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The firing squad synchronization problem (FSSP) on cellular automata has been studied extensively
for more than forty years, and a rich variety of synchronization algorithms have been proposed for
not only one-dimensional arrays but two-dimensional arrays. In the present paper, we propose a
simple recursive-halving based optimum-time synchronization algorithm that can synchronize any
rectangle arrays of size m x n with a general at one corner in m + n + max(m,n) — 3 steps. The
algorithm is a natural expansion of the well-known FSSP algorithms proposed by Balzer [1967],
Gerken [1987], and Waksman [1966] and it can be easily expanded to three-dimensional arrays, even
to multi-dimensional arrays with a general at any position of the array. The algorithm proposed is
isotropic concerning the side-lengths of multi-dimensional arrays and its algorithmic correctness is
transparent and easily verified.

1 Introduction

We study a synchronization problem that gives a finite-state protocol for synchronizing large-scale cellu-
lar automata. The synchronization in cellular automata has been known as a firing squad synchronization
problem (FSSP) since its development, in which it was originally proposed by J. Myhill in Moore [1964]
to synchronize all parts of self-reproducing cellular automata. The problem has been studied extensively
for more than forty years [1-23], and a rich variety of synchronization algorithms have been proposed
for not only one-dimensional (1D) arrays but two-dimensional (2D) arrays. The 1D FSSP is described as
follows: given a one-dimensional array of n identical cellular automata, including a general at one end
that is activated at time ¢ = 0, we want to design the automata such that, at some future time, all the cells
will simultaneously and, for the first time, enter a special firing state.
Some questions may arise:

— How can we synchronize multi-dimensional arrays?

Can we expand those 2D FSSP algorithms proposed so far to 3D arrays, or more generally to
multi-dimensional arrays?

— Can we generalize those 2D FSSP algorithms to generalized ones, in which an initial general is
located at any position of the array?

What is a lower bound of time steps needed for synchronizing multi-dimensional arrays with a
general at one corner?

— What is a lower bound for the generalized case?
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In the present paper, we attempt to answer these questions by proposing a new, simple recursive-
halving based synchronization algorithm for 2D rectangle cellular automata. The algorithm can synchro-
nize any 2D rectangle array of size m x n with a general at one corner in m + n + max(m,n) — 3 steps.
An implementation in terms of local transition rules is also given on a 2D cellular automaton, not only
for the array with a general at one corner but a generalized case.

The algorithms proposed in this paper are interesting in the following view points.

— The 2D algorithm proposed is isotropic with respect to shape of a given rectangle array, i.e. no
need to control the FSSP algorithm for longer-than-wide and wider-than-long input rectangles.

— The algorithm proposed can be easily expanded to 3D arrays, even to multi-dimensional arrays.

— The algorithm is a natural generalization of the well-known 1D FSSP algorithms developed by
Waksman [1966], Balzer [1967] and Gerken [1987]. It gives us a new view point of those classical
1D FSSP algorithms based on recursive-halving.

— The algorithm can be expanded to a generalized FSSP solution, where an initial general is at an
arbitrary position of a given array.

— The algorithm can be generalized to an optimum-time generalized FSSP solution.

In Section 2 we give a description of the 2D FSSP and review some basic results on 2D FSSP algo-
rithms. Section 3 defines the recursive-halving marking on 1D arrays and gives some preliminary lemmas
for the construction of 2D FSSP algorithms. In Sections 4, 5, and 6 we present a new 2D FSSP algorithm
based on the recursive-halving marking and several multi-dimensional expansions. Two implementations
in terms of 2D cellular automata are also presented for the optimum-time FSSP algorithms. Most of the
descriptions of the multi-dimensional FSSP algorithms are based on the 2D FSSP algorithms. Some
expanded and generalized theorems for multi-dimensional arrays are given without proofs.

2 Firing Squad Synchronization Problem on Two-Dimensional Arrays

Figure 1 shows a finite two-dimensional (2D) cellular automaton consisting of m x n cells. Each cell
is an identical (except the border cells) finite-state automaton. The array operates in lock-step mode in
such a way that the next state of each cell (except border cells) is determined by both its own present
state and the present states of its north, south, east and west neighbors. All cells (soldiers), except the
north-west corner cell (general), are initially in the quiescent state at time ¢ = 0 with the property that
the next state of a quiescent cell with quiescent neighbors is the quiescent state again. At time ¢t = 0, the
north-west corner cell Cy; is in the fire-when-ready state, which is the initiation signal for the array. The
firing squad synchronization problem is to determine a description (state set and next-state function) for
cells that ensures all cells enter the fire state at exactly the same time and for the first time. The tricky
part of the problem is that the same kind of soldier having a fixed number of states must be synchronized,
regardless of the size m x n of the array. The set of states and next state function must be independent of
m and n.

The problem was first solved by J. McCarthy and M. Minsky who presented a 3n-step algorithm
for 1D cellular array of length n. In 1962, the first optimum-time, i.e. (2n — 2)-step, synchronization
algorithm was presented by Goto [1962], with each cell having several thousands of states. Waksman
[1966] presented a 16-state optimum-time synchronization algorithm. Afterward, Balzer [1967] and
Gerken [1987] developed an eight-state algorithm and a seven-state synchronization algorithm, respec-
tively, thus decreasing the number of states required for the synchronization. Mazoyer [1987] developed
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Figure 1: A two-dimensional (2D) cellular automaton.

a six-state synchronization algorithm which, at present, is the algorithm having the fewest states for 1D
arrays.

On the other hand, several synchronization algorithms on 2D arrays have been proposed by Beyer
[1969], Grasselli [1975], Shinahr [1974], Szwerinski [1982], Schmid [2003], Schmid and Worsch [2004],
Umeo, Maeda, Hisaoka and Teraoka [2006], and Umeo and Uchino [2008]. It has been shown indepen-
dently by Beyer [1969] and Shinahr [1974] that there exists no 2D cellular automaton that can synchro-
nize any 2D array of size m x n in less than m +n + max(m,n) — 3 steps. In addition they first proposed
an optimum-time synchronization algorithm that can synchronize any 2D array of size m X n in opti-
mum m + n+ max(m,n) — 3 steps. Shinahr [1974] gave a 28-state implementation. Umeo, Hisaoka
and Akiguchi [2005] presented a new 12-state synchronization algorithm operating in optimum-step,
realizing a smallest solution to the rectangle synchronization problem at present.

As for the time optimality of the 2D FSSP algorithms, the following theorems have been shown.

Theorem 1Bever [1969], Shinahr [1974] There exists no cellular automaton that can synchronize any 2D array
of size m x n in less than m + n + max(m,n) — 3 steps, where the general is located at one corner of the
array.

Theorem 2Shinahr [1974], Umeo, Hisaoka, and Akiguchi [2005] There exists a cellular automaton that can synchro-
nize any 2D array of size m X n at exactly m 4+ n+ max(m,n) — 3 steps, where the general is located at
one corner of the array.

3 Recursive-Halving Marking

In this section, we develop a marking schema for 1D arrays referred to as recursive-halving marking.
The marking schema prints a special mark on cells in a cellular space defined by the recursive-halving
marking. The marking itself is based on a 1D FSSP synchronization algorithm. It will be effectively
used for constructing multi-dimensional FSSP algorithms operating in optimum-time.

Let S be a 1D cellular space consisting of cells C;, C;yy, ..., C;, denoted by [i... ], where j > i. Let
|S| denote the number of cells in S, that is [S| = j—i+ 1. A center cell(s) C, of S is defined by
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o {(i+j)/2 IS|: odd 0

(i+j—-1)/2,(i+j+1)/2 |S|: even.
The recursive-halving marking for a given cellular space S = [1...n] is defined as follows:

Recursive-Halving Marking: RHM

Algorithm RHM(S)
begin
if |S| > 2 then
if |S| is odd then
mark a center cell C, in S;
Sp:=1[1...x]; Sg:=[x...n];
. RHMy (S1); RHMR(Sr);
else
mark center cells C, and C,4 in S;

Spi=[1..x]; Spi=[x+1...n];
RHM (S;); RHMR(SR);

end

Left-Side Recursive-Halving Marking: RHMp,

Algorithm RHM{ (S)
begin
while |S| > 2 do
if |S] is odd then
mark a center cell C, in S;
Sr:=[1...x]; RHMy(S.);
else
mark center cells C, and C,1 in S;

Sp:=[1...x]; RHML(SL);

end

Right-Side Recursive-Halving Marking: RHMg

Algorithm RHMg(S)
begin
while |S| > 2 do
if |S] is odd then
mark a center cell C, in S;
Sg:= [x...n]; RHMR(SR);
else
mark center cells C, and C,1 in S;

Sg:=[x+ 1...n]; RHMR(Sg);

end

For example, we consider a cellular space S = [1...15] consisting of 15 cells. The first center cell is
Csg, then the second one is C4, Cs and Cy1, Cy, and the last one is C,, Cs, Cy3, C14, respectively. In case
S =11...17], we get Co, Cs, Cy3, C3, C;5, and C;, Cj¢ after four iterations.

Figure 2| (left) shows a space-time diagram for the marking. At time ¢ = 0, the leftmost cell C; gener-
ates an infinite set of signals wi,wa, ..., wy, .., each propagating in the right direction at 1/(2% — 1) speed,
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Figure 2: Space-time diagram for recursive-halving marking on 1D array of length n (left) and some
snapshots for the marking on 42 (middle) and 71 (right) cells, respectively.

where k = 1,2,3,..., . The 1/1-speed signal w; arrives at C, at time ¢ = n — 1. Then, the rightmost cell
C,, also emits an infinite set of signals wy,w», ..., wy, .., each propagating in the left direction at 1/(2F — 1)
speed, where k = 1,2,3,..., . The readers can find that each crossing of two signals, shown in Fig. 2

(left), enables the marking at middle points defined by the recursive-halving. A finite state realization for
generating the infinite set of signals above is a well-known technique employed in Balzer [1967], Gerken
[1987], and Waksman [1966] for the implementations of the optimum-time synchronization algorithms
on 1D arrays.

We have developed a simple implementation of the recursive-halving marking on a 13-state, 314-rule
cellular automaton. In Fig. 2 (middle and right) we present several snapshots for the marking on 42 and
71 cells, respectively. Thus we have:

Lemma 3 There exists a 1D 13-state, 314-rule cellular automaton that can print the recursive-halving
marking in any cellular space of length n in 2n — 2 steps.

An optimum-time complexity 2n — 2 needed for synchronizing cellular space of length # in the classi-
cal WBG-type (Waksman [1966], Balzer [1967], and Gerken [1987]) FSSP algorithms can be interpreted
as follows: Let S be a cellular space of length n = 2n; + 1, where n; > 1. The first center mark in § is
printed on cell C,,, 1 at time #1p—center = 311. Additional n; steps are required for the markings thereafter,
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yielding a final synchronization at time #;p_opt = 31 +n; = 4ny = 2n — 2. In the case n = 2n;, where
n1 > 1, the first center mark is printed simultaneously on cells C,, and C,, ;1 at time #{p—center = 311 — 1.
Additional n; — 1 steps are required for the marking and synchronization thereafter, yielding the final
synchronization at time fip_opt = 311 — 1 +n; —1=4n; -2 =2n-2.

3, S| = 2n; +1,

2
31’11—1 ’S‘:Zl’l]. ( )

D—center =

Thus, additional #p_gync steps are required for the synchronization for a cellular space with the
recursive-halving marks:
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Figure 3: Space-time diagram for synchronizing a cellular space with recursive-halving marking (left)
and some snapshots for the synchronization on 17 (middle) and 32 (right) cells, respectively.

In this way, it can be easily seen that any cellular space of length n with the recursive-halving marking
initially with a general on a center cell or two generals on adjacent center cells can be synchronized in
[n/2] — 1 optimum-steps. In Fig. [3| we illustrate a space-time diagram for synchronizing a cellular space
with recursive-halving marking (left) and some snapshots for the synchronization on 17 (middle) and 32
(right) cells, respectively. Thus we have:

Lemma 4 Any 1D cellular space S of length n with the recursive-halving marking initially with a gen-
eral(s) on a center cell(s) in S can be synchronized in [n/2] — 1 optimum-steps.

As was seen, the first marking of center cell(s) plays an important role. We print a special mark for
the first center cell(s) of a given cellular space. On the other hand, for the center cells generated thereafter
are marked with a different symbol from the first one.

G

D . > D]
="
Step 0 Step 1 Step 2 Step 3

Figure 4: Synchronization schema for 2D cellular automaton.
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4 An Optimum-Time 2D FSSP Algorithm .<7|

4.1 Overview of the Algorithm .«

We assume that an initial general G is on the north-west corner cell C;; of a given array of size m x
n. The algorithm consists of three phases: a marking phase, a pre-synchronization phase and a final
synchronization phase. An overview of the 2D synchronization algorithm .27 is as follows:

Step 1. Start the recursive-halving marking for cells on each row and column, find a center cell(s) of
the given array, and generate a new general(s) on the center cell(s). Note that a crossing(s) of the center
column(s) with the center row(s) is a center cell(s) of the array.

Step 2. Pre-synchronize the center column(s) using Lemma 4, which is initiated by the general in Step
1. Every cell on the center column(s) acts as a general at the following Step 3.

Step 3. Synchronize each row using Lemma 4, initiated by the general generated in Step 2. This yields
the final synchronization of the array.

13 \1/3 t=ml
t=ntm-1} & ---2
\ &

\1/3
&1/7 i/l/
1/3

/ ik

i

Figure 5: Space-time diagrams for the synchronization algorithm on the 1st, ith, and mth rows of a
longer-than-wide rectangle array of size m x n, respectively.
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Figure [] illustrates the synchronization schema for 2D cellular automaton. We assume that m =
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2my+ 1,n =2n1 + 1, where m;,n; > 1. The algorithm operates as follows:

1. At time # = 0 an initial general on the north-west corner emits a 1/1-speed signal along the first
row and column to print recursive-halving marks. Once a center mark is printed, it is copied to the
adjacent row and column. At time t = 3m; 4 ny, a center mark of the center column of the array is
marked, and the center mark of the center row is marked at time ¢t = 3n; + my. The center of the
array is marked at time ¢ = fop_center = max(3m; +ny,3n; +my).

2. Using Lemma 4, the center column will be synchronized with a tentative pre-firing state at time
I = D—center T 1.

3. Once the center column could be synchronized with the pre-firing state, then the cell C; ;41 ini-
tiates the synchronization for the ith row for each i such that 1 <i < m. Using Lemma 4, for
any i,1 <i < m, the ith row will be synchronized at time 7 = top_center + m1 + 11 = max(3m; +
ny,3n; +mp)+my+n; =max(2m; +1,2n; + 1) +2my +2n; — 1 = m+n+ max(m,n) — 3. Thus,
the array can be synchronized at time ¢ = m + n+ max(m,n) — 3 in optimum-steps.

t= n+tm-1 lf 7777777

lms ;//I %« 1/71 t= ntpcti-2fFH-4-----) 3 j 177 /1

’ ,41 %\ 1/71 /

t=mtntm-211--- W \1/\1 fmmimincdy 717/71 if)% W\ID‘] oy \'7 ﬂ'f/t/' \]/\1{3 j
g N

/1 1/1] 1/1] /15)
<\1<11£1/> /\111111/>\ /\1‘/1111/

N r=mr2na KON t=m+2n3 Y

t=2m2 (Y1 11

t=m+2n-3 ’<

Figure 6: Space-diagrams of the synchronization algorithm on the 1st, ith, and mth rows of a wider-
than-long rectangle array of size m X n, respectively.

Note that the signal propagation for the recursive-halving marking and the wake-up signal for the
synchronization are made by the same 1/1 speed. Thus, the synchronization can be performed suc-
cessfully for each column and the array can be synchronized in optimum steps. Figures [5] and [6] illus-
trate a space-time diagram for the recursive-halving marking and the synchronization operations on the
Ist, ith, and mth row of a longer-than-wide and wider-than-long array, respectively. One can see that
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Figure 7: Snapshots for synchronization on a 9 x 12 array.

each marking operation has been finished before the arrival of the first wake-up signal for the synchro-
nization. The algorithm operates in optimum-steps in a similar way for the rectangles such as case 1:
m=2mj+1,n=2ny, case 2: m =2m;,n =2n; + 1, and case 3: m = 2m,n = 2n;.

Thus, we can establish the following theorem.

Theorem 5 The synchronization algorithm 27 can synchronize any m x n rectangular array in optimum
m+n+max(m,n) — 3 steps.

We have implemented the algorithm .27} on a 2D cellular automaton having 60 states and 13633 local
rules. In Figures [7 and [§] we present some snapshots of the synchronization processes of the algorithm
on 9 x 12 and 12 x 9 arrays, respectively.

S Expansion to Multi-Dimensional Arrays

5.1 Three-Dimensional Arrays

In this section, we show that there exists no algorithm that can synchronize any 3D array of size m x n x £
with a general at an arbitrary corner in less than m + n+ ¢+ max(m,n,t) — 4 steps.

Theorem 6 The minimum time in which the firing squad synchronization could occur is no earlier than
m+n+ £+ max(m,n,¢) — 4 for any 3D array of size m X n x £ with a general at an arbitrary corner cell.

Proof. The proof is made by contradiction. Without loss of generality, we assume that £ < m < n.
It is assumed that there is a cellular automaton ./ that can synchronize an array of size mg X ny X £
(o <mgo < ny) at step t = to such that:
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Figure 8: Snapshots for synchronization on a 12 x 9 array.

to < mg—+2ng+Lo—4 “4)

Now consider the state of cell C,, 1 ¢, at time ¢ = #y. Let i and k be any integer such that 1 <i <my
and 1 <k < /. Consider the signal propagation from the cell C; | | to C,,, 1 ¢, via any cell C; . It
takes:

(i—1)4+mo—1)+(k—1)+(mo—i)+ (no—1)+ (bo — k)
=my+2ny+Ly—4 ®))

steps for the signal to travel from C; | | to C,,, 1 ¢, via any cell C; ,, ¢. The state of the cell C,,; 1 ¢, at
step 1 =ty entered the final firing state unaffected by any cells on the plane {C; ,,, x|1 <i<mp,1 <k </
}. Therefore, if another three-dimensional array of size mg X ng x £y was added to the right side of the
original array (that is, the new array is of size mg X 2ng x {y), the cell C,,, | ¢, would still enter the final
firing state at step t = fp. This is because the cell structure .# is fixed, cell operation is deterministic
and nothing has changed as far as the cell C,,, | 4, is concerned. Since ty < mg + 2no + £y — 4, the cell
Ciny 1¢, Will still be in a quiescent state at time ¢ = fy. Therefore the cell structure does not represent
a solution and this is a contradiction. In a similar way, the argument carries over in the cases such as
{<n<m,n</{<m, .., and so forth.

O
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The synchronization algorithm 7] for 2D arrays can be easily expanded to 3D arrays. See Figure 9]
which illustrates the synchronization schema for 3D cellular automaton. Thus, we have:

Theorem 7 There exists an optimum-time synchronization algorithm .27 that can synchronize any three-
dimensional array of size n; X n X n3 with a general at C; ; ; in optimum n; +ns +n3 +max(ny,ny,n3) —

4 steps.
< > 2> %

Step 0 Step 1 Step 2 Step 3 Step 4

Figure 9: Synchronization scheme for a three-dimensional cellular automaton.

5.2  Multi-Dimensional Arrays

A kD FSSP algorithm .27 is sketched as follows:

Step 1. Start the recursive-halving marking on cells along each dimension, find a center cell(s) of the
given array, generate a general(s) on the center cell(s), and pre-synchronize the center point(s): zero-
dimensional sub-array of the array.

Step 2. Pre-synchronize a 1D sub-array along the 1st dimension containing the pre-synchronized center
cell.

Step 3. - Step k. For j =2 to k— 1, by increasing the number of dimensions, pre-synchronize a jD
sub-array containing the pre-synchronized (j — 1)D sub-array.

Step k + 1. Synchronize the kD array. This yields the final synchronization of the given array.

Theorems 6 and 7 can be expanded to the kD arrays.

Theorem 9 There exists no cellular automaton that can synchronize any kD array of size ny X ny X ... X ng

steps.

6 Generalization as to General’s Position

6.1 Generalized FSSP on 1D Arrays

The recursive-halving marking scheme on 1D array can be easily expanded to the generalized case where
the initial general is located at any position of the array. Figure [10]illustrates a space-time diagram for
the recursive-halving marking on 1D array of length n with a general on Cy,1 < k < n. The marking is
based on the generalized FSSP algorithm proposed by Moore and Langdon [1968].

We have seen the following theorems for the 1D generalized case.
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t=k-1

t = n-k+m

t=2n-k-1

Figure 10: Space-time diagram for recursive-halving marking on 1D array of length n with a general at
any position.

Theorem 11 Moore and Langdon [1968] The minimum time in which the generalized firing squad synchro-
nization could occur is n — 2 4+ max(k,n — k+ 1) steps, where the general is located on the kth cell from
left end.

Theorem 12 Moore and Langdon [1968] There exists a 17-state cellular automaton that can synchronize any
one-dimensional array of length n in optimum n — 2+ max(k,n—k+ 1) steps, where the general is located
on the kth cell from left end.

An optimum-time complexity n — 2 + max(k,n — k+ 1) needed for synchronizing cellular space of
length n in the classical ML-type (Moore and Langdon [1968]) generalized FSSP algorithm can be
interpreted as follows: Let S be a cellular space of length n = 2n; + 1, where n; > 1. The first center
mark in S is printed on cell C,, 1 at time #1pg—center = 3711 — min(k — 1,n— k). Additional n; steps are
required for the markings thereafter, yielding a final synchronization at time #1pg_opt = 311 — min(k —
I,n—k)+n; =4n; —min(k—1,n—k) =2n—2—min(k— l,n—k) =n—2+max(k,n —k+1).

In the case n = 2ny, where n; > 1, the first center mark is printed simultaneously on cells C,,, and
Cy 41 at time f1pg—center = 311 — 1 —min(k — 1,n — k). Note that two cells C,, and C, 4 are pre-
synchronized at time #1pg_center = 3111 — 1 — min(k — 1,n — k). Additional n; — 1 steps are required for
the marking thereafter, yielding the final synchronization at time 71pg_opt = 311 — 1 — min(k—1,n—k)+
n—1=4n —2—min(k—1,n—k) =2n—2—min(k— 1,n—k) =n—2+max(k,n—k+1).

_J3n —min(k—1,n—k) IS| =2n; + 1, 6
f1Dg-center = 3n; —1—min(k—1,n—k) |S|=2n,. ©

In addition, #pg—sync Steps are required for the synchronization for a cellular space with the recursive-
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halving marks:

ny |S| =2ny+1,
HDg—sync = 7
1Dg—sync {nl 1 ‘S| _ 2n1. ( )

6.2 Generalized FSSP on 2D Arrays

By a similar method employed in Section 4, we can develop the following theorem for the generalized
case.

Theorem 13 There exists no 2D cellular automaton that can synchronize any 2D array of size m x n with
an initial general on C, in less than m +n +max(m,n) —min(r,m — r+ 1) —min(s,n —s+ 1) — 1 steps,
where 1 <r<m,1 <s<n.

Now we are going to present a generalized optimum-time FSSP Algorithm <7 for 2D arrays. We
assume that an initial general G is on the cell C,; of a given array of size m x n, where 1 <r <m,1 <
s < n. The algorithm consists of three phases: a marking phase, a pre-synchronization phase and a final
synchronization phase. An overview of the 2-D synchronization algorithm 7 is as follows:

Step 1. Start the recursive-halving marking for cells on each row and column, find a center cell(s) of
the given array, and generate a new general(s) on the center cell(s). Note that a crossing(s) of the center
column(s) with the center row(s) is a center cell(s) of the array.

Step 2. Pre-synchronize the center column(s) using Lemma 4, which is initiated by the general in step
1. Every cell on the center column(s) acts as a general at the next Step 3.

Step 3. Synchronize each row using Lemma 4, initiated by the general generated in Step 2. This yields
the final synchronization of the array.

The array can be synchronized at time t = m+n+max(m,n) —min(r,m—r+1) —min(s,n—s+1) — 1
in optimum-steps.

Theorem 14 There exists an optimum-time synchronization algorithm <7 that can synchronize any m X n
rectangular array with a general at C,.; in optimum m + n + max(m,n) —min(r,m — r + 1) — min(s,n —
s+1)—1steps, where | <r<m,1 <s<n.

We have implemented the algorithm 7 on a 2D cellular automaton having 269 states and 163662
local rules. We have checked the rule set for any array of size m x n, with 2 < m,n < 100, and any
general’s position in the array. In Figure[TT|we present some snapshots of the synchronization processes
of the algorithm on an 8 x 13 array with a general on Cj 5.

6.3 Generalized FSSP on Multi-Dimensional Arrays

Theorems 13 and 14 can be expanded to three or more dimensional arrays.

Theorem 15 The minimum time in which the firing squad synchronization could occur is no earlier than
ny +ny +n3 +max(ny,ny,n3) —min(ry,n; —ry + 1) —min(ry,ny —rp + 1) —min(r3,n3 —r3 + 1) — 1 for
any 3D array of size ny X np X n3 with a general at C,, ,, ,,.

Theorem 16 There exists an optimum-time synchronization algorithm .7 that can synchronize any
3D array of size n; x ny x n3 with a general at C,, ,, ,, in optimum ny + np + n3 + max(n,ny,n3) —
min(ry,n; —ry+1) —min(ry,np —rp+ 1) —min(rsz,n3 —r3 + 1) — 1 steps.
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Figure 11: Snapshots of the generalized synchronization algorithm .27 on an 8 x 13 array with a general
on C375 .

Theorem 17 There exists no cellular automaton that can synchronize any kD array of size n; X np X ... X
ny with a general at C,, , ., in less than Zle n;+max(ny,ny,...,ng) — ):le min(r;,n; —r;+ 1) — 1 steps.

Theorem 18 There exists an optimum-time synchronization algorithm .o% that can synchronize any kD
array of size nj x np X ... X n with a general at C,, ,, _, in optimum Zf-;ln,- + max(ny,ny,...,n;) —
Zf:l min(r;,n; —r;+ 1) — 1 steps.

7 Conclusions

We have proposed a new class of optimum-time multi-dimensional FSSP algorithms based on recursive-
halving marking. The class includes the well-known optimum-time FSSP algorithms developed by
Waksman [1964], Balzer [1966] and Gerken [1987] with a general at one end and Moore and Lang-
don [1968] with a general at any position.
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