k,n,m,I) · (ℓ+1). Together with Inequality (4) this implies

||C j|| ≤ 2b(k,n,m,I) · (ℓ+1)
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for the sets C j from Theorem 9, because of 3k+2 ≥ 2. For each h ∈ H we have

(||~xh||+1)k·2q+1 ≤
(

ℓ+2(k+1)·log2(
√

k(n+2)3)
)4k·|H|

≤ (ℓ+2)(k+1)·log2(
√

k(n+2)3)·4k·e·(
√

k(n+2))
k·(3m+1)·(2e2)

−m·|I|

≤ (ℓ+2)(
√

k(n+2))
k·(3m+1)+8·(2e2)

−m·|I|

because

4e ·k(k+1) · log2

(√
k(n+2)3

)

≤ 12 ·2k2 ·3 · log2

(√
k(n+2)

)

≤ 72k2 ·
√

k ·(n+2)≤ 27 ·
(√

k
)5

(n+2).

With Inequality (4) we get |J| ≤ 2b(k,n,m,I) ·(ℓ+2)(
√

k(n+2))
k·(3m+1)+8·(2e2)

−m·|I| for the set J from Theorem 9.

This proves our theorem.

The size of the resulting index set and the norms for the resulting periods and constants are bounded

from above by 2(ν+2)O(m)·|I|log(3k+2)
, if k is constant and, as before, ν is the maximum of n and ℓ. So we

observe that the size increase is exponential in ν and |I| and double exponential in m.

3.4 Inverse homomorphism on semilinear sets

Finally, we consider the descriptional complexity of the inverse homomorphism. We follow the lines of

the proof on the inverse homomorphism closure given in [5]. Since inverse homomorphism commutes

with union, we only need to look at linear sets. The vectors in the pre-image of a linear set, with respect

to a homomorphism, can be described by a system of linear equations. Now we use the same techniques

as in the proof of Theorem 4: out of the minimal solutions of the system of equations we can build

periods and constants of a semilinear description of the pre-image. With Theorems 1 and 2 we estimate

the size of the minimal solutions to get upper bounds for the norms of the resulting periods and constants.

Theorem 12 Let k1, k2 ≥ 1 and
⋃

i∈I L(~ci,Pi) be a semilinear subset of Nk2 . We set n = maxi∈I ||Pi||,
m = maxi∈I |Pi|, and ℓ = maxi∈I ||~ci||. Moreover let H ∈ Nk2×k1 be a matrix and h : Nk1 → Nk2 be the

corresponding linear function~x 7→ H~x. Then for every i ∈ I there exist Qi,Ci ⊆ Nk1 with

||Qi|| ≤ (k1 +m+1)k
min(k1+m,k2)/2

2 · (||H||+1)min(k1,k2)(n+1)min(m,k2),

||Ci|| ≤ (k1 +m+1)k
min(k1+m,k2)/2

2 · (||H||+1)min(k1,k2)(n+1)min(m,k2)ℓ,

and h−1 (
⋃

i∈I L(~ci,Pi)) =
⋃

i∈I L(Ci,Qi).

Proof : Let i ∈ I be fixed and define Pi to be {~y1,~y2, . . . ,~yp}. Then the set of vectors

{

~x ∈Nk1
∣

∣ H~x ∈ L(~ci,Pi)
}

is equal to
{

~x ∈Nk1
∣

∣ ∃λ1,λ2, . . . ,λp ∈ N : H~x =~ci +λ1~y1 +λ2~y2 + · · ·+λp~yp

}

.

Now let τ : Nk1 ×Np → Nk1 be the projection on the first component and let J ∈ Zk2×(k1+p) be the

matrix J = (H | −~y1 | −~y2 | · · · | −~yp). We obtain

{

~x ∈ Nk1
∣

∣ H~x ∈ L(~ci,Pi)
}

= τ
({

~x ∈Nk1+p
∣

∣ J~x =~ci

})

.
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Let C ⊆ Nk1+p be the set of minimal elements of
{

~x ∈Nk1+p
∣

∣ J~x =~ci

}

and Q ⊆ Nk1+p be the set

of minimal elements of
{

~x ∈Nk1+p \{~0}
∣

∣

∣ J~x =~0
}

. In the proof of [5, Theorem 6.1] it is shown

that L(C,Q) =
{

~x ∈ Nk1+p
∣

∣ J~x =~ci

}

. With p ≤ m and ||Pi|| ≤ n, we derive from Theorems 1 and 2

that

||Q|| ≤ (k1 +m+1)k
min(k1+m,k2)/2

2 · (||H||+1)min(k1,k2)(n+1)min(m,k2)

With ||~ci|| ≤ ℓ we get

||C|| ≤ (k1 +m+1)k
min(k1+m,k2)/2

2 · (||H||+1)min(k1,k2)(n+1)min(m,k2)ℓ.

Since τ is linear we have L(τ(C),τ(Q)) =
{

~x ∈ Nk1
∣

∣ H~x ∈ L(~ci,Pi)
}

. Moreover, we have the inequali-

ties ||τ(Q)|| ≤ ||Q|| and ||τ(C)|| ≤ ||C||. Because of h−1 (
⋃

i∈I L(~ci,Pi))=
⋃

i∈I h−1 (L(~ci,Pi)) our theorem

is proved.

We see that the index set of the semilinear set is not changed under inverse homomorphism. If k1

and k2 are constant, then the norms of the periods and constants of the resulting semilinear set are in

O
(

(||H||+1)min(k1,k2)(m+1)(ν +1)k2+1
)

. Again ν is the maximum of n and ℓ. Thus, the size increase

for inverse homomorphism is polynomial with respect to all parameters.
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