Self-Adaptation and Secure Information Flow in Multiparty
Structured Communications: A Unified Perspective

llaria Castellani Mariangiola Dezani-Ciancaglini Jorge A. Pérez
INRIA Sophia-Antipolis (FR) Universita di Torino (IT) University of Groningen (NL)

We present initial results on a comprehensive model of girad communications, in which self-
adaptation and security concerns are jointly addressede Igjpecifically, we propose a model of
self-adaptive, multiparty communications with secureinfation flow guarantees. In this model,
security violations occur when processes attempt to readite messages of inappropriate security
levels within directed exchanges. Such violations trigggaptation mechanisms that prevent the
violations to occur and/or to propagate their effect in thereography. Our model is equipped with
local and global mechanisms for reacting to security viotet; type soundness results ensure that
global protocols are still correctly executed, while theteyn adapts itself to preserve security.

1 Introduction

Large-scale distributed systems are nowadays conceivadtesogeneous collections of software arti-
facts. Hencecommunicatiorplays a central role in their overall behavior. In fact, eisyithat the dif-
ferent components follow the stipulated protocols is adesjuirement in certifying system correctness.
However, as communication-centric systems arise in @iffecomputing contexts, system correctness
can no longer be characterized solely in terms of protocofaranance. Several other aspects —for in-
stance, security, evolvability/adaptation, explicittdisution, time— are becoming increasingly relevant
in the specification of actual interacting systems, and lshbe integrated into their correctness analy-
sis. Recent proposals have addressed some of these asipestsxtending the applicability of known
reasoning techniques over models of communication-bagstéras. In the light of such proposals, a
pressing challenge consists in understanding whether ikmoadels and techniques, often devised in
isolation, can be harmoniously integrated into unified fearorks.

As an example, consider the multiparty interaction betwaerser, his bank, a store, and a social
network. All exchanges occur on top of a browser, which seba plug-ins to integrate information
from different services. For instance, a plug-in may aniceuin the social network that the user has
just bought an item from the store. That is, agreed exchabg®eeen the user, the bank, and the store
may in some cases lead to a (public) message announcingatieadttion. We would like to ensure
that the buying protocol works as expected, but also to atl@tl sensitive information, exchanged in
certain parts of the protocol, is leaked —e.g., itmeeetwhich mentions the credit card used in the
transaction. Such an undesired behavior should be codrasteoon as possible. In fact, we would like
to stop relying on the (unreliable) participant in ongofaogire instances of the protocol. Depending on
how serious the leak is, however, we may also like to reacifierdnt ways. If the leak is minor (e.g.,
because the user interacted incorrectly with the browsssh we may simply identify the source of the
leak and postpone the reaction to a later stage, enablirgjated participants in the choreography to
proceed with their exchanges. Otherwise, if the leak iossr{e.g., when the plug-in is compromised
by a malicious participant) we may wish to adapt the chorgplgy as soon as possible, removing the
plug-in and modifying the behavior of the involved parteanps. This form of reconfiguration, however,

Marco Carbone (Ed.): Third Workshop on © |. Castellani & M. Dezani-Ciancaglini & J. A. Pérez
Behavioural Types (BEAT 2014) This work is licensed under the
EPTCS 162, 2014, pp. B8, doi:10.4204/EPTCS.162.2 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.162.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

10 Self-Adaptation and Secure Information Flow in Multipa8§ructured Communications

should only concern the participants involved with the @se plug-in; participants not directly affected
by the leak should not be unnecessarily restarted. In ounpbea since the unintended tweet concerns
only the user, the store and the social network, the updatgdimot affect the behavior of the bank.

To analyze such choreographic scenarios, we propose aii@iéor self-adaptive, multiparty com-
munications which ensures basic guarantees for acceswlcantl secure information flow. The frame-
work consists of a language for processes and networksalgiges, and runtime monitors. Runtime
monitors are obtained as projections from global types amdvidual participants. Processes repre-
sent code that will be coupled with monitors to implementtipgrants. A network is a collection of
monitored processes which realize a choreography as deddny the global type.

Intuitively, a monitor defines the behavior of a single paApint in the choreography. In our proposal,
the monitor also defines a security policy by stipulatiegding and writing permissionsepresented by
security levels The reading permission is an upper bound for the level afriring messages, and the
writing permission is a lower bound for the level of outgoimgssages. A reading or writing violation
occurs when a participant attempts to read or write a messhgse level is not allowed by the corre-
sponding reading or writing permission. A monitored operatl semantics for networks is given by a
reduction relation which ensures that the reading/wrippegmissions are respected or, in case they are
violated, that an appropriate adaptation mechanism igdrigd to limit the impact of the violation.

We consider bothocal and global adaptation mechanisms, intended to handle minor and seriou
leaks, respectively. The local mechanism works as follawgase of a reading violation, the behavior
of the monitor is modified so as to omit the disallowed read| amprocess compliant with the new
monitor is injected; in case of a writing violation, we pemalthe sender by decreasing the reading
level of his monitor and the implementation for the receigereplaced. (In any case, the culprit of
a reading/writing violation is always considered to be teadet)) The global mechanism relies on
distinguished low-level values calletbnces When an attempt to leak a value is detected, the value is
replaced in the communication with a fresh nonce. This av/migbroperly communicating the value and
allows the whole system to make progress, for the benefitegb#inticipants not involved in the violation.
The semantics may then trigger at any point a reconfiguraadion which removes the whole group of
participants that may propagate the nonce and replacethitawiew choreography (global type). Thus,
in this form of adaptation, one part of the choreographyatated and replaced.

2 Syntax

Our calculus is inspired by that dfl[6], where security issweere not addressed and adaptation was
determined by changes of a global state, which is not neeateduir present purposes. We consider
networks with three active componentgobal typesmonitors andprocessesA global type represents
the overall communication choreography over a set of ppatits [5]. Moreover, the global type defines
reading permissions for each participant, following [4} @ojecting the global type onto participants,
we obtain monitors: in essence, these are local types tliseddne communication protocols of the
participants. The association of a process with a “fittingshitor, dubbednonitored processncarnates
a participant whose process implements the monitoringopodt Notably, we exploit intersection types,
union types and subtyping to make this “fitting” relation mdexible.

As usual, we consider a finite lattice eécurity level48], ranged over by, 7', We denote by
andr the join and meet operations on the lattice, and.lgnd T its bottom and top elements. Also, we

IThis is because the sender hasaative rolein producing and disseminating information through thetesys while the
receiver only has a passive role, and thus cannot be blaméiddang a sensitive value in the queue.

I. Castellani & M. Dezani-Ciancaglini & J. A. Pérez 11

user,r’,... andw,w’, ... to range over levels denoting reading and writing permissioespectively.

Global Types and Monitors. Global types define overall schemes of labeled communicdieiween
session participants. In our setting, they also preschibedading levels of the participants. We assume
base sets oparticipants ranged over by, q,r,...; labels ranged over byA\,A’,...; and recursion
variables ranged over by, t’,.... We also assume a set of basarts(bool, nat,...), ranged over by.

Definition 2.1 (Global Types and Security Global Typeg&lobal typesare defined by:
G = p—q:{ASQ)Gi}ia | t | wptG | end

We letpart(G) denote the set of participants @, i.e., all senderg and receiversy occurring inG. A
security global typés a pair (G, L), whereG is a global type and. maps eaclp in part(G) to a reading
levelr.

A global type describes a sequence of value exchanges. Bhahexchange is directed between a
senderp and a receivey, and characterized by a labk] which represents a choice among different al-
ternatives. In writingp — q : {Ai(S).Gj }ic we implicitly assume that # q andA; # A; for alli # j. The
global typeend denotes the completed choreography. To account for reeupsotocols, we consider
recursive global types. As customary, we require guardedrseons and we adopt an equi-recursive
view of recursion for all syntactic categories, identifyia recursive definition with its unfolding.

Monitors are obtained gwojectionsfrom global types onto individual participants, followistan-
dard definitions[[10,/1]. The projection of a global typ@nto participanp, denoteds | p, generates the
monitor forp. As usual, in order fot [p to be defined, it is required that wheneyas not involved in
some directed communication Gf it has equal projections in the different branchings of twnmu-
nication. We sa\G is well formedif the projectionG [p is defined for allp € part(G). In the following
we assume that all (security) global types are well formed.

Although monitors can be seen as local types, in our modgltiaee an active role in the dynamics
of networks, since they guide and enable/disable directethmunications.

Definition 2.2 (Monitors). The set ofmonitorsis defined by:
M= pANM(S) At | d{A(S). A |t | pt# | end

An input monitorp?{A;(S)..# }ic| fits with a process that can receive, for eaehl, a value of sort
S, labeled byA;, and then continues as specified.#. This corresponds to an external choice. Dually,
an output monitog!{A;i(S)..# }ic fits with a process which can send, for eaehl, a value of sorf§,
labeled byA;, and then continues as prescribed #y. As such, it corresponds to an internal choice.

Processes and Networks. We assume a set @xpressionsranged over by, e’,..., which includes
booleans and naturals (with operations over them) and anderable seNonces= {nonce; | i > 0}.
An expressiomonce; —wherei is fresh— is a dummy value that is generated at runtime to bd irs
place of some improperly sent value, in order to preventrifgotiolations, see BI3. Each expression
is equipped with a security level, denotied(e); for everyi, lev(nonce;) = L. Values are ranged over by
v,V; we useu to denote amxtended valyewvhich is either a value or a nonce.

We now define our set of processes, which represent code thdieacoupled with monitors to
implement participants. Our model, liKel [6]— but unlike ettsession calcul [9, 10] 2] 7]— uses pro-
cesses that do not specify their partners in communicatitiorss. It is the associated monitor which
determines the partner in a given communication. Thus,gasEs represent flexible code that can be
associated with different monitors to incarnate differpatticipants. Communication actions are per-
formed througlchannels Each process owns a unique channel, which by conventioanistdd byy in

12 Self-Adaptation and Secure Information Flow in Multipa8§ructured Communications

the user code. At runtime, channeWill be replaced by aession channelp], wheres is the session
name ang denotes the participant. We uséo stand for a user channgbr a session channglp).

Definition 2.3 (Processes)The set ofprocessess defined by:
P = 0 | c2AX).P | cA(e)P | X | puXP | ifethenPelseP | P+P

The syntax of processes is rather standard: in additionual e@nstructs for communication, recur-
sion and conditionals, it includes the operatgmwhich represents external choice. For instantk,(e)P
denotes a process which sends alotgpel A and the value of the expressierand then behaves like.

We assume the following precedence among operators: pegfarnal choice, recursion.

The previously introduced entities (global types, moitgrocesses) are used to defiregworks
A network is a collection of monitored processes which mmaéi choreography as described by a global
type. The choreography is initiated by thestv” construct applied to a security global typ@,L). This
construct, akin to aession initiatoff6]], is denotedhew (G, L). In carrying on a multiparty interaction, a
process is always controlled by a monitor, which ensuresathids communications agree with the pro-
tocol prescribed by the global type. Each monitor is equippéh a reading permissionand a writing
permissionw. A monitored process, written7""[P], denotes a proce$scontrolled by a monitor# .

Data are exchanged among participants asynchronouslyebgsmoimessage queugsnged over by
h,H,.... There is one such queue for each active session. We denetélilge named queuassociated
with sessions. The empty queue is denoted by @. Messages in queues are foirinép, q,A (u)),
indicating that the labeh and the extended valueare communicated with sendprand receiver.
Queue concatenation is denoted BY it is associative and has @ as neutral element.

The parallel composition of session initiators, monitopFdcesses, and runtime queues forms a
network. Networks can be restricted on session names.

Definition 2.4 (Networks) The set ohetworksis defined by:
N = new(G,L) | #Z"W[P] | s:h | N|N | (vs)N

As mentioned above, annotationandw in .#"" [P] represent reading and writing permissions for
processP. While r acts as an upper bound for readimgacts as a lower bound for writing. When the
choreography is initialized, the reading level is set adit@y to mapL; the writing level is always set
to L. The actions performed by the process determine dynamidficeitbns to these levels. In writing
monitored processes we omit the levels when they are not édsal, we shall sometimes writez, ™ [P]

(or simply .7, [P]) to indicate that the channel Ris s[p] for somes.

As in [6], process types (callegipeswhen not ambiguous) describe process communication behav-
iors. Types have prefixes corresponding to input and outgtigres. In particular, amput type(resp.
output typeé is a type whose prefix corresponds to an input (resp. ougmtin, while thecontinuation
of a type is the type following its first prefix. Bommunication types either an input or an output type.
Intersection types are used to type external choices, simexternal choice offers both behaviors of the
composing processes. Dually, union types are used to typd#it@mal expressions (internal choices).

To formally define types, we first give the more liberal syntépre-typesand then we characterize
process types by fixing some natural restrictions on presyp

Definition 2.5 (Pre-types) The set ofpre-typesds inductively defined by:
T = 229.T|AS.T|TAT|TVT|t]|utT |end

whereA andV are considered modulo idempotence, commutativity, anoczssity.

I. Castellani & M. Dezani-Ciancaglini & J. A. Pérez 13

lin(?A(S).T) =lout(!A(S).T) ={A}
liN(IA(S).T)=Ilin(!A) =lout(?A(S).T) = lout(?A) =0
liN(TLAT2) =1lin(Ty vV T2) = lin(Ty) Ulin(Ty)
|OUt(T1 /\Tg) = |0Ut(T1 \/Tz) = |0Ut(T1) U |0Ut(T2)

Table 1: The mappingsn andlout, as required in Definition 2.6.

F-0>c:end END MMX:TEX>c: T RV

MX:THEP>c:T MXx:SEP>c: T N=Ppc:T lFe:S
REC RCV
M=puX.P>c: T MEc?2A(X).P>c:?A(S).T MEclA(e).P>ciIA(S).T

SEND

Ne:bool THEP>c:Ty TEP>c: Ty Ti1VToe T
HifethenPrelse R>c: T1VTy

IF

FrEPi>c:T1 TEP>c: Ty TiAT2€ T
MrM=-Pi+P>c:T1ATy

CHOICE

Table 2: Typing Rules for Processes.

In writing pre-types and types we assume thatas precedence oven*and ‘V'.

In order to define types for processes, we have to avoid gtBon between input types with the
same first label, which would represent an ambiguous extehwice: indeed, the types following a
same input prefix could be different and this would lead to mmanication mismatch. For the same
reason, process types cannot contain intersections hetwdput types with the same label. Since we
have to match types with monitors, where internal choicesaéways taken by participants sending a
label, we force unions to take as arguments output typesif@gpsombined by intersections or unions).
Therefore, we formalize the above restrictions by meansoihappings from pre-types to sets of labels
(Table[1) and then we define types by using these mappings.

Definition 2.6 (Process Type)A (process) typés a pre-type satisfying the following constraints modulo
idempotence, commutativity and associativity of uniortsiatersections:

e all occurrences of the shape A T, are such that lifiT1) Nlin(T,) = lout(Ty) Nlout(T,) = 0.

e all occurrences of the shapg ¥ T, are such that liiT;) = lin(T,) = lout(Ty) Nlout(Tz) = 0.

We use€T to range over types and’ to denote the set of types.

Forinstance(T AT) VT is atype, whenever is a type, since types are considered modulo idempotence.
We now introduce the type system for processeseArironment is a finite mapping from expres-
sion variables to sorts and from process variables to types:

re=0|rx:s|rx:T

where the notatioii,x : S(resp.l", X : T) means thax (resp.X) does not occur ift.

Typing rules for processes are given in TdHle 2. We assuniexipaessions are typed by sorts, as
usual, and a nonce has all sorts. In rulesind cHOICE we require that the applications of union and
intersection on two types form a type (cf. conditiohsv To € .7 andT1 ATz € 7).

14 Self-Adaptation and Secure Information Flow in Multipa8§ructured Communications

We define< as the minimal reflexive and transitive relation .&hsuch that:
t<t T <end TiATy < T Ti<TiVvT, (i=12)
T:<Ts |mpI|es A (S).Tl <IA (S).Tg and A (S).Tl <?A (S).Tg

T<TandT <Toimply T < T1AT,
Ti1<TandT,<Timply T;vT,<T

(T1VT2)/\T3 <T iff TiANT3<T andT2/\T3 <T

T<L (Tl/\Tz)\/Tg iff T<TivTzandT <T,oVTj3

pt. T <putT iff T<T

Table 3: Subtyping on Process Types.

The compliance between process types and monigatsquacy is made flexible by using theub-
typing relation on types, denoted and defined in Tablg] 3. Subtyping is monotone, for input/outp
prefixes, with respect to continuations and it follows thealset theoretic inclusion of intersection and
union. Notice that we use a weaker definition than standantyping on intersection and union types,
since it is sufficient to define subtyping on types. Intulilyd ; < T, means that a process with type
has all the behaviors required by type but possibly more.

An input monitor naturally corresponds to an external chpoiwhile an output monitor naturally
corresponds to an internal choice. Thus, intersectionspftitypes are adequate for input monitors and
unions of output types are adequate for output monitoranglly, adequacyis defined as follows:

Definition 2.7 (Adequacy) Let the mapping- | from monitors to types be defined as
PAN(S) Aitict| = N ?Ai(S)|44] [a{Ai(S)- A }iel| = Via'Ai(S). | 4]

It =t |ut. | = ut.|.#| lend| = end
We say that typ@ is adequatdor a monitor.#, notationT O ., if T < |.#|.

3 Semantics

The semantics of monitors and processes is given by labededition systems (LTS), while that of
networks is given in the style of a reduction semantics.

A monitor guides the communications of a process by chooisingartners in labeled exchanges,
and by allowing only some actions among those offered by thegss.

The LTS for monitors uses labgi®A andp!A, and formalizes the expected intuitions:

p2AN(S)Myia 20ty QNS MY s el

The LTS for processes, given in Table 4, is also fairly simpteelies on labels[p]?A (u) (input),
s[p]!A (u) (output), and’ (security levels for expressions). The labsi{g?A (u) ands[p]!A (u) are ranged
over bya,[3. We usee | u to indicate that expressionevaluates to the extended valugassuming
noncej | nonce;. When reducing a conditional we record the level of the tkstgression in order to track
information flow. The rules for sum specify that choices aeggrmed by the communication actions,
while internal computations are transparent.

The reduction of networks assumes a collectighof pairs (P, T) of processes together with their
types. It uses a rather natural structural equivaleacehich erases monitored processes wttal
monitor and commutes independent messages (with diffeegrtters or different receivers) in queueés [4].

I. Castellani & M. Dezani-Ciancaglini & J. A. Pérez 15

s[p]2A (x).P 22, pry g slp]!A(e).P B p o |y
if e then P else Q—>P e true if e then P else Q%Q e | false
PLP = P+Q&P PSP = P+Q5SP+Q

Table 4: LTS of processes. Symmetric rules are omitted.

My =Glp Vp € part(G). (R, Tp) € Z & T, O 4, T
new(G,L) —(vs) [] (AP [Rislol/y}] 5 9)

pEpart(G)

pLp oL ity s, PP eyu) < |
- PLEV — N
MNP — [P A" [P st (q,p,A(U)-h— ;" [P][s:h

My —> & My PETD, B, by ¢ Noncesor (u=vandw < lev(v))

r,w WD/ OUT
AP | sih— A" [P [s:h-(p,q,A(U))

QA s[p] ?A (nonce;)

My nonce; = next(Nonce$ P P lev(v) £r
AP |55 (a,p,A W) -h— 25" [P] | s:h

My —
INGLOB

My — ! ////\ p P, b nonce; = next(Nonce$ w £ lev(v)

r.w r'.w /?jrl WIrp/ v w' OUTGLOB
A5 P A (Q s h— " [P | 5™ [Q] | s h- (p,q, A (nomcei))

a ({P, |pen}, nonce;) = M’ F({Pp\pel_ll}):(G,L)
(vs) |_I|1/// ol [sth) — (vs) ([] 4[P][s:h\T") [new(G,L)

pel—1

REFRESH

M, o, P Ty e TOM, lew)£r

rw . TW D/ . INLoC
e%p’ [P] ’S(an7A(V))h_>f//lp’ [P] ’5h

My ™ty PP o= a0) QT EP TO.My wilewy)

o e OutLoc
My P A Q — Ay TP | g ™ [Q{slal/YH

Ni=N; N —N; Na=N; N— N
! ! ! 2 2 2EQUIV B CtXx
N;i — N2 g[N]—)(b@[N]

Table 5: Reduction Rules for Networks.

16

Self-Adaptation and Secure Information Flow in Multipa8§ructured Communications

The reduction rules for networks are given in Tdble 5. Weflyridgescribe them:

1.

Rule NIT initializes a choreography denoted by global type A network new(G,L) evolves in a
reduction step into a composition of monitored processdsassession queue. For egehk part(G),
there must be a paiiP;,, T) in the collection?. The typeT, must be adequate for the monitor
obtained as projection & ontop. Then the process (where the channbhs been replaced Isjp])

is coupled with the corresponding monitor and the empty guew is created. The security levels of
the monitors are instantiated at runtime: while the initeadding level is obtained from the mapping
L, the initial writing level isL. Lastly, the nama is restricted.

. Rule WPLEV updates the current writing level of the monitor with the least upper bound (join) of

w and the level of the conditional expression tested by the process (byeh®stics of processes,
we know that/ is the level of a conditional expression). This is to prevesal information leaks.

. Rule N defines the input of an extended valueThe input action must be enabled by the monitor.

We further require that the level associated witim the queue be lower than or equal to the reading
level r of the monitor. Notice that this check is nontrivial only falues, as nonces have all leviel

. Rule QuT defines the output of an extended valuéf uis a proper value, we require that the output

be allowed by the monitor, i.e., that the level associatati wbe higher than or equal to the lewel
of the monitor. Nothing is required in casés a honce, since nonces provide no information.

. Rule NGLOB defines theglobal reconfiguration mechanism for reading violations, whichates

nonces. A reading violation occurs when the level assatiaith the value in the queue is not lower
than or equal to the reading level of the monitor. A reductgostill enabled, but since the monitored
process is not allowed to input the provided value, an adiaptés realized by: (a) inputting a fresh
nonce instead of the value, and (b) removing the unreadalle yrom the queue. In this rule and in
the next one the functionext(Nonce$ is used to obtain a fresh nonce in the Nenhces

. Rule QuTGLOB defines theglobal reconfiguration mechanism for writing violations. Suchealaiion

occurs when the level of the sent valuéno writing violation may occur with nonces) is not greater
than or equal to the writing level of the monitor controlling the sender (notedn the rule). Also

in this case a reduction is enabled; adaptation is realigedd) adding a fresh nonce to the queue
and (b) updating the reading permissio@attached to the monitor gf. Indeed, to formalize the
fact thatp is responsible for the writing violation, by trying to “deslsify” valuev from its original
level to the reading level of the monitor controlling the receiver (notedn the rule), we update its
current reading level to the greatest lower bound (meet)raindr’. Hence, the reading level gfis
downgraded to that of (or lower), accounting for the fact thatattempted to leak information tp
This is intended to counter any possible “recidivism’pia offending behaviour, by preventing new
sensitive values to be received pynd then leaked again tp

. Rule REFRESHgoes hand-in-hand with rulesiGLOB and QUTGLOB. It extracts the set of partici-

pants whose processes can sefide;, which are the processes that contedfice, and all those which
(transitively) communicate with them. This set is obtainsthg the mapping?. For the participants
affected bynonce;, @ new global type is obtained via a functibn This function is left unspecified,
for we are interested in modelling the mechanism of adaptatind not the way in which the new
security global type is chosen. Notice that the new secgtdial type may involve other participants
than those affected byonce;. The reduction step then consists in (a) starting the newedgpaphy
and (b) continuing the execution of the unaffected pardictp. For (b) we must erase from the queue
all messages involving affected participants; we denote\byl’ the resulting queue.

I. Castellani & M. Dezani-Ciancaglini & J. A. Pérez 17

8. Rule NLoc defines thdocal reconfiguration mechanism triggered in the case of a readalgtion.
Intuitively, this rule defines adaptation by “ignoring” tii@rbidden input: the message is removed
from the queue and the implementation of the monitored p®izreplaced with new code where the
input action is not present. This code replacement is famealsimply by considering the monitor
that results from the reduction (noted;, in the rule), and picking a proce®that agrees with it.

9. Rule QuTLoc defines thdocal reconfiguration mechanism for writing violations. As forlloc,
the monitor is modified and a new implementation that confotothe modified monitor is injected.
The monitor.#,\?(p,A) is obtained from#, by erasing the input action(,A) and choosing the
corresponding branch. The reading permission of the sendeitor is modified as in rule QrGLOB.

10. Rules Buiv and Crx are standard: they allow the interplay of reduction withistral congruence
and enable the reduction within evaluation contexts (ddfageexpected), respectively.

The reduction of networks is clearly nondeterministic, amitast with standard session calculi. Non-
determinism arises at every security violation, which cartreated either by generating nonces (rules
INGLOB and QuTGLOB) or by modifying the receiver's monitor and process, juspgig “wrong”
message receptions (ruleslloc and QuTtLoC). On top of these alternatives, ruleeERRESH can al-
ways be applied, resulting in the splitting of the chorepgsabetween a part affected by a fixed nonce
(arbitrarily chosen) and an unaffected part. As a resudtatfiected participants are adapted using some
(unspecified) adaptation function, while unaffected paréints remain unaware of this adaptation.

Main Results. As in [6], well-typed networks enjogubject reductiomndprogressproperties. Moreover,
reduction of well-typed networks always respects readimy\variting permissions:

Theorem 3.1. Let N be a network.

1. EN=4"[P]|s:(q.p,AV))-h— .Z"[P]|s:h, then either lef) < r or P’ is not obtained by
consuming the messageg,p,A (V)).

2. fN=.#"P]|s:h— /Z/}W[P’] |s:h-(p,q,A(Vv)), thenw < lev(v).

Theoren 3.11(1) says that if the reading permission of a roprstnot respected, then the disallowed
value is never read from the queue—Dby virtue of the runtimeharisms implemented by rulesGLOB
and INLoc. Analogously, Theorern 3.1(2) says that if a value is addea $ession queue, then it is
always the case that this is allowed by the writing permissithe given monitor. Here again, it is worth
observing that adaptation mechanisms defined by ruies@oB and QuTL OcC can always be triggered
to handle the situations in which the sender attempts tedrass his monitor’s writing permission.

4 Concluding Remarks

Our work builds on[[6], where a calculus based on global typesitors and processes similar to ours
was introduced. There are two main points of departure flmahwork. First, the calculus of[6] relied
on a global state, and global types describe only finite pa$y) adaptation was triggered after the
execution of the communications prescribed by a global,typeeaction to changes of the global state.
Second, adaptation ihl[6] involved all participants in thereography. In sharp contrast, in our calculus
reconfigurations are triggered by security violations, eswbnfiguration may be either local or global.
Therefore, we may consider our adaptation mechanism asfieailgle than that of([6] in two respects.
First, adaptation is triggered as a reaction to securitjatiims (whose occurrence is hard to predict)

18 Self-Adaptation and Secure Information Flow in Multipa8§ructured Communications

rather than at fixed, prescribed computation points. Secasabtation may be restricted to a subset of
participants (those involved in the security violatioiy$ resulting in a less disruptive procedure.

Our approach based on monitored processes (as defined meljép on rather elementary assump-
tions on the nature of processes. In particular, we assuatepthcesses are well typed with respect
to a rather simple discipline (based on intersection andrutypes) which does not mention security
permissions. In fact, runtime information on permissiohtandled by the monitor of the process; the
relationship between typed processes and monitors is faedaby the notion of adequacy. This de-
gree of independence between typed processes and secmatations distinguishes our approach from
previous works on security issues for multiparty sessigedyprocesses (see, eld.[B, 4]).

Acknowledgments. We are grateful to the anonymous reviewers for their usefioiarks. This work
was supported by COST Action IC1201: Behavioural Types felidRle Large-Scale Software Systems
via a Short-Term Scientific Mission grant (to Pérez). Dexeas also partially supported by MIUR PRIN
Project CINA Prot. 2010LHT4KM and Torino University/Congrda San Paolo Project SALT.

References

[1] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco Deuca, Mariangiola Dezani-Ciancaglini & Nobuko
Yoshida (2008):Global Progress in Dynamically Interleaved Multiparty Siems In Pierpaolo Degano,
Rocco De Nicola & José Meseguer, editoBONCUR’'08 LNCS5201, Springer, pp. 418-433. Available at
http://dx.doi.org/10.1007/978-3-540-85361-9_33.

[2] Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Koheinddo & Nobuko Yoshida
(2013): Monitoring Networks through Multiparty Session Types In Dirk Beyer & Michele
Boreale, editors: FMOODS/FORTE'13 LNCS 7892, Springer, pp. 50-65. Available at
http://dx.doi.org/10.1007/978-3-642-38592-6_5,

[3] Sara Capecchi, llaria Castellani & Mariangiola Dez@&m&ncaglini (2014)information Flow Safety in Mul-
tiparty SessionsMathematical Structures in Computer Scierlaeappeatr.

[4] Sara Capecchi, llaria Castellani & Mariangiola Dez@&mncaglini (2014): Typing Access Con-
trol and Secure Information Flow in Sessions Information and ComputationAvailable at
http://dx.doi.org/10.1016/j.ic.2014.07.005.

[5] Marco Carbone, Kohei Honda & Nobuko Yoshida (2013}ructured Communication-Centered Program-
ming for Web ServicesACM Transactions on Programming Languages and Sys8t®), pp. 8:1-8:78.
Available athttp://doi.acm.org/10.1145/2220365.2220367.

[6] Mario Coppo, Mariangiola Dezani-Ciancaglini & Betti Meeri (2014):Self-Adaptive Monitors for Multi-
party SessionsIn Marco Aldinucci, Daniele D’Agostino & Peter Kilpatrigleditors: PDP’14 IEEE, pp.
688-696. Available éittp://doi.ieeecomputersociety.org/10.1109/PDP.2014.18.

[7] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobukoshida & Luca Padovani (2014@lobal Progress
for Dynamically Interleaved Multiparty Sessiondathematical Structures in Computer Scienlceappear.

[8] Dorothy E. Denning (1976)A Lattice Model of Secure Information FlowCommun. ACM19(5), pp. 236—
243. Available ahttp://doi.acm.org/10.1145/360051.360056.

[9] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998nguage Primitives and Type Disciplines for
Structured Communication-based Programmiihg Chris Hankin, editorESOP’98 LNCS 1381, Springer,
pp. 22—138. Available &tttp://dx.doi.org/10.1007/BFb0053567.

[10] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008Jiultiparty Asynchronous Session Types
In George C. Necula & Philip Wadler, editorsPOPL'0§ ACM Press, pp. 273-284. Available at
http://doi.acm.org/10.1145/1328438.1328472,

http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1007/978-3-642-38592-6_5
http://dx.doi.org/10.1016/j.ic.2014.07.005
http://doi.acm.org/10.1145/2220365.2220367
http://doi.ieeecomputersociety.org/10.1109/PDP.2014.18
http://doi.acm.org/10.1145/360051.360056
http://dx.doi.org/10.1007/BFb0053567
http://doi.acm.org/10.1145/1328438.1328472

	1 Introduction
	2 Syntax
	3 Semantics
	4 Concluding Remarks

