
Marco Carbone (Ed.): Third Workshop on
Behavioural Types (BEAT 2014)
EPTCS 162, 2014, pp. 19–26, doi:10.4204/EPTCS.162.3

c© R. Neykova, L. Bocchi & N. Yoshida
This work is licensed under the
Creative Commons Attribution License.

Timed Runtime Monitoring for Multiparty Conversations

Rumyana Neykova
Imperial College London, UK

Laura Bocchi
Imperial College London, UK

Nobuko Yoshida
Imperial College London, UK

Abstract We propose a dynamic verification framework for protocols in real-time distributed systems.
The framework is based on Scribble, a tool-chain for design and verification of choreographies based on
multiparty session types, developed with our industrial partners. Drawing from recent work on multi-
party session types for real-time interactions, we extend Scribble with clocks, resets, and clock predicates
constraining the times in which interactions should occur. We present a timed API for Python to program
distributed implementations of Scribble specifications. A dynamic verification framework ensures the safe
execution of applications written with our timed API: we have implemented dedicated runtime monitors
that check that each interaction occurs at a correct timing with respect to the corresponding Scribble spec-
ification. The performance of our implementation and its practicability are analysed via benchmarking.

Recent work [3] extends Multiparty Session Types (MPSTs) to enable the verification of real-time
distributed systems. This timed extension allows to express properties on the causalities of interactions,
on the carried datatypes, and on the times in which interactions occur. In this paper, we apply the theory
in [3] to implement a toolchain for specification and runtime verification of real-time interactions, and
evaluate our prototype implementation via benchmarking.

This work is motivated by our collaboration with the Ocean Observatories Initiative (OOI) [13],
directed at developing a large-scale cyber-infrastructure for ocean observation. The type of protocol
used in the governance of the OOI infrastructure (e.g., users remotely accessing instruments via service
agents) can be suitably expressed using MPSTs, and an untimed monitoring framework based on MPSTs
[11] is now integrated into OOI. Time, however, in necessary in many OOI use-cases, for instance to
associate timeouts to requests when resources can be used for fixed amounts of time, or to schedule the
execution of services at certain time intervals to reduce the busy wait and minimise energy consumption).

1 Running example and methodology

Our toolchain centres on a specification language called Scribble [15, 10], and supports the top-down
development methodology illustrated in Figure 1 (left). In step 1, a global communication is specified as
a Scribble timed global protocol. A timed global protocols defines: (a) the causality among interactions
in a session involving two or more participants, (b) the datatypes carried by the messages, and (c) the
timing constraints of each interaction. We extended Scribble with the notion of time from [12, 3]: each
participant owns a clock on which timing constraints can be defined. The clock can be reset many times
in a session, and we assume that time flows at the same pace for all participants. In step 2, the Scribble
toolchain is used to algorithmically project the timed global protocol to timed local protocols. Each
timed local protocol specifies the actions in a session (and their timing) from the perspective of a single
participant. In step 3, principals over a network implement one or more, possibly interleaved, timed
local protocols. We will call these implementations timed endpoint programs. In our prototype imple-
mentation, timed local protocols are written in native Python using our in-house developed Conversation
API. Our Python conversation API is a message passing library that supports the core primitives for
communication programming of MPSTs. Finally, in step 4, the timed endpoint programs are executed.
Each endpoint is associated to a dedicated and trusted monitor. A monitor checks that the interactions

http://dx.doi.org/10.4204/EPTCS.162.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


20 Timed Runtime Monitoring for Multiparty Conversations

Master M Worker W

TASK<log,string>

Aggregator A

rec Loop
RESULT<log,data>

Loop

xM<1 xM:=0 xW=1 xW:=0

21.5<xM<22 xW=20

23≤xA

xW=23

END<data>

MORE<log,string>

⊕
xM=22

MORE<data>

END

23≤xA xA:=0

xW=23 xW:=0
xM=22 xM:=0

Figure 1: Scribble toolchain framework (left) and global protocol for log crawling (right)

of the monitored timed endpoint program conform to the implemented timed local protocols. In case of
violation, the monitor either throws a time error (error detection mode), or triggers recovery actions to
amend the conversation (error prevention/recovery mode).

Outline of the paper. In the following sections we will discuss in detail each of the steps of the method-
ology illustrated in Figure 1 (left). In § 2 (steps 1 and 2) we present Scribble timed global and local
protocols, which are a practical and more human-readable incarnation of timed global and local types
in [3]. We implemented the algorithms in [4] to check two time-consistency properties over timed global
types/protocols: feasibility and well-formedness [3]. The projection of Scribble timed global protocols
has also been implemented following [3, 4]. In § 3 we present our timed API (step 3) based on the
calculus with delays in [3] (a simple timed extension of the π-calculus used to implement timed local
types). In § 4 we discuss runtime enforcement of timed properties (step 4). Timed local protocols are au-
tomatically encoded into timed automata (using the encoding from timed local types to timed automata
presented in [3, 4]), which are in turn used by our runtime monitors for error detection. Additional
mechanisms for error prevention and recovery are implemented and explained. Benchmarks are in § 5
and related work in § 6. Our prototype implementation is available at [14].

2 Specifying Timed Protocols with Scribble

Running example. We present our framework via a running example: a protocol for distributed compu-
tation of a word count over a set of logs. The timed global protocol, informally illustrated in Figure 1
(right), involves three participants: a master M, a worker W and an aggregator A. Each participant has a
clock, xM, xW, and xA, respectively, initially set to 0.1 At the beginning of the session M sends W a message
of type TASK together with a variable of type log (i.e., the list of log names to crawl) and a variable of
type string (i.e., the word to search). The message must be sent by M within one second (xM < 1) and
received by W at time xW = 1. Both M and W reset their clocks upon sending/receiving the message. The
protocol then enters a loop. At each iteration, W replies to M in exactly 20 seconds with a message of type
RESULT along with a variable of type log (i.e., the logs that have been crawled in the given amount of
time) and a variable of type data (i.e., the result of the word search). This message is received by M at
any time satisfying 21.5 < xM < 22. A choice is then made locally to M at time 22: depending on whether
the results are satisfactory or not, the worker chooses to either terminate the session (message of type
END), or to continue the crawling (messages of type MORE). If W chooses MORE all clocks are reset. In
both cases the results of the last iteration are forwarded to A. This timed protocol allows M to wake up at

1As customary in MPSTs, protocols start synchronously for all participants, hence all clocks start counting at the same time.



R. Neykova, L. Bocchi & N. Yoshida 21

global protocol WordCount at M(role A, role W)
[xm@M: xm<1,reset(xm)][xw@W: xw=1,reset(xw)]
task(log,string) from M to W;
rec Loop{

[xw@W: xw=20][xm@M: 21.5<xm<22]
result(data) from W to M;
choice at M{

[x@M: xm=22][xa@A: 23<=xa,reset(xa)]
more(data) from M to A;
[xm@M: xm=22,reset(xm)][xw@W: xw=23,reset(xw)]
more(log,string) from M to W;
continue Loop;

} or {
[xm@M: xm=22][xa@A: 23<=xa]
end(data) from M to A;
[xm@M: xm=22][xw@W: xw=23]
end() from M to W; } }

local protocol WordCount at M(role A, role W)
[xm@M: xm<1,reset(xm)]
task(log,string) to W;
rec Loop{

[xm@M: 21.5<xm<22]
result(data) from W;
choice at M{

[xm@M: xm=22]
more(data) to A;
[xm@M: xm=22, reset(xm)]
more(log,string) to W;
continue Loop;

} or {
[xm@M: xm=22]
end(data) to A;
[mx@M: xm=22, reset(xm)]
end() to W; } }

Figure 2: Scribble timed global (left) and local (right) protocol for M
regular intervals (e.g., every 20 seconds) to evaluate the results and decide when to continue or terminate
the loop. Otherwise M can remain idle (e.g., sleep).
Timed global protocols We let each participant (or role) in a Scribble timed global protocol to own
one real-valued clock which can be reset many times. The (asynchronous) interactions between pairs of
participants can be thought as being broken down into two actions: the sending action and the receiving
action. Each sending (resp. receiving) action is annotated with a constraint and a reset predicate, both
defined on the clock owned by the sender (resp. receiver). An action can be executed only if the asso-
ciated constraint is satisfied, and after its execution the clock of the sender/receiver is reset according to
the reset predicate. Clock constraints and reset predicates are represented in Scribble as annotations on
the message interactions, enclosed by square brackets and are explicitly bound to a participant. Figure 2
(left) shows the Scribble timed global protocol of the example in Figure 1 (right).
Timed properties of global protocols The theoretical framework in [3] sets two time-consistency con-
ditions on timed global types: feasibility (first introduced in [1]) requiring that for each partial execution
allowed by a specification there is a correct complete one, and wait-freedom requiring that if senders
respect their time constraints, then receivers never have to wait for their messages. These conditions rule
out protocols which may intrinsically lead to violations, as shown by the examples below.

global protocol fooBar (role A, role B)
[xa@A: xa<10][xb@B: xb<5]
msg(string) from A to B;
...

global protocol fooBar (role A, role B)
[xa@A: x<10][xb@B: x<20]
M1(string) from A to B;
[xb@B: x<20][xa@A: true]
M2(string) from B to A;
...

The protocol on the left violates feasibility since it allows A to send msg at any time satisfying xa<
10, for instance at time 8, for which then B has no means to satisfy constraint xb< 5 for the corresponding
receive action. The protocol on the right violates wait-freedom. Assume B to be implemented by a timed
endpoint program that receives M1 at time 5, and then engages in a time-consuming activity for 14
seconds before sending M2. The plan of B conforms to the corresponding timed local protocol. If,
however, we compose the timed endpoint program described before with an implementation of A that
sends M1 at time 8, we have that B will not find the message in the queue at the expected time 5, will
‘get late’ with respect to his planned timing, and may end up violating the contract at a later action.

We implemented a syntactic checker of feasibility and wait-freedom, based on the algorithms given
in [4]. The algorithms are based on a directed acyclic graph where: (i) nodes model the actions of (the
one-time unfolding of) a timed global protocol and are annotated with the clock constraints and reset
predicates of that action, and (ii) edges model the temporal/causal dependencies between actions. For
each node n we build a dependency constraint δn, using the information on constraints and resets in the
path to n, to model the range of ‘absolute’ times in which the the state represented by n can be reached.
For feasibility we check that the clock constraint δ annotating each node n admits some solution on or
after any time allowed by δn; for wait-freedom, we check that all the solutions of δ occur at the same or
at a later time with respect to any time allowed by δn.



22 Timed Runtime Monitoring for Multiparty Conversations

In [3] these conditions yield progress for statically validated programs. This is not the case for
dynamically verified programs against MPSTs [2] since monitors do not enforce interactions on partic-
ipants that deliberately refuse or cannot (e.g., their machine is down) send the remaining messages in a
protocol. Ensuring that conversations are established on feasible and wait-free protocols is, however, a
good practice as it prevents progress violations are induced by the protocol itself.
Timed local protocols. After being checked for feasibility and wait-freedom, the timed global protocol
is automatically projected to timed local protocols, one for each participant. Figure 2 (right) presents the
projection (a timed local protocol) into M. A timed local protocol is essentially a view of the timed global
protocol from the perspective of one participant. By decomposing the timed global protocol into separate
but consistent timed local protocols, projection is a key mechanism to enable distributed enforcement of
global properties in our framework.

3 Implementing Timed Protocols with Python
When implementing a Scribble timed local protocol – step 3 in Figure 1 (right) – one must take care that
actions will be executed at the right times. We present a timed conversation API for real-time processes
in Python which allows programmers to (1) delay the execution of an action to match a prescribed timing
while avoiding busy wait, and (2) interrupt an ongoing computation to meet an approaching deadline.
Idle delays. In [3] processes are modelled using a simple extension of the π-calculus with a delay oper-
ator delay(t).P that executes as process P after waiting exactly t units of time. All the other actions are
assumed to take no time. Our API is designed following a similar approach: we introduce a primitive for
time-passing and assume that all other operations take no time. Whereas, in practice, Python operations
always take some time, we assume that these delays are negligible w.r.t. those explicitly modelled in
the constraints of a Scribble timed protocol. We consider non negligible delays expressed in seconds,
whereas the other Python and communication operations usually take times in the order of milliseconds.
In the runtime verification of a Python process we let the monitor neglect time discrepancies in the order
of milliseconds. For example, when running our prototype, the monitor considers satisfactory a scenario
where a clock x has value 18.35001073 and the constraints requires x = 18. In the use-cases we consid-
ered so far these discrepancies do not create problems since their accumulation in long (e.g., recursive)
executions is limited by a careful use of resets. Idle delays are expressed using two constructs: delay

(relative delay) and delay until (absolute delay). The primitives have been implemented using a lower
level function provided by the ‘gevent’ library: gevent.sleep which lets time elapse for a specified about
of time and (in the case of delay until) gevent.timeout.
Computation-intensive functions and timeouts. A delay in the calculus in [4] (delay(t).P) does not
model only idle waiting, but also busy time spent doing some computation. Hereafter we will call
computation-intensive functions those operation that take an amount of time which is not negligible
such as, for instance, the log crawling performed by the worker in our running example. It may be
difficult to foresee the exact duration of a computation-intensive function; in order to ensure that its
execution does not exceed the time prescribed by the local protocol, we associate each computation-
intensive function to a parameter timeout that is an upper bound to the duration of its execution; an
exception is raised if the function is not completed in the given time frame. In the running example
we use, in the implementation of the worker, the function self.crawl(log, word, timeout=20) which
interrupts the crawling after 20 seconds; the resulting exception can be handled by simply proceeding
with the computation while considering the result of the function as ‘partial’.
Timed API. We illustrate more concretely the primitives introduced earlier in this section through a
Python implementation of the running example. Figure 3 shows the Python program for the participants



R. Neykova, L. Bocchi & N. Yoshida 23

def master_proc():
c = Conversation.create(...)
c.send(’W’, ’task’, ’log’, ’string’)
c.delay(22)
c.receive(’W’)
while more_tasks():
c.send(’A’,’more’, ’data’)
c.send(’W’, ’more’, ’log’,

’string’)
c.delay(22)
c.receive(’W’)

c.send(’A’, ’end’, ’data’)
c.send(’W’, ’end’)

def worker_proc():
c = Conversation.join(...)
c.delay(1)
log = c.receive(’M’)
while conv_msg.label != ’end’:

data = self.crawl(log,
timeout=20)

c.send(’M’,’result’, data)
c.delay(23)
conv_msg = c.receive(’M’)

def aggr_proc():
c = Conversation.join(...)
op = None
while op !=’end’:

c.delay(23)
conv_msg = c.receive(’M’)
op = conv_msg.label

Figure 3: Participants implementation in Python
of our running example. The implementation for the master process is given in Figure 3 (left). Line 1-2
start the conversation on channel c. Then, following the local protocol, the master sends a request to the
worker passing the log name and the word to be counted. The send method, called on conversation chan-
nel c, takes as arguments the destination role, message operator and payload values. This information is
encapsulated in the message payload as part of a conversation header and is later used for checking by
the runtime verification module. The receive method can take the sender as a single argument, or addi-
tionally the operator of the desired message. The code continues with the delay operator. Meanwhile,
other green threads run, preventing the worker from busy waiting. The implementation for the worker
process is given in Figure 3 (centre); in Line 6 operation self.crawl(log, word, timeout=20) models a
computation-intensive function. The aggregator process is shown in Figure 3 (right).

4 Runtime Verification and Enforcement of Time Properties
We applied the encoding of MPSTs into Communicating Timed Automata from [3] to derive runtime
monitors for the timed setting. In this section we introduce our monitoring framework and discuss the
challenges of monitoring the timing of actions. A monitor acts as a membrane between one endpoint
and the rest of the network, checking that the send and receive actions performed by that timed endpoint
program conform to the implemented Scribble timed local protocols. In a network where all endpoints
are monitored then either all actions will occur at the prescribed timing, or an error will be detected. The
monitor has two purposes (or modes) w.r.t time: error detection and error prevention/recovery.

Error detection. The monitor verifies the communication actions of the monitored endpoint against
Scribble timed local protocols, expressed as timed automata. First, the monitor verifies that the type
(operation and payload) of each message matches its specification and that occurs in the right causal
order w.r.t. the Scribble protocol (as in the untimed Scribble toolchain). Second, the monitor checks
the correct timing of actions. For each ongoing protocol, the monitor is augmented with a local clock.
A synchronisation has been introduced in the prototype to ensure that all processes and monitors will
start a protocol at the same time, with clocks set to 0. When a timed endpoint program executes an
action the monitor checks the clock constraint of that action (in the timed automaton) against the value
of the local clock. If the action complies with the prescribed timing is made visible (i.e., forwarded) into
the network, otherwise the monitor raises a TimeException. For example, if we change the delay of the
program in Figure 3 (left) to be delay(30) this will result in a TimeException. Error detection allows
rigorous blame-assignment analysis in case of violation (we assume trusted monitoring framework).

Error prevention/recovery. This mode relies on the error detection mechanism: when a violation occurs
the monitor enforces the clock constraints by generating recoverable actions. We have two types of
scenarios: an action is launched by the local endpoint too early or too late (or not at all) w.r.t. the
prescribed timing. In the first case, the monitor generates a delay equal to the time that is left until an
appropriate time is reached, and then it forwards the action to the rest of the network. For example, if
we delete the line delay(20) in Figure 3 (left) or modify it with a smaller delay then the monitor will
introduce the missing delay so that the monitored application will appear correct to the network. When a
deadline is reached but its associated action is still not executed, the monitor raises a TimeoutException.



24 Timed Runtime Monitoring for Multiparty Conversations

global protocol WordCount at M(
role R, role W)

[xm@M: xm<0.01,reset(xm)][xw@W: xw=0.01,reset(xw)]
task(log,tring) from M to W;
rec Loop{

[xw@W: xw=0.20][xm@M: 0.21<xm<0.22]
result(data) from W to M;
choice at M{

[x@M: xm=0.22][xa@A: 0.23<=xa,reset(xa)]
more(data) from M to A;
[xm@M: xm=0.22,reset(xm)]
[xw@W: xw=0.23,reset(xw)]
more(log,string) from M to W;
continue Loop;

} or {s
[xm@M: xm=0.22][xa@A: 0.23<=xa]
end(data) from M to A;
[xm@M: xm=0.22][xw@W: xw=0.23]
end() from M to W; } }

0

5

10

15

20

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

TI
M

E 
O

F 
P

R
O

TO
C

O
L 

EX
EC

U
TI

O
N

 (
S)

 

NUMBER OF RECURSIVE ITERATIONS PER PROTOCOL

RECURSIVE PROTOCOL WITH RESETS

Monitor Unmonitored

Figure 4: Recursive protocol with resets (left) and its execution time per number of recursions (right)
The application can try and recover itself using the exception handler, e.g., by interrupting an ongoing
computation and continuing the conversation, or restarting the protocol with different settings.

The monitor looks at the next action prescribed by the timed automaton (or prescribed action) and
acts according to the pre- and post-actions in the table. Pre-actions (resp. post-actions) denote actions
performed by the monitor before (resp. after) that the timed endpoint program executes the action that
corresponds to the prescribed action. The table below summarises the actions generated by the monitor
in error prevention/recovery mode.

prescribed action clock constraint pre-action post-action
s.send x≥ n s.sleep(n− xcur)

s.send x≤ n s.timeout(n− xcur)

s.recv x≥ n s.sleep(n− xcur)

s.recv x≤ n s.timeout(n− xcur)

In the table xcur is the local clock of the monitor. If the clock constraint of the prescribed action specifies
a lower bound x ≥ n then the monitor introduces a delay of exactly n (mapped to the low level Python
gevent.sleep primitive). In case of send we have a post-action: the monitor sleeps after observing the
action of the endpoint and forwards it to the network at the right time. In case of receive we have a
pre-action: the monitor sleeps before observing the receive action so that the incoming message will be
read at the appropriate time. Similarly, when the clock constraint specifies an upper bound x ≤ n the
monitor inserts a timeout (a timer triggering a TimeoutException).

5 Benchmarks on Transparency of Timed Monitors
The practicality of our timed monitoring framework depends on the transparency of the execution in
a monitored environment. By transparency we mean: a program that executes all actions at the right
times when running unmonitored will do so when running monitored. Transparency and overhead are
closely related in the timed scenario, since the overhead introduced by the monitor may interfere with the
time in which the interactions are executed. We have tested the transparency by providing two different
protocols - a protocol with resets and a protocol without resets. The former proves the usability of the
monitor in a typical scenario, while the latter demonstrates its limitations.

To set up the benchmark, we have fixed a Scribble timed protocol and manually created a correct
implementation of the participants in that protocol using our timed Python API. We run the implemen-
tation in two scenarios using our monitoring framework, and with the monitors ‘turned off’. For each
parameter configuration the protocol execution is repeated 30 times and the mean result is presented on
a graph. Participants were run on the same machine (Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz) to
minimise the latency between the endpoints, hence test our framework in the more pessimistic scenario
of small discrepancies between modelled delays and monitor overhead. All endpoint are connected via
AMQP middleware broker and on average the latency between two endpoints is 0.04. The full benchmark
protocols, the applications and the raw data are available from the project page [14].



R. Neykova, L. Bocchi & N. Yoshida 25

global protocol ClientServer(
role C, role S)

{[x@C: x<c][x@S: x=c,]
ping(data) from C to S;
{[x@C: x<2*c][x@S: x=2*c]
ping(data) from C to S;
{[x@C: x<3*c][x@S: x=3*c]
ping(data) from C to S;
{[x@C: x<3*c][x@S: x=4*c]
ping(data) from C to S;
...
{[x@C: x<200*c][x@S: x=200*c]
ping(data) from C to S;

}

def server_proc(t):
c = Conversation.

create(...)
c.receive(’S’)
while true:

c.delay(t)
c.receive(’W’)

def server_proc(t, n):
c = Conversation.

create(...)
c.send(’C’)
for i in range(0, n)
c.delay(t)
c.send(’C’)

25
37

50

67
80

92
105

118
130

35
46

66
77

92

115
125

137
147

0

20

40

60

80

100

120

140

160

2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

N
U

M
B

ER
 O

F 
C

O
R

R
EC

T 
IN

TE
R

A
C

TI
O

N
S

TIME BETWEEN EACH INTERACTION (IN MS)

PROTOCOL WITHOUT RESETS

Monitored Unmonitored

Figure 5: Protocol with accumulating delays c (left) and maximum number of correct interactions (right)

Scenario 1 We have initially considered a protocol with the same structure of the protocol in Figure 2 but
with the constants in the clock constraints decreased by a scale of 100. We have changed the constraints
to test transparency in a less optimistic scenario, with smaller difference between delays and monitor
overhead (evidently transparency would also hold with larger differences, e.g., when using the constraints
in Figure 2). We used the implementation in Figure 3 with delays updated to match the protocol, as
shown in Figure 5 (left). The outcome is presented in Figure 5 (right). The graph illustrates the time for
completing a protocol for increasing number of recursive executions.

This experiment shows that for the given protocol and implementation all executions are without
constraint violation. Transparency is guaranteed (i.e., the overhead induced by the monitor does not
affect the correctness of the program). Since resets prevent the monitor overhead to accumulate up to a
non negligible overall delay transparency is guaranteed even in case of a large number of iterations. The
overhead introduced by the monitor is constant and due to the initial generation of the timed automaton
from the textual Scribble timed local protocol (and just marginally to the checking of single interactions).

Scenario 2 Our second experiment was specifically targeted at checking how many interactions can
generate a non-negligible accumulation of delays. We do this by removing resets. In case of no resets
both the unmonitored and monitored programs are expected to start violating the constraints after certain
number of executions. In Scenario 1 recursion allowed us to express repeated interactions by using
resets. In order to observe a large number of repeated interactions without resets we have created ad-hoc
the sequential protocol in Figure 5 (left) and implementation (middle). We have generated a protocol with
200 consecutive point to point interactions happening at increasing times (by c). We run the experiment
for different values of c (horizontal axis on the figure) and measure the maximum number of interactions
(vertical axis on the figure) that can be executed before the program violates the time constraint.

The experiment confirmed that, the monitored application performs 90% of the maximum number of
possible interactions. This example comes to show the limitations of the timed monitoring framework.
The practical scenarios we have encountered so far did not include long sequences of interactions, and
repetitive operations are handled via recursions with resets at each cycle.

6 Related and Future Work
The need for specifying and verifying the temporal requirements in a distributed systems is recognised.
To this aim, different specification methods and verification tools have been developed, especially in the
area of business process modelling (see [6] for a survey on verification of temporal properties). A work
closely related to ours is [16]. It describes a framework for analysing choreographies between BPEL pro-
cesses with time annotations. [9] extends BPML with time constraints and, via a mapping from BPML to
timed automata allows verification with the UPAAAL model checker. As a language for timed protocol
specification, the main advantages of Scribble over alternatives such as BPEL, BPML and timed au-
tomata, is that it allows enforcement of global properties – e.g., conformance of the interactions to global



26 Timed Runtime Monitoring for Multiparty Conversations

protocols – while providing an in-built mechanism (projection) for decentralisation of the verification.
Among the state-of-the-art runtime verification tools, a few support specification of temporal spec-

ifications [5, 7, 8]. [7] presents a generic monitor that can be parametrised on the logic. [5] combines
temporal properties and control flow specifications in a single formalism specified per object class. Our
recovery mechanism resembles the aspect-oriented approaches used in those verifiers, but the combi-
nation of control flow checking and temporal properties in the same global specification is an unique
characteristic of our work. Out tool checks statically the correctness of the specification itself in addi-
tion to the runtime checks for the program. Furthermore, via its formal basis, the framework allows to
combine static verification and dynamic enforcement [2].

References
[1] K. R. Apt, N. Francez & S. Katz (1987): Appraising fairness in distributed languages. In: POPL, ACM, pp.

189–198, doi:10.1145/41625.41642.
[2] Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda & Nobuko Yoshida (2013): Monitoring

Networks through Multiparty Session Types. In: FORTE, LNCS 7892, pp. 50–65, doi:10.1007/978-3-642-
38592-6 5.

[3] Laura Bocchi, Weizhen Yang & Nobuko Yoshida (2014): Timed Multiparty Session Types. In: CONCUR’14,
LNCS. To appear.

[4] Laura Bocchi, Weizhen Yang & Nobuko Yoshida (2014): Timed Multiparty Session Types. Technical Report
2014/3, Department of Computing, Imperial College London. Available at http://www.doc.ic.ac.
uk/research/technicalreports/2014/DTR14-3.pdf.

[5] Frank S. de Boer, Stijn de Gouw, Einar Broch Johnsen, Andreas Kohn & Peter Y. H. Wong (2014): Run-Time
Assertion Checking of Data- and Protocol-Oriented Properties of Java Programs: An Industrial Case Study.
T. Aspect-Oriented Software Development 11, pp. 1–26, doi:10.1007/978-3-642-55099-7 1.

[6] Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche & Mohamed Jmaiel (2013): A Survey on Time-
aware Business Process Modeling. In: ICEIS (3), SciTePress, pp. 236–242, doi:10.5220/0004413202360242.

[7] Feng Chen & Grigore Rosu (2007): Mop: an efficient and generic runtime verification framework. In:
OOPSLA, pp. 569–588, doi:10.1145/1297027.1297069.

[8] Christian Colombo, Gordon J. Pace & Gerardo Schneider (2009): LARVA — Safer Monitoring of Real-Time
Java Programs (Tool Paper). In: SEFM, pp. 33–37, doi:10.1109/SEFM.2009.13.

[9] Nawal Guermouche & Silvano Dal-Zilio (2012): Towards timed requirement verification for service chore-
ographies. In: CollaborateCom, IEEE, pp. 117–126, doi:10.4108/icst.collaboratecom.2012.250441.

[10] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen & Nobuko Yoshida (2011): Scribbling
Interactions with a Formal Foundation. In: ICDCIT 2011, LNCS 6536, Springer, doi:10.1007/978-3-642-
19056-8 4.

[11] Raymond Hu, Rumyana Neykova, Nobuko Yoshida, Romain Demangeon & Kohei Honda (2013): Practical
Interruptible Conversations - Distributed Dynamic Verification with Session Types and Python. In: RV,
LNCS 8174, pp. 130–148, doi:10.1007/978-3-642-40787-1 8.

[12] Pavel Krcal & Wang Yi (2006): Communicating Timed Automata: The More Synchronous, the More Difficult
to Verify. In: Computer Aided Verification, LNCS 4144, Springer, pp. 249–262, doi:10.1007/11817963 24.

[13] Ocean Observatories Initiative (OOI). http://oceanobservatories.org/.
[14] Timed Conversation API in Python. http://www.doc.ic.ac.uk/˜rn710/TimeApp.html.
[15] Scribble Project homepage. www.scribble.org.
[16] Kenji Watahiki, Fuyuki Ishikawa & Kunihiko Hiraishi (2011): Formal verification of business processes with

temporal and resource constraints. In: SMC, IEEE, pp. 1173–1180, doi:10.1109/ICSMC.2011.6083857.

http://dx.doi.org/10.1145/41625.41642
http://dx.doi.org/10.1007/978-3-642-38592-6_5
http://dx.doi.org/10.1007/978-3-642-38592-6_5
http://www.doc.ic.ac.uk/research/technicalreports/2014/DTR14-3.pdf
http://www.doc.ic.ac.uk/research/technicalreports/2014/DTR14-3.pdf
http://dx.doi.org/10.1007/978-3-642-55099-7_1
http://dx.doi.org/10.5220/0004413202360242
http://dx.doi.org/10.1145/1297027.1297069
http://dx.doi.org/10.1109/SEFM.2009.13
http://dx.doi.org/10.4108/icst.collaboratecom.2012.250441
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1007/978-3-642-40787-1_8
http://dx.doi.org/10.1007/11817963_24
http://oceanobservatories.org/
http://www.doc.ic.ac.uk/~rn710/TimeApp.html
www.scribble.org
http://dx.doi.org/10.1109/ICSMC.2011.6083857

	1 Running example and methodology
	2 Specifying Timed Protocols with Scribble
	3 Implementing Timed Protocols with Python
	4 Runtime Verification and Enforcement of Time Properties
	5 Benchmarks on Transparency of Timed Monitors
	6 Related and Future Work

