
Marco Carbone (Ed.): Third Workshop on
Behavioural Types (BEAT 2014)
EPTCS 162, 2014, pp. 35–42, doi:10.4204/EPTCS.162.5

c© Barbanera, Dezani-Ciancaglini, de’Liguoro
This work is licensed under the
Creative Commons Attribution License.

Compliance for reversible client/server interactions∗

Franco Barbanera
Dipartimento di Matematica e Informatica

University of Catania

barba@dmi.unict.it

Mariangiola Dezani-Ciancaglini
Dipartimento di Informatica

University of Torino

dezani@di.unito.it

Ugo de’Liguoro
Dipartimento di Informatica

University of Torino

deliguoro@di.unito.it

In the setting ofsession behaviours, we study an extension of the concept of compliance when a
disciplined form of backtracking is present. After adding checkpoints to the syntax of session be-
haviours, we formalise the operational semantics via a LTS,and define a natural notion ofcheckpoint
compliance. We then obtain a co-inductive characterisation of such compliance relation, and an ax-
iomatic presentation that is proved to be sound and complete. As a byproduct we get a decision
procedure for the new compliance, being the axiomatic system algorithmic.

1 Introduction. In human as well as automatic negotiations, an interesting feature is the ability of
rolling back to some previous point, undoing previous choices and possibly trying a different path.Roll-
backsare familiar to the users of web browsers, and so are also the troubles that these might cause during
“undisciplined” interactions. Clicking the “back” button, or going to some previous point in the chronol-
ogy when we are in the middle of a transaction, say the bookingof a flight, can be as smart as dangerous.
In any case it is surely a behaviour that service programmerswant to discipline. Also the converse has
to be treated with care: a server discovering that a service becomes available after having started a con-
versation could take advantage from some kind of rolling backs. However, such a server would be quite
unfair if the rollbacks were completely hidden from the client.

Adding rollbacks to interaction protocols requires a sophisticated concept of client/server compli-
ance. In this paper we investigate protocols admitting a simple, though non trivial form of reversibility
in the framework of the theory of contracts introduced in [4]and developed in a series of papers, e.g. [5].
We focus here on the scenario of client/server architectures, where services stored in a repository are
queried by clients to establish two-sided communications,and the central concept is that ofcompliance.

More precisely, we consider the formalism ofsession behavioursas introduced in [2, 1, 3], but with-
out delegation. This is a formalism interpreting the session types, introduced by Honda et al. in [7],
into a subset of CCS withoutτ . We extend the session behaviours syntax by means of markersthat
we callcheckpoints; these are intended as pointers to the last place where either the client or the server
can roll back at any time. We investigate which constraints must be imposed to obtain a safe notion of
client/server interaction in the new scenario, by defining amodel in the form of a LTS, and by charac-
terising the resulting concept of compliance both coinductively and axiomatically. Since the axiomatic
system is algorithmic that is decidable, the compliance of behaviours with checkpoints is decidable.

Before entering into the formal development of session behaviours with checkpoints, we illustrate
the basic concepts by discussing a few examples. Suppose that the client is a customer willing to arrange

∗This work was partially supported by EU Collaborative project ASCENS 257414, ICT COST Action IC1201 BETTY,
MIUR PRIN Project CINA Prot. 2010LHT4KM and Torino University/Compagnia San Paolo Project SALT.

http://dx.doi.org/10.4204/EPTCS.162.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


36 Compliance for reversible client/server interactions

for an holiday, while the server is the web service of a travelagency. Let the actionsea represent the
quest for a seaside accommodation and letmount stands for the request of a settlement in the mountains.
By house we mean the request of a house, whilebung stands for the request of a bungalow. Dual actions
represent offers, so that e.g. the co-actionsea signals availability of accommodations in a seaside and
house that a house can be booked.

Suppose that the customer seeks a house or a bungalow at sea, but just a house in the mountains.
Then the client behaviour, represented as a process algebraic term, is described by:

ρ = sea.(house+bung) + mount.house

where dots are sequential compositions and sums are external choices. We say that a clientρ is compliant
with a serverσ , written ρ ⊣ σ , if all client communication actions are matched by the dualactions on
the server side. According to this the customer will be not compliant with a server behaving as:

σ =mount.(house⊕bung)

where⊕ is internal choice. In fact the interaction represented by the parallel compositionρ ‖σ , that
evolves by synchronising corresponding actions and co-actions, might lead tohouse‖bung. This means
that the customer is offered a bungalow in the mountains she is not willing to reserve.

Now consider thedual behaviour ofρ , dubbedρ, which is obtained by exchanging actions by the
respective co-actions, and external by internal choices. Then we get the server:

ρ = sea.(house⊕bung) ⊕ mount.house

and clearly we getρ ⊣ ρ . In general we expect thatρ ⊣ ρ , or equivalently thatσ ⊣ σ , since duality is
involutive.

Taking a further step, let us consider a server such that, after sending the offersea followed byhouse,
might realise that a better offer is now available which can be issued by sendingbung instead ofhouse;
this can be achieved only by rolling back to the choicehouse⊕bung. Rollback is however a new feature,
that cannot be easily represented by usual process algebra operations [12].

To express rollback we then introduce the symbol ‘N’ to mark the point where a session behaviour can
backtrack to; we call such a marker acheckpoint. We suppose that a suitable mechanism keeps memory
of the past, by recording the behaviourNσ each time the checkpoint is traversed by synchronising on
some action thatσ is ready to do. For simplicity we assume that only one “past” can be recorded at any
time, so that a new memorisation destroys the old one, leading to a model in which the client and the
server can backtrack just to the lastly traversed checkpoint.

By adding some checkpoints toρ we get for exampleσ ′ = N(sea.N(house⊕bung) ⊕ mount.house).
With respect toρ the new server can undo all of the internal choices, in order to keep the nego-
tiation open as much as possible and to give to the client somebetter chance for booking a place,
even in case it wasn’t available at the beginning of the interaction. But how should the client be re-
designed to interact properly? Unfortunately the most natural choice of taking the client as the dual

σ ′ = N(sea.N(house+bung) +mount.house) fails. In fact, writing
fw
−→ for the forward step and

rollbk
−→ for

the synchronous rollback, we have among the possible interactions betweenσ ′ andσ ′:

N(sea.N(house+bung) + mount.house) ‖ N(sea.N(house⊕bung) ⊕ mount.house)
fw
−→ N(sea.N(house+bung) + mount.house) ‖ sea.N(house⊕bung) internal choice
fw
−→ N(house+bung) ‖ N(house⊕bung) synchronising onsea andsea
fw
−→ N(house+bung) ‖ house internal choice
rollbk
−→ N(sea.N(house+bung) + mount.house) ‖ N(house⊕bung) rollback to the last traversedN



Barbanera, Dezani-Ciancaglini, de’Liguoro 37

which is now in a stuck state. The mismatch between external and internal choice is the effect of the
asymmetry of the respective semantics in process algebra. The selection of a branch in an external
choice is just one step; on the contrary the synchronisationon sea in the second step above comesafter
the internal choice has occurred. This has consequences with respect to the backtracking, since the
checkpoint alignment fails.

In [1] it has been proved that the dual of a server is the minimum client that complies with the server
with respect to a natural (and efficiently decidable) ordering, and vice versa the dual of a client is the
minimum compliant server. This is an essential feature of the theory, since it is supposed to model a
scenario in which clients look for servers through a networkquerying a service of a certain shape, that
is easier to find if we know its minimal form. To express this precisely, let us writeρ ⊣N σ to denote the
compliance ofρ with σ in a setting with backtracking, that we callcheckpoint compliance; then we put
the requirement that in the new theory the following holds:

∀ρ . ρ ⊣N ρ (1)

For (1) to hold we change the operational semantics of⊕ by gluing the choice and the synchronisation
over a co-action, that can be formalised by the rule:

a.σ1⊕σ2
a

−→ σ1

This has however the unpleasant consequence thata ⊣N a⊕b, while we have thata 6⊣ a⊕b, where the
compliance⊣ is defined according to the standard LTS [1, 2, 3]. In general,we expect the compliance of
behaviours with rollback to be conservative with respect tothe compliance without rollback:

∀ρ ,σ . ρ ⊣N σ ⇒ erase(ρ) ⊣ erase(σ) (2)

whereerasedeletes all checkpoints. We will accomplish this by asking that any co-action has a corre-
sponding action in reducing the parallel of internal and external choices.

The essence of this change is that rolling back has to be a synchronous action, and therefore it cannot
be the effect of an internal choice, since the latter is unobservable. This is a general principle. Consider
the interaction

(sea.house.mount.house)‖(sea.Nhouse.mount.house)

It is the pair of a client willing to book a house at seaand a house in the mountains, and a server that
can succeed by renting twice a house at seaside! The point is that the client has no way to be aware of
what happened and to react according to her own policy, whichis instead the case if both are forced to
backtrack at the same time. For this to be guaranteed we require that the client and the server either both
can or both cannot rollback in all configurations.

We finally observe that it is not necessarily the case that compliant behaviours show some correspon-
dence between the respective checkpoints. For example it holds that:

N(sea.house.garden+house.garden) ⊣N

N(sea.Nhouse.garden⊕house.garden)

which makes sense, since the clientN(sea.house.garden+house.garden) is asking for a house with gar-
den, either at sea or anywhere else.

2 Calculus. As explained in the Introduction, we allow checkpoints onlybefore internal or external
choices. Therefore we define session behaviours as in [2, 3] just adding checkpointed choices.

Definition 2.1 (Session Behaviours with Checkpoints). Let N be some countable set of symbols and
N = {a | a∈ N }, with N ∩N = /0. The setSB of session behaviours with checkpointsis defined
by the grammar of Figure 1, where I is non-empty and finite, thenames and the conames in choices are
pairwise distinct andσ is not a variable inrecx.σ .



38 Compliance for reversible client/server interactions

σ ,ρ := | 1 success

| ∑i∈I ai .σi external choice

| N∑i∈I ai .σi checkpointed external choice

|
⊕

i∈I ai.σi internal choice

| N

⊕

i∈I ai.σi checkpointed internal choice

| x variable

| recx.σ recursion

Figure 1: Syntax of session behaviours with checkpoints

Note that recursion inSB is guarded and hence contractive in the usual sense. We take an equi-recursive
view of recursion by equatingrecx.σ with σ [recx.σ/x]. Hence there is no point in considering also
terms of the shapeNrecx.σ .

Let us call justbehavioursthe expressions inSB. In the operational semantics of the calculus we have
to record the last encountered behaviourγ that was prefixed by a checkpoint in the interaction leading to
σ . Therefore we will consider configurations of the shape:

γ ≺ σ

In the starting configuration or just after a rollback has occurred, there is no further point to which the
behaviour might rollback, a situation we represent by writing ◦ ≺ σ . Let SBN be the set of behaviours
starting withN ; then we askγ ∈ SBN∪{◦}, which is the set of the “pasts”, and denote byγ ,δ , possibly
with superscripts, its elements. Then the LTS of clients andservers is formalised as follows.

Definition 2.2 (Reduction of Session Behaviours).

γ ≺ ∑i∈I ai .σi
ai−→ γ ≺ σi (i ∈ I) (+) γ ≺

⊕

i∈I ai.σi
ai−→ γ ≺ σi (i ∈ I) (⊕)

γ ≺ σ α
−→ γ ≺ σ ′ α ∈ N ∪N

(N)
γ ≺ Nσ

α
−→ Nσ ≺ σ ′

σ ≺ σ ′ rbk
−→ ◦ ≺ σ (rbk)

Notice that Rule(+) is the standard forward computation for external choice, but for the presence of the
γ ≺ ·. Rule(⊕) glues into just one step both the internal choice and the communication of a coname, be-
coming very similar to the rule for external choice. The reduction of client/server parallel compositions
(Definition 2.4 below) will be only possible when all internal choices can be matched by the correspond-
ing external choices, which has the effect of saving the conservativity principle (2) of the Introduction.
Rule (N) says that in the presence of a checkpoint the forward reduction must update the behaviour
at which it is possible to rollback (in this caseNσ ). Rule (rbk) implements the rollback: the previous
past behaviour is erased, the behaviour prefixed by the last traversed checkpoint becomes the new past
behaviour and no further rollback is allowed in the new configuration.

When composing in parallel clients and servers we have to consider the different nature of the reduc-
tions for internal and external choices. To this aim it is handy to collect the sets of names and conames
prefixing the choices, as done in the following definition. Notice that the resulting sets only contain
names, since each coname is mapped to the corresponding name.



Barbanera, Dezani-Ciancaglini, de’Liguoro 39

Definition 2.3 (A +(·), A ⊕(·)). Let

A +(1) = A +(
⊕

i∈I ai.σi) = /0 A +(∑i∈I ai .σi) = {ai | i ∈ I} A +(Nσ) = A +(σ)
and
A ⊕(1) = A ⊕(∑i∈I ai .σi) = /0 A ⊕(

⊕

i∈I ai .σi) = {ai | i ∈ I} A ⊕(Nσ) = A ⊕(σ)

The interaction of a client with a server is modelled by the reduction of their parallel composition,
that can be either forward, consisting of CCS style synchronisations, or backward, where both behaviours
synchronously go back to the respective last traversed checkpointed behaviours.

Definition 2.4 (Communication Reduction of Client and Server Pairs).

δ ≺ ρ a
−→ δ ′ ≺ ρ ′ γ ≺ σ a

−→ γ ′ ≺ σ ′
A

⊕(σ)⊆ A
+(ρ)

δ ≺ ρ ‖ γ ≺ σ τ
−→ δ ′ ≺ ρ ′ ‖ γ ′ ≺ σ ′

δ ≺ ρ a
−→ δ ′ ≺ ρ ′ γ ≺ σ a

−→ γ ′ ≺ σ ′
A

⊕(ρ)⊆ A
+(σ)

δ ≺ ρ ‖ γ ≺ σ τ
−→ δ ′ ≺ ρ ′ ‖ γ ′ ≺ σ ′

ρ ≺ ρ ′ rbk
−→ ◦ ≺ ρ σ ≺ σ ′ rbk

−→ ◦≺ σ

ρ ≺ ρ ′ ‖ σ ≺ σ ′ rbk
−→ ◦ ≺ ρ ‖ ◦ ≺ σ

We denote by
∗

−→ the reflexive and transitive closure of forward reductions.
It is easy to verify that if◦ ≺ ρ ‖ ◦ ≺ σ ∗

−→ ◦ ≺ ρ ′ ‖ ◦ ≺ σ ′, thenρ ‖ σ reduces toρ ′ ‖ σ ′ in the
calculi of [2, 3], by splitting in two steps each applicationof rule (⊕). If ρ ‖ σ reduces toρ ′ ‖ σ ′ in the
calculi of [2, 3] we can findρ ′′, σ ′′ such that bothρ ′ ‖ σ ′ reduces toρ ′′ ‖ σ ′′ and

◦ ≺ ρ ‖ ◦ ≺ σ ∗
−→ ◦ ≺ ρ ′′ ‖ ◦ ≺ σ ′′.

We takeρ ′′ ‖ σ ′′ as different thanρ ′ ‖ σ ′ only in case the last applied rule is an internal choice, which in
rule (⊕) is fused with the communication of the coname.

The last definition makes it clear that the characterisationof compliance in the present calculus
requires some care, since the last checkpointed behavioursof clients and servers must be compliant. We
formalise this intuition in the next section.

3 Compliance. The compliance relation of session behaviour calculi requires that whenever there is
no possible reduction, then all client requests and offers are satisfied, i.e. it is1. In presence of back-
ward computations we have also to require that the client andthe server either both can or both cannot
reverse to their last encountered checkpoints. This leads to the following definition, in which the set of
configurations is denoted bySB≺, i.e. SB≺ = {γ ≺ σ | γ ∈ SBN∪{◦},σ ∈ SB}

Definition 3.1 (Checkpoint Compliance Relation⊣N). i) LetH : P(SB≺×SB≺)→P(SB≺×SB≺)
be such that, for anyR ⊆ SB≺×SB≺, we get(δ ≺ ρ ,γ ≺ σ) ∈ H (R ) if:

1) δ ≺ ρ ‖ γ ≺ σ 6
τ

−→ impliesρ = 1 and eitherδ = γ = ◦ or δ ,γ ∈ SBN;

2) δ ≺ ρ ‖ γ ≺ σ β
−→ δ ′ ≺ ρ ′ ‖ γ ′ ≺ σ ′ impliesδ ′ ≺ ρ ′ R γ ′ ≺ σ ′, whereβ ∈ {τ , rbk}.

ii) A relation R ⊆ SB≺×SB≺ is a checkpoint compliance relationif R ⊆ H (R ). The relation⊣N is
the greatest solution of the equation X= H (X):

⊣N = νH

iii) We say thatρ is checkpoint compliantwith σ (notationρ ⊣N σ ) if ◦ ≺ ρ ⊣N ◦ ≺ σ .



40 Compliance for reversible client/server interactions

Roughly, whenρ ⊣N σ holds,ρ andσ are compliant in the standard sense and they keep on being
so after any possible synchronous rollback that can occur during a standard interaction. Moreover it can
never be the case that one of them can perform a rollback and the other one cannot, also whenρ is in the
success configuration.

It is easy to verify that Definition 3.1(iii) satisfies the requirements (1) and (2) discussed in the
Introduction. Namely that each session behaviour is checkpoint compliant with its dual, and that if
a client and a server are checkpoint compliant, then the client and the server obtained by erasing the
checkpoints are compliant. More formally, if theerase(·) mapping deletes all checkpoints:

Proposition 3.2. 1. ∀ρ . ρ ⊣N ρ .

2. ∀ρ ,σ . ρ ⊣N σ ⇒ erase(ρ) ⊣ erase(σ).

In the following we will use the notation△σ to represent ambiguouslyσ andNσ .
In order to give a formal system characterising checkpoint compliance it is handy to define a function
b : SBN ∪{◦}×SB→ SBN∪{◦} which returns the second argument when it is checkpointed, and the
first argument otherwise. Formally:

b(γ ,△σ) =

{

Nσ if △= N

γ otherwise.

Forward reduction in Definition 2.4 can be shortly written interms of the functionb:

Lemma 3.3.
γ ≺ △(∑i∈I ai .σi)

ak−→ b(γ ,△(∑i∈I ai .σi))≺ σi.

γ ≺ △(
⊕

i∈I ai.σi)
ak−→ b(γ ,△(

⊕

i∈I ai .σi))≺ σi.

We now axiomatically characterise the checkpoint compliance relation by means of a formal system,
whose judgments are of the formΓ ⊲ δ ≺ ρ ⊣≺ γ ≺ σ , whereΓ is an environment, i.e. a finite set
Γ = {δi ≺ ρi ⊣

≺ γi ≺ σi}i∈I . The rules of the formal system are given in Figure 2, where inwriting γ ≺ δ
we assume thatδ ∈ SB. We denote by⊣≺ the formal counterpart of⊣N. We are now in place to establish
the soundness and completeness of the formal system in Figure 2.

Theorem 3.4(Soundness).
If Γ ⊲ δ ≺ ρ ⊣≺ γ ≺ σ andδ ′ ≺ ρ ′ ⊣N γ ′ ≺ σ ′ for all δ ′ ≺ ρ ′ ⊣≺ γ ′ ≺ σ ′ ∈ Γ, then δ ≺ ρ ⊣N γ ≺ σ .

Proof. (Sketch)By induction on derivations. If the last applied rule is(HYP) it is trivial.
If the last applied rule is(AX) andδ = γ = ◦, then condition (i1) of Definition 3.1 is satisfied and

condition (i2) of Definition 3.1 is trivially satisfied, since there are no reductions.
If the last applied rule is(AX) andΓ ⊲ ◦ ≺ δ ⊣≺ ◦ ≺ γ we getδ ,γ ∈ SB, which impliesδ ,γ ∈ SBN

by construction, so condition (i1) of Definition 3.1 is satisfied. In this case the only possible reduction is

δ ≺ 1 ‖ γ ≺ σ rbk
−→◦≺ δ ‖ ◦ ≺ γ . The premiseΓ ⊲ ◦ ≺ δ ⊣≺ ◦ ≺ γ implies by induction◦ ≺ δ ⊣N ◦ ≺ γ ,

so also condition (i2) of Definition 3.1 is satisfied.
If the last applied rule is(+ ·⊕), then condition (i1) of Definition 3.1 is trivially satisfied. In this case

by Lemma 3.3δ ≺ ρ ‖ γ ≺ σ τ
−→ b(δ ,ρ)≺ ρ j ‖ b(γ ,σ)≺ σ j for all j ∈ J. The premise

Γ′
⊲ b(δ ,ρ)≺ ρ j ⊣

≺ b(γ ,σ)≺ σ j

givesb(δ ,ρ)≺ ρ j ⊣
N b(γ ,σ)≺ σ j by induction and since⊣N is the greatest fix point. Ifδ = γ = ◦ there

is no rollback, otherwise

δ ≺ ρ ‖ γ ≺ σ rbk
−→ ◦≺ δ ‖ ◦ ≺ γ .

The premiseΓ′
⊲ ◦ ≺ δ ⊣≺ ◦ ≺ γ implies by induction◦ ≺ δ ⊣N ◦ ≺ γ , so also condition (i2) of Defini-

tion 3.1 is satisfied. The proof for rule(⊕·+) is similar.



Barbanera, Dezani-Ciancaglini, de’Liguoro 41

eitherδ = γ = ◦ or Γ ⊲ ◦ ≺ δ ⊣≺ ◦ ≺ γ
(AX)

Γ ⊲ δ ≺ 1⊣≺ γ ≺ σ
(HYP)

Γ,δ ≺ ρ ⊣≺ γ ≺ σ ⊲ δ ≺ ρ ⊣≺ γ ≺ σ

∀ j ∈ J. Γ′
⊲ b(δ ,ρ)≺ ρ j ⊣

≺ b(γ ,σ)≺ σ j eitherδ = γ = ◦ or Γ′
⊲ ◦ ≺ δ ⊣≺ ◦ ≺ γ

(+ ·⊕)
Γ ⊲ δ ≺ ρ ⊣≺ γ ≺ σ

whereΓ′ = Γ, δ ≺ ρ ⊣≺ γ ≺ σ andρ = △1(∑i∈I∪J ai .ρi) andσ = △2(
⊕

j∈J a j .σ j)

∀i ∈ I . Γ′
⊲ b(δ ,ρ)≺ ρi ⊣

≺ b(γ ,σ)≺ σi eitherδ = γ = ◦ or Γ′
⊲ ◦ ≺ δ ⊣≺ ◦ ≺ γ

(⊕·+)
Γ ⊲ δ ≺ ρ ⊣≺ γ ≺ σ

whereΓ′ = Γ, δ ≺ ρ ⊣≺ γ ≺ σ andρ = △1(
⊕

i∈I ai .ρi) andσ = △2(∑ j∈I∪J a j .σ j)

Figure 2: The formal system for checkpoint compliance

Theorem 3.5(Completeness).
If δ ≺ ρ ⊣N γ ≺ σ andδ ′ ≺ ρ ′ ⊣N γ ′ ≺ σ ′ for all δ ′ ≺ ρ ′ ⊣≺ γ ′ ≺ σ ′ ∈ Γ, then Γ ⊲ δ ≺ ρ ⊣≺ γ ≺ σ .

Proof. (Sketch)By co-induction on the definition of⊣N. If δ ≺ ρ ‖ γ ≺ σ 6
τ

−→, thenρ = 1 and either
δ = γ = ◦ or δ ,γ ∈ SBN by condition (i1) of Definition 3.1. In the second case

δ ≺ 1 ‖ γ ≺ σ rbk
−→ ◦≺ δ ‖ ◦ ≺ γ ,

which implies◦ ≺ δ ⊣N ◦ ≺ γ by condition (i2) of Definition 3.1. So in all cases axiom(AX) applies.
If δ ≺ ρ ‖ γ ≺ σ τ

−→, then eitherρ = △1(∑i∈I∪J ai .ρi) andσ = △2(
⊕

j∈J a j .σ j) or ρ = △1(
⊕

i∈I ai .ρi)
andσ = △2(∑ j∈I∪J a j .σ j). We consider the first case, the proof for the second case being similar. In this

caseδ ≺ ρ ‖ γ ≺ σ τ
−→ b(δ ,ρ)≺ ρ j ‖ b(γ ,σ)≺ σ j for all j ∈ J by Lemma 3.3. This implies

b(δ ,ρ)≺ ρ j ⊣
N b(γ ,σ)≺ σ j

by condition (i2) of Definition 3.1. Ifδ ≺ 1 ‖ γ ≺ σ rbk
−→ ◦ ≺ δ ‖ ◦ ≺ γ we get also◦ ≺ δ ⊣N ◦ ≺ γ by

condition (i2) of Definition 3.1. So in all cases rule(+ ·⊕) applies.

The main result of our paper is that the formal system provides a complete axiomatic characterisation
of the checkpoint compliance, which leads to an decision procedure for checkpoint compliance:

Theorem 3.6(Main Theorem). The formal system⊲ characterises checkpoint compliance, i.e.

ρ ⊣N σ iff ⊲ ◦ ≺ ρ ⊣≺ ◦ ≺ σ .

4 Related work and conclusion.Since the pioneering work by Danos and Krivine [6], reversible
computations in process algebras have been widely studied.The calculus of [6] adds a distributed mon-
itoring system to CCS [11] allowing to rewind computations.Phillips and Ulidowski [12] propose a



42 Compliance for reversible client/server interactions

method for reversing process operators that are definable bySOS rules in a general format, using keys to
bind synchronised actions together. A reversible variant of the higher-orderπ-calculus is defined in [10],
using name tags for identifying threads and explicit memoryprocesses. In [9] Lanese et al. enrich the
calculus of [10] with a fine-grained rollback primitive. Theclosest paper to ours is [13], where Tiezzi
and Yoshida study the interplay between reverse computations and session-based interactions. Their
calculus uses tags and memories as previous proposals in theliterature on reversibility.

As pointed out in [12], reversibility in process calculi is challenging, since we cannot distinguish
between the processesa‖a anda.a by simply recording the past actions. For this reason both histories
and unique identifiers for threads have been used to track information. A key requirement, dubbedcausal
consistencyin [6], is that of undoing only actions if no other action depending on them has been executed
(and not undone). Session behaviours overcome all these problems: in fact both the client and the server
reduce in a sequential way. This justifies the relative simplicity of our calculus.

We plan to investigate whether our approach can be extended to multi-party sessions [8], the rational
being that the parallelism is limited since the interactions must follow the communication protocols
prescribed by global types. The subbehaviour relation induced by our notion of compliance is also worth
being thoroughly studied.

AcknowledgementsThe authors gratefully thank the referees for their numerous constructive remarks.

REFERENCES.

[1] Franco Barbanera & Ugo de’Liguoro (2010):Two notions of sub-behaviour for session-based client/server
systems. In: PPDP, ACM Press, pp. 155–164, doi:10.1145/1836089.1836109.

[2] Franco Barbanera & Ugo de’ Liguoro (2014):Sub-behaviour relations for session-based client/serversys-
tems. Math. Struct. in Comp. Science. To appear.

[3] Giovanni Bernardi & Matthew Hennessy (2014):Modelling session types using contracts. Math. Struct. in
Comp. Science. To appear.

[4] S. Carpineti, G. Castagna, C. Laneve & L. Padovani (2006): A formal account of contracts for Web Services.
In: WS-FM, LNCS 4184, Springer, pp. 148–162, doi:10.1007/11841197_10.

[5] Giuseppe Castagna, Nils Gesbert & Luca Padovani (2009):A theory of contracts for Web services. ACM
Trans. on Prog. Lang. and Sys.31(5), pp. 19:1–19:61, doi:10.1145/1538917.1538920.

[6] Vincent Danos & Jean Krivine (2004):Reversible Communicating Systems. In: CONCUR, LNCS 3170,
Springer, pp. 292–307, doi:10.1007/978-3-540-28644-8_19.

[7] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998):Language Primitives and Type Disciplines
for Structured Communication-based Programming. In: ESOP, LNCS 1381, Springer, pp. 22–138, doi:10.

1007/BFb0053567.

[8] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008):Multiparty Asynchronous Session Types. In:
POPL, ACM Press, pp. 273–284, doi:10.1145/1328897.1328472.

[9] I. Lanese, C. A. Mezzina, A. Schmitt & J.-B. Stefani (2011): Controlling Reversibility in Higher-Order Pi.
In: CONCUR, LNCS 6901, Springer, pp. 297–311, doi:10.1007/978-3-642-23217-6_20.

[10] Ivan Lanese, Claudio Antares Mezzina & Jean-Bernard Stefani (2010):Reversing Higher-Order Pi. In:
CONCUR, LNCS 6269, Springer, pp. 478–493, doi:10.1007/978-3-642-15375-4_33.

[11] Robin Milner (1989):Communication and concurrency. PHI Series in computer science, Prentice Hall.

[12] Iain C. C. Phillips & Irek Ulidowski (2007):Reversing algebraic process calculi. J. of Logic and Alg. Progr.
73(1-2), pp. 70–96, doi:10.1016/j.jlap.2006.11.002.

[13] Francesco Tiezzi & Nobuko Yoshida (2014):Towards Reversible Sessions. In: PLACES, EPTCS155, pp.
17–24, doi:10.4204/EPTCS.155.3.

http://dx.doi.org/10.1145/1836089.1836109
http://dx.doi.org/10.1007/11841197_10
http://dx.doi.org/10.1145/1538917.1538920
http://dx.doi.org/10.1007/978-3-540-28644-8_19
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/1328897.1328472
http://dx.doi.org/10.1007/978-3-642-23217-6_20
http://dx.doi.org/10.1007/978-3-642-15375-4_33
http://dx.doi.org/10.1016/j.jlap.2006.11.002
http://dx.doi.org/10.4204/EPTCS.155.3

	1 Introduction
	2 Calculus
	3 Compliance
	4 Related work and conclusion

