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The CoRg system is a system to solve commonsense reasoning problems. The core of the CoRg sys-
tem is the automated theorem prover Hyper that is fed with large amounts of background knowledge.
This background knowledge plays a crucial role in solving commonsense reasoning problems. In
this paper we present different ways to use knowledge graphs as background knowledge and discuss
challenges that arise.

1 Introduction

In recent years, numerous benchmarks for commonsense reasoning have been presented which cover
different areas: the Choice of Plausible Alternatives Challenge (COPA) [17] requires causal reasoning
in everyday situations, the Winograd Schema Challenge [8] addresses difficult cases of pronoun disam-
biguation, the TriangleCOPA Challenge [9] focuses on human relationships and emotions, and the Story
Cloze Test with the ROCStories Corpora [11] focuses on the ability to determine a plausible ending for
a given short story, to name just a few. In our system, we focus on the COPA challenge where each
problem consists of a problem description (the premise), a question, and two answer candidates (called
alternatives). See Fig. 1 for an example. Most approaches tackling these problems are based on machine
learning or exploit statistical properties of the natural language input (see e.g. [14, 16]) and are therefore
unable to provide explanations for the decisions made.

In the CoRg project1 (Cognitive Reasoning), we take a different approach by using an automated
theorem prover as a key component in our system. Fig. 2 gives an overview of the CoRg system: In the
first step, the problem description as well as the two alternatives are each converted into first-order logic
formulae (FOL) using KnEWS (Knowledge Extraction With Semantics) [2]. KnEWS is a software that
combines semantic parsing, word sense disambiguation, and entity linking to produce a unified, abstract
representation of meaning. For example, the formula generated by KnEWS for the first answer candidate
from Fig. 1 (The sun was rising.) is:

∃A(sun(A)∧∃B(r1Actor(B,A)∧ rise(B)))

∗The authors gratefully acknowledge the support of the German Research Foundation (DFG) under the grants SCHO 1789/1-
1 and STO 421/8-1 CoRg – Cognitive Reasoning.

1http://corg.hs-harz.de/, accessed 2019-11-05
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20 Using ConceptNet to Teach Common Sense to an Automated Theorem Prover

1: My body cast a shadow over the grass.
What was the cause of this?
A1: The sun was rising.
A2: The grass was cut.

Figure 1: Problem 1 from the COPA benchmark set.
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Figure 2: The CoRg system.

Each of these formulae is then passed to the automated theorem prover Hyper [3] along with appro-
priate background knowledge. Currently, we use Adimen-SUMO [1] and WordNet [10] as background
knowledge. Hyper computes a (possibly partial) model for each formula together with the background
knowledge. This (possibly partial) model contains inferences performed by Hyper starting from the for-
mula created for the natural language sentences of the two possible answers. In the last step, the three
models created for the problem description and the answer candidates are further processed by a ma-
chine learning component in order to decide which model points more into the direction of the problem
description. This includes a preprocessing step and a deep learning neural network.

In the preprocessing step, the model has to be encoded such that the neural network can process it.
On the one hand, the logical facts in the model use symbols corresponding to natural language words
like sun or astronomicalBody which can be extracted. On the other hand, there is structural information
in the model given by the term structure of the logical facts. For instance, the two facts sun(sk0) and
is instance(sk0,astronomicalBody) mean that the sun is an astronomical body which is expressed via
the Skolem constant sk0. In our implementation, we currently only care about the symbols correspond-
ing to natural language words, i.e., sun and astronomicalBody. Currently, the structural information is
dismissed. Future work will address it as well.

The extracted natural language symbols form a sequence of words which are transformed into their
word embeddings. Word embeddings obtain semantic value by assigning numerical values to words, thus
making them comparable in a mathematical way. For this, we use the pre-computed word embeddings
from ConceptNet Numberbatch2 with a dictionary of 400,000 words which are mapped into a 300 dimen-
sional space. The resulting sequence of vectors are fed into a neural network by building premise-answer
pairs such that each problem generates n training examples with n being the number of alternatives to
choose from. For the COPA benchmark set, it holds n = 2.

2https://github.com/commonsense/conceptnet-numberbatch, accessed 2019-06-12
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Eventually, our neural network has two inputs: one encodes the problem description while the other
encodes one of the answer candidates. In the core of the neural network, the encoded information are
merged together using an attentive reader approach [21] with bidirectional LSTMs (long short-term
memory) [5]. The merging part consists of a dot-product between question and answer to identify shared
features between the texts. The following fully connected dense layer generates an answer embedding
with the context of the question. This embedding is again merged with the encoded question using an add
operation. The output layer is a dense layer with 2 neurons and a softmax activation such that it results
in a vector y∗ = [y1 y2] with y1,y2 ∈ [0,1] and y1 + y2 = 1 which can be interpreted as a likelihood of
how well the respective alternative fits to the given premise. The n likelihoods of the alternatives for one
problem are compared and the highest one is chosen to be the selected answer of our system [18]. The
inferences performed to construct the model of the chosen answer can be used to provide an explanation
for the answer.

2 Using Knowledge Graphs as Background Knowledge

Besides ontologies like SUMO [13, 15], Adimen SUMO [1], Cyc [7] and Yago [20], knowledge graphs
constitute an important source of background knowledge. The term knowledge graph was coined by
an initiative of the same name by Google in 20123 and is now widely used as a generalized term for
interlinked descriptions of entities. Compared to ontologies, these knowledge graphs usually contain
mainly factual knowledge as triples of the form (s, p,o) (subject – predicate – object). However, they
contain very large amounts of this factual knowledge. Examples for knowledge graphs are BabelNet [12]
and ConceptNet [19]. BabelNet was automatically created by linking Wikipedia to WordNet, a lexicon
of the English language. ConceptNet is a freely-available semantic network designed to help computers
understand the meanings of words that people use. Large parts of ConceptNet were created by humans
which is why ConceptNet contains interesting commonsense knowledge. One example for knowledge
represented in ConceptNet that is difficult to find in other sources is the following triple:

(snore,HasSubevent,annoy your spouse)

Since this kind of knowledge is hardly present in other knowledge bases, we would like to use Concept-
Net as a source for background knowledge in the CoRg project.

If knowledge represented in a knowledge graph like ConceptNet is supposed to be used by a first-
order logic theorem prover, the triples have to be translated into first-order logic. The easiest way to do
that would be to translate p into a predicate name and both s and o into constants leading to p(s,o).
Since this is only factual knowledge, it is only of limited use for the commonsense reasoning task under
consideration. Due to the fixed set of predicates used in ConceptNet it is possible to create translations
of ConceptNet triples to first-order logic formulae depending on the predicate used in the triple. Another
way to translate a triple (s, p,o) given in ConceptNet into the first-order logic formula would be:

∀x
(

s(x)→
(
∃y(p(x,y)∧o(y))

))

3https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html, accessed
2019-11-05
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Fig. 3 shows some information in ConceptNet relevant for COPA problem 1 (see Fig. 1). The triples
given implicitly in Fig. 3 would be translated into:

∀x
(

sun(x)→
(
∃y(causes(x,y)∧ light(y))

))
∀x

(
shadow(x)→

(
∃y(atlocation(x,y)∧ light(y))

))
∀x

(
shadow(x)→

(
∃y(atlocation(x,y)∧ground(y))

))
∀x

(
grass(x)→

(
∃y(atlocation(x,y)∧ground(y))

))

sun light
Causes

shadow
AtLocation

ground

AtLocation

grass
AtLocation

Figure 3: Some information in ConceptNet rel-
evant for COPA problem 1.

At first glance, this translation looks quite promising. On closer inspection, however, one realizes
that starting from a fact sun(a), it is not possible for a constant a to derive something using the predicate
shadow. The problem is that the direction of the edges in ConceptNet affects the generated FOL formulas.
One possible solution would be to generate two formulas for each edge in ConceptNet. For example, for
the edge from light to shadow we could generate the additional formula:

∀x
(

light(x)→
(
∃y(maysituate(x,y)∧ shadow(y))

))
Another problem is the large amount of information available in ConceptNet. The information in Fig. 3
presents a manually selected part of ConceptNet relevant for problem 1 of the COPA challenge. In total,
node sun has 637 incoming and 1,000 outgoing edges and node shadow 399 incoming and 626 outgoing
edges in ConceptNet. It is not trivial to select from this variety of edges those that are relevant to the
problem under consideration.

To solve this problem, we plan three things:

• We will only consider a subset of the relations used in ConceptNet. ConceptNet uses a fixed set
of around 40 relations in its triples. Examples for these relations are general relations like IsA
and PartOf as well as more specific relations like CapableOf and Desires. All relations can be
negated by prefixing them with the word Not. Many of these relations are not interesting for our
purpose. The relation ExternalURL can be used to point to an URL outside of ConceptNet where
further linked data about a certain node can be found. Furthermore, there are relations providing
information relevant for languages other than English. This is why we plan to manually selected
set of relations that are interesting for the COPA problems.

• Despite the restriction to a subset of the relations used in ConceptNet, the formula set generated
from ConceptNet is likely to be too large. Therefore, we will try to select suitable formulas from
this formula set. Here we will experiment with SInE [6] and Similarity SInE [4].

• Starting from the manually selected relations from ConceptNet, we only consider the triples whose
third component is similar to the words in the COPA problem currently under consideration. To
measure the similarity we are planning to use word embeddings like ConceptNet Numberbatch.
This would result in not using the triple (sun, IsA,star) for COPA problem 1 (cf. Fig. 1), since
none of the words in COPA problem one is very similar to the word star. In contrast to that,
(sun,Causes, light) would be used.
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3 Conclusion / Future Work

In this paper, we introduced the CoRg system which is able to tackle commonsense reasoning problems
by combining a first-order logic theorem prover, background knowledge bases, and machine learning.
We discussed how to integrate knowledge represented in a knowledge graph into the CoRg system such
that the theorem prover is able to use this knowledge. In future work, we plan to investigate how to deal
with the vast amount of triples in knowledge graphs. In addition to that, we would like to integrate other
knowledge graphs like e.g. BabelNet [12] into our system for commonsense reasoning.
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