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We present initial results on a comprehensive model of structured communications, in which self-
adaptation and security concerns are jointly addressed. More specifically, we propose a model of
self-adaptive, multiparty communications with secure information flow guarantees. In this model,
security violations occur when processes attempt to read orwrite messages of inappropriate security
levels within directed exchanges. Such violations triggeradaptation mechanisms that prevent the
violations to occur and/or to propagate their effect in the choreography. Our model is equipped with
local and global mechanisms for reacting to security violations; type soundness results ensure that
global protocols are still correctly executed, while the system adapts itself to preserve security.

1 Introduction

Large-scale distributed systems are nowadays conceived asheterogeneous collections of software arti-
facts. Hence,communicationplays a central role in their overall behavior. In fact, ensuring that the dif-
ferent components follow the stipulated protocols is a basic requirement in certifying system correctness.
However, as communication-centric systems arise in different computing contexts, system correctness
can no longer be characterized solely in terms of protocol conformance. Several other aspects —for in-
stance, security, evolvability/adaptation, explicit distribution, time— are becoming increasingly relevant
in the specification of actual interacting systems, and should be integrated into their correctness analy-
sis. Recent proposals have addressed some of these aspects,thus extending the applicability of known
reasoning techniques over models of communication-based systems. In the light of such proposals, a
pressing challenge consists in understanding whether known models and techniques, often devised in
isolation, can be harmoniously integrated into unified frameworks.

As an example, consider the multiparty interaction betweena user, his bank, a store, and a social
network. All exchanges occur on top of a browser, which relies on plug-ins to integrate information
from different services. For instance, a plug-in may announce in the social network that the user has
just bought an item from the store. That is, agreed exchangesbetween the user, the bank, and the store
may in some cases lead to a (public) message announcing the transaction. We would like to ensure
that the buying protocol works as expected, but also to avoidthat sensitive information, exchanged in
certain parts of the protocol, is leaked —e.g., in atweetwhich mentions the credit card used in the
transaction. Such an undesired behavior should be corrected as soon as possible. In fact, we would like
to stop relying on the (unreliable) participant in ongoing/future instances of the protocol. Depending on
how serious the leak is, however, we may also like to react in different ways. If the leak is minor (e.g.,
because the user interacted incorrectly with the browser),then we may simply identify the source of the
leak and postpone the reaction to a later stage, enabling unrelated participants in the choreography to
proceed with their exchanges. Otherwise, if the leak is serious (e.g., when the plug-in is compromised
by a malicious participant) we may wish to adapt the choreography as soon as possible, removing the
plug-in and modifying the behavior of the involved participants. This form of reconfiguration, however,
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should only concern the participants involved with the insecure plug-in; participants not directly affected
by the leak should not be unnecessarily restarted. In our example, since the unintended tweet concerns
only the user, the store and the social network, the update should not affect the behavior of the bank.

To analyze such choreographic scenarios, we propose a framework for self-adaptive, multiparty com-
munications which ensures basic guarantees for access control and secure information flow. The frame-
work consists of a language for processes and networks, global types, and runtime monitors. Runtime
monitors are obtained as projections from global types ontoindividual participants. Processes repre-
sent code that will be coupled with monitors to implement participants. A network is a collection of
monitored processes which realize a choreography as described by the global type.

Intuitively, a monitor defines the behavior of a single participant in the choreography. In our proposal,
the monitor also defines a security policy by stipulatingreading and writing permissions, represented by
security levels. The reading permission is an upper bound for the level of incoming messages, and the
writing permission is a lower bound for the level of outgoingmessages. A reading or writing violation
occurs when a participant attempts to read or write a messagewhose level is not allowed by the corre-
sponding reading or writing permission. A monitored operational semantics for networks is given by a
reduction relation which ensures that the reading/writingpermissions are respected or, in case they are
violated, that an appropriate adaptation mechanism is triggered to limit the impact of the violation.

We consider bothlocal andglobal adaptation mechanisms, intended to handle minor and serious
leaks, respectively. The local mechanism works as follows:in case of a reading violation, the behavior
of the monitor is modified so as to omit the disallowed read, and a process compliant with the new
monitor is injected; in case of a writing violation, we penalize the sender by decreasing the reading
level of his monitor and the implementation for the receiveris replaced. (In any case, the culprit of
a reading/writing violation is always considered to be the sender.1) The global mechanism relies on
distinguished low-level values callednonces. When an attempt to leak a value is detected, the value is
replaced in the communication with a fresh nonce. This avoids improperly communicating the value and
allows the whole system to make progress, for the benefit of the participants not involved in the violation.
The semantics may then trigger at any point a reconfigurationaction which removes the whole group of
participants that may propagate the nonce and replaces it with a new choreography (global type). Thus,
in this form of adaptation, one part of the choreography is isolated and replaced.

2 Syntax

Our calculus is inspired by that of [6], where security issues were not addressed and adaptation was
determined by changes of a global state, which is not needed for our present purposes. We consider
networks with three active components:global types, monitors, andprocesses. A global type represents
the overall communication choreography over a set of participants [5]. Moreover, the global type defines
reading permissions for each participant, following [4]. By projecting the global type onto participants,
we obtain monitors: in essence, these are local types that define the communication protocols of the
participants. The association of a process with a “fitting” monitor, dubbedmonitored process, incarnates
a participant whose process implements the monitoring protocol. Notably, we exploit intersection types,
union types and subtyping to make this “fitting” relation more flexible.

As usual, we consider a finite lattice ofsecurity levels[8], ranged over byℓ,ℓ′, . . .. We denote by⊔
and⊓ the join and meet operations on the lattice, and by⊥ and⊤ its bottom and top elements. Also, we

1This is because the sender has anactive rolein producing and disseminating information through the system, while the
receiver only has a passive role, and thus cannot be blamed for finding a sensitive value in the queue.
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user, r′, . . . andw,w′, . . . to range over levels denoting reading and writing permissions, respectively.

Global Types and Monitors. Global types define overall schemes of labeled communication between
session participants. In our setting, they also prescribe the reading levels of the participants. We assume
base sets ofparticipants, ranged over byp,q,r, . . .; labels, ranged over byλ ,λ ′, . . .; and recursion
variables, ranged over byt, t′, . . .. We also assume a set of basicsorts(bool,nat, . . .), ranged over byS.

Definition 2.1 (Global Types and Security Global Types). Global typesare defined by:

G ::= p→ q : {λi(Si).Gi}i∈I || t || µ t.G || end

We letpart(G) denote the set of participants inG, i.e., all sendersp and receiversq occurring inG. A
security global typeis a pair (G,L), whereG is a global type andL maps eachp in part(G) to a reading
levelr.

A global type describes a sequence of value exchanges. Each value exchange is directed between a
senderp and a receiverq, and characterized by a labelλ , which represents a choice among different al-
ternatives. In writingp→ q : {λi(Si).Gi}i∈I we implicitly assume thatp 6= q andλi 6= λ j for all i 6= j. The
global typeend denotes the completed choreography. To account for recursive protocols, we consider
recursive global types. As customary, we require guarded recursions and we adopt an equi-recursive
view of recursion for all syntactic categories, identifying a recursive definition with its unfolding.

Monitors are obtained asprojectionsfrom global types onto individual participants, followingstan-
dard definitions [10, 1]. The projection of a global typeG onto participantp, denotedG↾p , generates the
monitor forp. As usual, in order forG ↾p to be defined, it is required that wheneverp is not involved in
some directed communication ofG, it has equal projections in the different branchings of that commu-
nication. We sayG is well formedif the projectionG ↾p is defined for allp ∈ part(G). In the following
we assume that all (security) global types are well formed.

Although monitors can be seen as local types, in our model they have an active role in the dynamics
of networks, since they guide and enable/disable directed communications.

Definition 2.2 (Monitors). The set ofmonitorsis defined by:

M ::= p?{λi(Si).Mi}i∈I || q!{λi(Si).Mi}i∈I || t || µ t.M || end

An input monitorp?{λi(Si).Mi}i∈I fits with a process that can receive, for eachi ∈ I , a value of sort
Si , labeled byλi, and then continues as specified byMi . This corresponds to an external choice. Dually,
an output monitorq!{λi(Si).Mi}i∈I fits with a process which can send, for eachi ∈ I , a value of sortSi ,
labeled byλi , and then continues as prescribed byMi . As such, it corresponds to an internal choice.

Processes and Networks. We assume a set ofexpressions, ranged over bye,e′, . . ., which includes
booleans and naturals (with operations over them) and a denumerable setNonces= {nonce i || i ≥ 0}.
An expressionnonce i —wherei is fresh— is a dummy value that is generated at runtime to be used in
place of some improperly sent value, in order to prevent security violations, see § 3. Each expressione
is equipped with a security level, denotedlev(e); for everyi, lev(nonce i) =⊥. Values are ranged over by
v,v′; we useu to denote anextended value, which is either a value or a nonce.

We now define our set of processes, which represent code that will be coupled with monitors to
implement participants. Our model, like [6]— but unlike other session calculi [9, 10, 2, 7]— uses pro-
cesses that do not specify their partners in communication actions. It is the associated monitor which
determines the partner in a given communication. Thus, processes represent flexible code that can be
associated with different monitors to incarnate differentparticipants. Communication actions are per-
formed throughchannels. Each process owns a unique channel, which by convention is denoted byy in
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the user code. At runtime, channely will be replaced by asession channels[p], wheres is the session
name andp denotes the participant. We usec to stand for a user channely or a session channels[p].

Definition 2.3 (Processes). The set ofprocessesis defined by:

P ::= 0 || c?λ (x).P || c!λ (e).P || X || µX.P || if e then P else P || P+P

The syntax of processes is rather standard: in addition to usual constructs for communication, recur-
sion and conditionals, it includes the operator+, which represents external choice. For instance,c!λ .(e)P
denotes a process which sends alongc labelλ and the value of the expressione and then behaves likeP.
We assume the following precedence among operators: prefix,external choice, recursion.

The previously introduced entities (global types, monitors, processes) are used to definenetworks.
A network is a collection of monitored processes which realize a choreography as described by a global
type. The choreography is initiated by the “new” construct applied to a security global type(G,L). This
construct, akin to asession initiator[6], is denotednew(G,L). In carrying on a multiparty interaction, a
process is always controlled by a monitor, which ensures that all its communications agree with the pro-
tocol prescribed by the global type. Each monitor is equipped with a reading permissionr and a writing
permissionw. A monitored process, writtenM r,w[P], denotes a processP controlled by a monitorM .

Data are exchanged among participants asynchronously, by means ofmessage queues, ranged over by
h,h′, . . .. There is one such queue for each active session. We denote bys : h thenamed queueassociated
with sessions. The empty queue is denoted by ø. Messages in queues are of theform (p,q,λ (u)),
indicating that the labelλ and the extended valueu are communicated with senderp and receiverq.
Queue concatenation is denoted by “·”: it is associative and has ø as neutral element.

The parallel composition of session initiators, monitoredprocesses, and runtime queues forms a
network. Networks can be restricted on session names.

Definition 2.4 (Networks). The set ofnetworksis defined by:

N ::= new(G,L) || M r,w[P] || s : h || N | N || (νs)N

As mentioned above, annotationsr andw in M r,w[P] represent reading and writing permissions for
processP. While r acts as an upper bound for reading,w acts as a lower bound for writing. When the
choreography is initialized, the reading level is set according to mapL; the writing level is always set
to ⊥. The actions performed by the process determine dynamic modifications to these levels. In writing
monitored processes we omit the levels when they are not used. Also, we shall sometimes writeM r,w

p [P]
(or simplyMp[P]) to indicate that the channel inP is s[p] for somes.

As in [6], process types (calledtypeswhen not ambiguous) describe process communication behav-
iors. Types have prefixes corresponding to input and output actions. In particular, aninput type(resp.
output type) is a type whose prefix corresponds to an input (resp. output)action, while thecontinuation
of a type is the type following its first prefix. Acommunication typeis either an input or an output type.
Intersection types are used to type external choices, sincean external choice offers both behaviors of the
composing processes. Dually, union types are used to type conditional expressions (internal choices).

To formally define types, we first give the more liberal syntaxof pre-typesand then we characterize
process types by fixing some natural restrictions on pre-types.

Definition 2.5 (Pre-types). The set ofpre-typesis inductively defined by:

T ::= ?λ (S).T || !λ (S).T || T ∧T || T ∨T || t || µ t.T || end

where∧ and∨ are considered modulo idempotence, commutativity, and associativity.
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lin(?λ (S).T) = lout(!λ (S).T) = {λ}
lin(!λ (S).T) = lin(!λ ) = lout(?λ (S).T) = lout(?λ ) = /0

lin(T1∧T2) = lin(T1∨T2) = lin(T1)∪ lin(T2)

lout(T1∧T2) = lout(T1∨T2) = lout(T1)∪ lout(T2)

Table 1: The mappingslin andlout, as required in Definition 2.6.

Γ ⊢ 0✄ c : end END Γ,X : T ⊢ X✄ c : T RV

Γ,X : T ⊢ P✄ c : T
REC

Γ ⊢ µX.P✄ c : T

Γ,x : S⊢ P✄ c : T
RCV

Γ ⊢ c?λ (x).P✄ c :?λ (S).T

Γ ⊢ P✄ c : T Γ ⊢ e : S
SEND

Γ ⊢ c!λ (e).P✄ c :!λ (S).T

Γ ⊢ e : bool Γ ⊢ P1✄ c : T1 Γ ⊢ P2✄ c : T2 T1∨T2 ∈ T
IF

Γ ⊢ if e then P1 else P2✄ c : T1∨T2

Γ ⊢ P1✄ c : T1 Γ ⊢ P2✄ c : T2 T1∧T2 ∈ T
CHOICE

Γ ⊢ P1+P2✄ c : T1∧T2

Table 2: Typing Rules for Processes.

In writing pre-types and types we assume that ‘.’ has precedence over ‘∧’ and ‘∨’.
In order to define types for processes, we have to avoid intersection between input types with the

same first label, which would represent an ambiguous external choice: indeed, the types following a
same input prefix could be different and this would lead to a communication mismatch. For the same
reason, process types cannot contain intersections between output types with the same label. Since we
have to match types with monitors, where internal choices are always taken by participants sending a
label, we force unions to take as arguments output types (possibly combined by intersections or unions).
Therefore, we formalize the above restrictions by means of two mappings from pre-types to sets of labels
(Table 1) and then we define types by using these mappings.

Definition 2.6 (Process Type). A (process) typeis a pre-type satisfying the following constraints modulo
idempotence, commutativity and associativity of unions and intersections:

• all occurrences of the shape T1∧T2 are such that lin(T1)∩ lin(T2) = lout(T1)∩ lout(T2) = /0.

• all occurrences of the shape T1∨T2 are such that lin(T1) = lin(T2) = lout(T1)∩ lout(T2) = /0.

We useT to range over types andT to denote the set of types.

For instance,(T∧T)∨T is a type, wheneverT is a type, since types are considered modulo idempotence.
We now introduce the type system for processes. AnenvironmentΓ is a finite mapping from expres-

sion variables to sorts and from process variables to types:

Γ ::= /0 || Γ,x : S || Γ,X : T

where the notationΓ,x : S(resp.Γ,X : T) means thatx (resp.X) does not occur inΓ.
Typing rules for processes are given in Table 2. We assume that expressions are typed by sorts, as

usual, and a nonce has all sorts. In rulesIF andCHOICE we require that the applications of union and
intersection on two types form a type (cf. conditionsT1∨T2 ∈ T andT1∧T2 ∈ T ).
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We define≤ as the minimal reflexive and transitive relation onT such that:

t ≤ t T≤ end T1∧T2 ≤ Ti Ti ≤ T1∨T2 (i = 1,2)
T1 ≤ T2 implies !λ (S).T1 ≤!λ (S).T2 and ?λ (S).T1 ≤?λ (S).T2

T≤ T1 andT≤ T2 imply T ≤ T1∧T2

T1 ≤ T andT2 ≤ T imply T1∨T2 ≤ T

(T1∨T2)∧T3 ≤ T iff T1∧T3 ≤ T andT2∧T3 ≤ T

T≤ (T1∧T2)∨T3 iff T≤ T1∨T3 andT≤ T2∨T3

µ t.T≤ µ t.T′ iff T≤ T′

Table 3: Subtyping on Process Types.

The compliance between process types and monitors (adequacy) is made flexible by using thesub-
typing relation on types, denoted≤ and defined in Table 3. Subtyping is monotone, for input/output
prefixes, with respect to continuations and it follows the usual set theoretic inclusion of intersection and
union. Notice that we use a weaker definition than standard subtyping on intersection and union types,
since it is sufficient to define subtyping on types. Intuitively, T1 ≤ T2 means that a process with typeT1

has all the behaviors required by typeT2 but possibly more.
An input monitor naturally corresponds to an external choice, while an output monitor naturally

corresponds to an internal choice. Thus, intersections of input types are adequate for input monitors and
unions of output types are adequate for output monitors. Formally, adequacyis defined as follows:

Definition 2.7 (Adequacy). Let the mapping| · | from monitors to types be defined as

|p?{λi(Si).Mi}i∈I |=
∧

i∈I ?λi(Si).|Mi | |q!{λi(Si).Mi}i∈I |=
∨

i∈I !λi(Si).|Mi |

|t|= t |µ t.M | = µ t.|M | |end|= end

We say that typeT is adequatefor a monitorM , notationT ∝ M , if T≤ |M |.

3 Semantics

The semantics of monitors and processes is given by labeled transition systems (LTS), while that of
networks is given in the style of a reduction semantics.

A monitor guides the communications of a process by choosingits partners in labeled exchanges,
and by allowing only some actions among those offered by the process.

The LTS for monitors uses labelsp?λ andp!λ , and formalizes the expected intuitions:

p?{λi(Si).Mi}i∈I
p?λ j
−−→ M j q!{λi(Si).Mi}i∈I

q!λ j
−−→ M j j ∈ I

The LTS for processes, given in Table 4, is also fairly simple. It relies on labelss[p]?λ (u) (input),
s[p]!λ (u) (output), andℓ (security levels for expressions). The labelss[p]?λ (u) ands[p]!λ (u) are ranged
over byα ,β . We usee ↓ u to indicate that expressione evaluates to the extended valueu, assuming
nonce i ↓ nonce i . When reducing a conditional we record the level of the tested expression in order to track
information flow. The rules for sum specify that choices are performed by the communication actions,
while internal computations are transparent.

The reduction of networks assumes a collectionP of pairs(P,T) of processes together with their
types. It uses a rather natural structural equivalence≡ which erases monitored processes withend

monitor and commutes independent messages (with differentsenders or different receivers) in queues [4].
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s[p]?λ (x).P s[p]?λ(u)
−−−−−→ P{u/x} s[p]!λ (e).P s[p]!λ(u)

−−−−−→ P e ↓ u

if e then P else Q
lev(e)
−−−→ P e ↓ true if e then P else Q

lev(e)
−−−→ Q e ↓ false

P
α
−→ P′ ⇒ P+Q

α
−→ P′ P

ℓ
−→ P′ ⇒ P+Q

ℓ
−→ P′+Q

Table 4: LTS of processes. Symmetric rules are omitted.

Mp = G↾p ∀p ∈ part(G). (Pp,Tp) ∈ P & Tp ∝ Mp

INIT
new(G,L) −→ (ν s) ∏

p∈part(G)

(M L(p),⊥
p

[Pp{s[p]/y}] | s : ø)

P
ℓ
−→ P′

UPLEV
M

r,w[P]−→ M
r ,w⊔ℓ[P′]

Mp

q?λ
−−→ M̂p P

s[p]?λ(u)
−−−−−→ P′ lev(u)≤ r

IN
M

r,w
p

[P] | s : (q,p,λ (u)) ·h−→ M̂
r,w
p

[P′] | s : h

Mp

q!λ
−−→ M̂p P

s[p]!λ(u)
−−−−−→ P′ u∈ Noncesor (u= v andw≤ lev(v))

OUT
M

r,w
p

[P] | s : h−→ M̂
r,w
p

[P′] | s : h· (p,q,λ (u))

Mp

q?λ
−−→ M̂p nonce i = next(Nonces) P

s[p]?λ(nonce i)
−−−−−−−→ P′ lev(v) 6≤ r

INGLOB
M

r,w
p

[P] | s : (q,p,λ (v)) ·h−→ M̂
r,w
p

[P′] | s : h

Mp

q!λ
−−→ M̂p P

s[p]!λ(v)
−−−−−→ P′

nonce i = next(Nonces) w 6≤ lev(v)
OUTGLOB

M
r,w
p

[P] | M r′,w′

q
[Q] | s : h−→ M̂

r⊓r′,w
p

[P′] | M r′,w′

q
[Q] | s : h· (p,q,λ (nonce i))

A ({Pp | p ∈ Π},nonce i) = Π′ F({Pp | p ∈ Π′}) = (G,L)
REFRESH

(ν s) (∏
p∈Π

Mp[Pp] | s : h)−→ (ν s) ( ∏
p∈Π−Π′

Mp[Pp] | s : h\Π′) | new(G,L)

Mp

q?λ
−−→ M̂p (P′,T) ∈ P T ∝ M̂p lev(v) 6≤ r

INLOC
M

r,w
p

[P] | s : (q,p,λ (v)) ·h−→ M̂
r,w
p

[P′] | s : h

Mp

q!λ
−−→ M̂p P

s[p]!λ(v)
−−−−−→ P′

M̂q = Mq\?(p,λ ) (Q′,T) ∈ P T ∝ M̂q w 6≤ lev(v)
OUTLOC

M
r,w
p

[P] | M r′,w′

q
[Q]−→ M̂

r⊓r′,w
p

[P′] | M̂ r′,w′

q
[Q′{s[q]/y}]

N1 ≡ N′
1 N′

1 −→ N′
2 N2 ≡ N′

2
EQUIV

N1 −→ N2

N −→ N′

CTX
E [N]−→ E [N′]

Table 5: Reduction Rules for Networks.
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The reduction rules for networks are given in Table 5. We briefly describe them:

1. Rule INIT initializes a choreography denoted by global typeG. A networknew(G,L) evolves in a
reduction step into a composition of monitored processes and a session queue. For eachp ∈ part(G),
there must be a pair(Pp,Tp) in the collectionP. The typeTp must be adequate for the monitor
obtained as projection ofG ontop. Then the process (where the channely has been replaced bys[p])
is coupled with the corresponding monitor and the empty queue s : ø is created. The security levels of
the monitors are instantiated at runtime: while the initialreading level is obtained from the mapping
L, the initial writing level is⊥. Lastly, the names is restricted.

2. Rule UPLEV updates the current writing levelw of the monitor with the least upper bound (join) of
w and the levelℓ of the conditional expression tested by the process (by the semantics of processes,
we know thatℓ is the level of a conditional expression). This is to preventusual information leaks.

3. Rule IN defines the input of an extended valueu. The input action must be enabled by the monitor.
We further require that the level associated withu in the queue be lower than or equal to the reading
level r of the monitor. Notice that this check is nontrivial only forvalues, as nonces have all level⊥.

4. Rule OUT defines the output of an extended valueu. If u is a proper valuev, we require that the output
be allowed by the monitor, i.e., that the level associated with v be higher than or equal to the levelw

of the monitor. Nothing is required in caseu is a nonce, since nonces provide no information.

5. Rule INGLOB defines theglobal reconfiguration mechanism for reading violations, which creates
nonces. A reading violation occurs when the level associated with the value in the queue is not lower
than or equal to the reading level of the monitor. A reductionis still enabled, but since the monitored
process is not allowed to input the provided value, an adaptation is realized by: (a) inputting a fresh
nonce instead of the value, and (b) removing the unreadable value from the queue. In this rule and in
the next one the functionnext(Nonces) is used to obtain a fresh nonce in the setNonces.

6. Rule OUTGLOB defines theglobal reconfiguration mechanism for writing violations. Such a violation
occurs when the level of the sent valuev (no writing violation may occur with nonces) is not greater
than or equal to the writing levelw of the monitor controlling the sender (notedp in the rule). Also
in this case a reduction is enabled; adaptation is realized by: (a) adding a fresh nonce to the queue
and (b) updating the reading permissionr attached to the monitor ofp. Indeed, to formalize the
fact thatp is responsible for the writing violation, by trying to “declassify” valuev from its original
level to the reading levelr′ of the monitor controlling the receiver (notedq in the rule), we update its
current reading levelr to the greatest lower bound (meet) ofr andr′. Hence, the reading level ofp is
downgraded to that ofq (or lower), accounting for the fact thatp attempted to leak information toq.
This is intended to counter any possible “recidivism” inp’s offending behaviour, by preventing new
sensitive values to be received byp and then leaked again toq.

7. Rule REFRESHgoes hand-in-hand with rules INGLOB and OUTGLOB. It extracts the set of partici-
pants whose processes can sendnonce i, which are the processes that containnonce i , and all those which
(transitively) communicate with them. This set is obtainedusing the mappingA . For the participants
affected bynonce i , a new global type is obtained via a functionF. This function is left unspecified,
for we are interested in modelling the mechanism of adaptation, and not the way in which the new
security global type is chosen. Notice that the new securityglobal type may involve other participants
than those affected bynonce i . The reduction step then consists in (a) starting the new choreography
and (b) continuing the execution of the unaffected participants. For (b) we must erase from the queue
all messages involving affected participants; we denote byh\Π′ the resulting queue.
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8. Rule INLOC defines thelocal reconfiguration mechanism triggered in the case of a readingviolation.
Intuitively, this rule defines adaptation by “ignoring” theforbidden input: the message is removed
from the queue and the implementation of the monitored process is replaced with new code where the
input action is not present. This code replacement is formalized simply by considering the monitor
that results from the reduction (noted̂Mp in the rule), and picking a processP′ that agrees with it.

9. Rule OUTLOC defines thelocal reconfiguration mechanism for writing violations. As for INLOC,
the monitor is modified and a new implementation that conforms to the modified monitor is injected.
The monitorMq\?(p,λ ) is obtained fromMq by erasing the input action ?(p,λ ) and choosing the
corresponding branch. The reading permission of the sendermonitor is modified as in rule OUTGLOB.

10. Rules EQUIV and CTX are standard: they allow the interplay of reduction with structural congruence
and enable the reduction within evaluation contexts (defined as expected), respectively.

The reduction of networks is clearly nondeterministic, in contrast with standard session calculi. Non-
determinism arises at every security violation, which can be treated either by generating nonces (rules
INGLOB and OUTGLOB) or by modifying the receiver’s monitor and process, just skipping “wrong”
message receptions (rules INLOC and OUTLOC). On top of these alternatives, rule REFRESH can al-
ways be applied, resulting in the splitting of the choreography between a part affected by a fixed nonce
(arbitrarily chosen) and an unaffected part. As a result, the affected participants are adapted using some
(unspecified) adaptation function, while unaffected participants remain unaware of this adaptation.

Main Results. As in [6], well-typed networks enjoysubject reductionandprogressproperties. Moreover,
reduction of well-typed networks always respects reading and writing permissions:

Theorem 3.1. Let N be a network.

1. If N = M
r,w
p [P] | s : (q,p,λ (v)) ·h−→ M̂

r,w
p [P′] | s : h, then either lev(v)≤ r or P′ is not obtained by

consuming the message(q,p,λ (v)).

2. If N = M
r,w
p [P] | s : h−→ M̂

r,w
p [P′] | s : h· (p,q,λ (v)), thenw ≤ lev(v).

Theorem 3.1(1) says that if the reading permission of a monitor is not respected, then the disallowed
value is never read from the queue—by virtue of the runtime mechanisms implemented by rules INGLOB

and INLOC. Analogously, Theorem 3.1(2) says that if a value is added toa session queue, then it is
always the case that this is allowed by the writing permission of the given monitor. Here again, it is worth
observing that adaptation mechanisms defined by rules OUTGLOB and OUTLOC can always be triggered
to handle the situations in which the sender attempts to transgress his monitor’s writing permission.

4 Concluding Remarks

Our work builds on [6], where a calculus based on global types, monitors and processes similar to ours
was introduced. There are two main points of departure from that work. First, the calculus of [6] relied
on a global state, and global types describe only finite protocols; adaptation was triggered after the
execution of the communications prescribed by a global type, in reaction to changes of the global state.
Second, adaptation in [6] involved all participants in the choreography. In sharp contrast, in our calculus
reconfigurations are triggered by security violations, andreconfiguration may be either local or global.
Therefore, we may consider our adaptation mechanism as moreflexible than that of [6] in two respects.
First, adaptation is triggered as a reaction to security violations (whose occurrence is hard to predict)
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rather than at fixed, prescribed computation points. Second, adaptation may be restricted to a subset of
participants (those involved in the security violation), thus resulting in a less disruptive procedure.

Our approach based on monitored processes (as defined in [6])relies on rather elementary assump-
tions on the nature of processes. In particular, we assume that processes are well typed with respect
to a rather simple discipline (based on intersection and union types) which does not mention security
permissions. In fact, runtime information on permissions is handled by the monitor of the process; the
relationship between typed processes and monitors is formalized by the notion of adequacy. This de-
gree of independence between typed processes and security annotations distinguishes our approach from
previous works on security issues for multiparty session typed processes (see, e.g. [3, 4]).
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