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Urban and Bierman introduced a calculus of proof terms for the sequent calculus LK with a strongly
normalizing reduction relation in [34]. We extend this calculus to simply-typed higher-order logic
with inferences for induction and equality, albeit without strong normalization. We implement this
calculus in GAPT, our library for proof transformations. Evaluating the normalization on both artificial
and real-world benchmarks, we show that this algorithm is typically several orders of magnitude
faster than the existing Gentzen-like cut-reduction, and an order of magnitude faster than any other
cut-elimination procedure implemented in GAPT.

1 Introduction

Cut-elimination is perhaps the most fundamental operation in proof theory, first introduced by Gentzen
in [15]. Its importance is underlined by a wide variety of its applications; one application in particular
motivates our interest in cut-elimination: cut-free proofs directly contain Herbrand disjunctions.

Herbrand’s theorem [20, 7] captures the insight that the validity of a quantified formula is characterized
by the existence of a tautological finite set of quantifier-free instances. In its simplest case, the validity
of a purely existential formula ∃x ϕ(x) is characterized by the existence of a tautological disjunction
of instances ϕ(t1)∨ ·· · ∨ ϕ(tn), a Herbrand disjunction. Expansion proofs generalize this result to
higher-order logic in the form of elementary type theory [30].

A computational implementation of Herbrand’s theorem as provided by cut-elimination lies at the
foundation of many applications in computational proof theory: if we can compress the Herbrand
disjunction extracted from a proof using a special kind of tree grammar, then we can introduce a cut into
the proof which reduces the number of quantifier inferences—in practice this method finds interesting
non-analytic lemmas [25, 23, 22, 10]. A similar approach can be used for automated inductive theorem
proving, where the tree grammar generalizes a finite sequence of Herbrand disjunctions [9]. By comparing
the Herbrand disjunctions of proofs, we obtain a notion of proof equality that identifies proofs which
use the same quantifier instances [3]. Automated theorem provers typically use Skolem functions;
expansion proofs admit a particularly elegant transformation that eliminates these Skolem functions
and turns a proof of a Skolemized formula into a proof of the original statement in linear time [4].
Herbrand disjunctions directly contain witnesses for the existential quantifiers and hence capture a certain
computational interpretation of classical proofs. Furthermore, Luckhardt used Herbrand disjunctions to
give a polynomial bound on the number of solutions in Roth’s theorem [29] in the area of Diophantine
approximation.

Our GAPT system for proof transformations contains implementations of many of these Herbrand-
based algorithms [12], as well as various proofs formalized in the sequent calculus LK and several
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cut-elimination procedures. However in practice we have proofs where none of these procedures are
successful, due to multiple reasons: the performance may be insufficient, higher-order cuts cannot be
treated, induction cannot be unfolded, or special-purpose inferences such as proof links are not supported.

The normalization procedure described in this paper has all of these features: it is fast, supports
higher-order cuts, can unfold induction inferences, and does not fail in the presence of special-purpose
inference rules. This procedure is based on a term calculus for LK described by Urban and Bierman [34].
It is self-evident that proof normalization can be implemented more efficiently using the Curry-Howard
correspondence to compute with proof terms instead of trees of sequents, as this significantly reduces
the bureaucracy required during reduction. We also considered other calculi such as the λ µ- [31] or the
λ Sym-calculus [6]. In the end we decided on the present calculus because of its close similarity to LK, as
it allows us to straightforwardly integrate special-purpose inferences.

In Section 2 we present the syntax and typing rules for the calculus as implemented in GAPT. We
then briefly describe the implementation of the normalization procedure in Section 3. Its performance is
then empirically evaluated on both artificial and real-world proofs in Section 4. Finally, potential future
work is discussed in Section 5.

One of the proofs on which we evaluate this normalization procedure in Section 4 is Furstenberg’s
famous proof of the infinitude of primes [13]. Cut-elimination was also used by Girard [18, annex 7.E] to
analyze another proof of Furstenberg that shows van der Waerden’s theorem using ergodic theory [14].

2 Calculus

The proof system is modeled closely after the calculus described in the paper by Urban and Bierman [34].
Since the paper does not give a name to the introduced calculus, we call our variant LKt as an abbreviation
for “LK with terms”. Proofs in LKt operate on hypotheses (called names and co-names in [34]), which
name formula occurrences in the current sequent. We found it useful to have a single type that combines
both the names and co-names of [34] since it reduces code duplication. Each formula in a sequent is
labelled by a hypothesis: h2: ϕ(t),h1: ∀x ϕ(x),Γ ` ∆

h1: ∀x ϕ(x),Γ ` ∆

Expressions in the object language are lambda expressions with simple types: an expression is either
a variable, a constant, a lambda abstraction, or a function application. Connectives and quantifiers such as
∧o→o→o and ∀(α→o)→o

α are represented as constants of the type indicated in the superscript. Formulas are
expressions of type o, which is the type of Booleans. We identify αβ -equal expressions. A substitution
σ = [x1\s1, . . . ,xn\sn] is a type-preserving map from variables to expressions. Given an expression t, we
write tσ for the (capture-avoiding) application of the substitution σ to t.

This language can express impredicative quantification over types of arbitrary rank, such as predicates
on predicates on functions: for example ∀ f∀C(C(A f )→C(B f ))→ ∀D (DA→ DB) is syntactic sugar
for (→)((∀)(λ f (∀)(λC (→)(C(A f ))(C(B f )))))((∀)(λD (→)(DA)(DB))) where A,B are predicates of
type (i→ i)→ o and the quantifiers range over the variables f i→i,Co→o, and D((i→i)→o)→o. This formula
expresses a form of extensionality for such predicates, and is not provable in LKt.

The proof terms are almost untyped: in contrast to [34], we include the cut formula in the proof term
for the cut inference to perform type-checking without higher-order unification. A typing judgement then
tells us what sequent a proof proves. Figure 1 shows the syntax for the proof terms. Hypothesis arguments
that are not bound are called main formulas: for example h1 is a main formula of NegL(h1,h2: π).

We use named variables as a binding strategy for the hypotheses in consistency with the implemen-
tation of the lambda expressions (as opposed to de Bruijn indices or a locally nameless representation).
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Hyp ::= −N+ |+N+

Term ::= Ax(Hyp,Hyp) | TopR(Hyp)

| Cut(Formula,Hyp: Term,Hyp: Term)

| NegL(Hyp,Hyp: Term) | NegR(Hyp,Hyp: Term)

| AndL(Hyp,Hyp: Hyp: Term) | AndR(Hyp,Hyp: Term,Hyp: Term)

| AllL(Hyp,Expr,Hyp: Term) | AllR(Hyp,Var: Hyp: Term)

| Rfl(Hyp) | Eql(Hyp,Hyp,Bool,Expr,Hyp: Term)

| Ind(Hyp,Expr,Expr,Hyp: Term,Var: Hyp: Hyp: Term)

Figure 1: Syntax of LKt

Hypotheses are stored as machine integers. A negative hypothesis refers to a formula in the antecedent,
and a positive hypothesis refers to a formula in the succedent of the sequent. The notation Hyp: Term
means that Hyp is a bound variable in Term, c.f. the notation of abstract binding trees in [19]. This
encoding of LK is also very similar to the encoding commonly used in logical frameworks (LF), see [32]
for a description of such an approach.

Notably, there are no terms for weakening and contraction. These are implicit: we can use the same
hypothesis zero or multiple times. The proof terms only contain new information that is not contained in
the end-sequent; only cut formulas, weak quantifier instance terms, and eigenvariables are stored. We do
not repeat the formulas or atoms of the end-sequent.

Let us now define the typing judgment. A local context is a finite map from hypotheses to formulas.
We write h1: ϕ ` h2: ψ as a suggestive notation for the map {h1 7→ ϕ,h2 7→ ψ} where h1 is negative and
h2 is positive. Outer occurrences overwrite inner ones, that is ` h: ϕ,h: ψ means {h 7→ ψ}.

Given an (expression) substitution σ , we can apply it to a proof term π in the natural way to obtain πσ .
The judgment π ::σ S means that πσ is a valid proof in the local context S, that is, πσ proves that the
sequent corresponding to S is valid. We may omit σ if it is the identity substitution, in this special case
π :: Γ ` ∆ corresponds to the notation Γ.π .∆ used in [34].

The reason for parameterizing the typing judgement by a substitution is twofold: due to our use of
named variables, we may need to rename bound eigenvariables (in AllR and Ind) when traversing a term.
However, we do not want to apply a substitution to the proof term to ensure that the eigenvariable is
fresh. This would be both costly and also introduces an unnecessary dependency on the local context in
operations that would otherwise not require any typing information.

The proof terms and corresponding typing rules are chosen in such a way that they correspond as
much as possible to the already implemented sequent calculus LK, see [11, Appendix B.1] for a detailed
description of that calculus. The implementation also contains further inferences for special applications,
such as proof links for schematic proofs [8], definition rules [2], and Skolem inferences to represent
Skolemized proofs in higher-order logic [24]. The implemented inference rule for induction is also more
general than the one shown here: it supports structural induction over other types than natural numbers.

Equational reasoning is implemented using the Rfl inference for reflexivity, and an Eql inference to
rewrite in arbitrary contexts and on both sides of the sequent. The third argument indicates whether we
rewrite from left-to-right or right-to-left. Syntactically, we support equations between terms of arbitrary
type, however cut-elimination can fail with equations between functions or Booleans as quantified cuts
can remain.



Gabriel Ebner 27

Ax(h1,h2) ::σ h1: ϕ,Γ ` ∆,h2: ϕ TopR(h1) ::σ Γ ` ∆,h1:>

π1 ::σ Γ ` ∆,h1: ϕσ π2 ::σ h2: ϕσ ,Γ ` ∆

Cut(ϕ,h1: π1,h2: π2) ::σ Γ ` ∆

π ::σ h1: ¬ϕ,Γ ` ∆,h2: ϕ

NegL(h1,h2: π) ::σ h1: ¬ϕ,Γ ` ∆

π ::σ h2: ϕ,Γ ` ∆,h1: ¬ϕ

NegR(h1,h2: π) ::σ Γ ` ∆,h1: ¬ϕ

π ::σ h3: ψ,h2: ϕ,h1: ϕ ∧ψ,Γ ` ∆

AndL(h1,h2: h3: π) ::σ h1: ϕ ∧ψ,Γ ` ∆

π1 ::σ Γ ` ∆,h1: ϕ ∧ψ,h2: ϕ π2 ::σ Γ ` ∆,h1: ϕ ∧ψ,h3: ψ

AndR(h1,h2: π1,h3: π2) ::σ Γ ` ∆,h1: ϕ ∧ψ

π ::σ h2: ϕ(tσ),h1: ∀x ϕ(x),Γ ` ∆

AllL(h1, t,h2: π) ::σ h1: ∀x ϕ(x),Γ ` ∆

π ::[x\y]σ Γ ` ∆,h1: ∀x ϕ(x),h2: ϕ(y)
(y fresh)

AllR(h1,x,h2: π) ::σ Γ ` ∆,h1: ∀x ϕ(x)

Rfl(h) ::σ Γ ` ∆,h: t = t
π ::σ h1: t = s,Γ ` ∆,h2: ϕσ(t),h3: ϕσ(s)

Eql(h1,h2,true,ϕ,h3: π) ::σ h1: t = s,Γ ` ∆,h2: ϕσ(t)

π1 ::σ Γ ` ∆,h1: ϕ(t)σ ,h2: ϕσ(0) π2 ::[x\y]σ Γ,h3: ϕσ(y) ` ∆,h1: ϕ(t)σ ,h4: ϕσ(s(y))
(y fresh)

Ind(h1,ϕ, t,h2: π1,x: h3: h4: π2) ::σ Γ ` ∆,h1: ϕ(t)σ

Figure 2: Typing rules for LKt

In our version of higher-order logic, the connectives ∨,→,⊥, and ∃ are also primitive. By a heavy
abuse of notation, we simply reuse the proof terms for ∧,>, and ∀. This representation causes no
confusion, since the intended connective is always clear from the polarities of the hypotheses, and many
operations are defined identically for the different connectives. The corresponding typing rules are derived
in the natural way, as an example we show the case where AndL is used to prove an implication on the
right side:

π ::σ h2: ϕ,Γ ` ∆,h1: ϕ → ψ,h3: ψ

AndL(h1,h2: h3: π) ::σ Γ ` ∆,h1: ϕ → ψ

3 Cut-normalization

Normalization is performed in a big-step evaluation approach using 3 mutually recursive functions N, E,
and S1. All of these functions return fully normalized proof terms. We do not create temporary Cut terms,
all produced Cut terms are irreducible (for example because they are “stuck” on Eql or Ind). Figure 3
shows the definition of the functions N,E, and S. Note that since contraction is implicit, the cut rule
behaves more like Gentzen’s mix rule [15].

1In the implementation these are called normalize, evalCut, and ProofSubst, resp.
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• The function N takes a proof term π as input and returns a normal form N(π).

• If π1 and π2 are already in normal form, then E(ϕ,h1 : π1,h2 : π2) computes a normal form of
Cut(ϕ,h1: π1,h2: π2).

• Let π1 and π2 be again in normal form, then S(π1,ϕ,h1 := h2: π2) performs a proof substitution,
which corresponds to the rank-reduction step of cut-elimination in LK. The function S takes one
side of the cut and directly moves it to all inferences in the other side where the cut formula occurs
as the main formula. This operation is symmetric in the side of the cut, and only needs to be
implemented once.

Given a term π , we write N(π) ↓ if N terminates on the input π; similarly for E and S.

Lemma 1 (Subject reduction).

π ::σ Γ ` ∆ N(π) ↓
N(π) ::σ Γ ` ∆

π1 ::σ Γ ` ∆,h1: ϕσ π2 ::σ h2: ϕσ ,Γ ` ∆ E(ϕ,h1: π1,h2: π2) ↓
E(ϕ,h1: π1,h2: π2) ::σ Γ ` ∆

π1 ::σ Γ ` ∆,h1: ϕσ π2 ::σ h2: ϕσ ,Γ ` ∆ S(π1,ϕ,h1 := h2: π2) ↓
S(π1,ϕ,h1 := h2: π2) ::σ Γ ` ∆

π1 ::σ h1: ϕσ ,Γ ` ∆ π2 ::σ Γ ` ∆,h2: ϕσ S(π1,ϕ,h1 := h2: π2) ↓
S(π1,ϕ,h1 := h2: π2) ::σ Γ ` ∆

Proof. Routine induction on the length of the computation of N, E, S, resp.

We expect that N terminates on all well-typed LKt proofs, including higher-order quantifier inferences.
Urban and Bierman showed strong normalization for their first-order calculus without equality using
reducibility methods [34]. LKt is more general as it is higher-order, and the first-order fragment is slightly
different due to the use of the skipping constructors ·?, which skip unnecessary inferences.

Conjecture 2 (Termination). Let π ::σ Γ ` ∆, then N(π) ↓.
Note that for our applications it is often not necessary to have completely cut-free proofs. Cuts on

quantifier-free formulas are for example unproblematic for the extraction of Herbrand disjunctions.

Lemma 3 (Cut-elimination). Let π ::σ Γ ` ∆ such that N(π) ↓. If π does not contain Rfl, Eql, or Ind,
then N(π) is cut-free.

Proof. Cuts are only produced by E, and by case analysis this does not happen in this class.

We perform a few noteworthy optimizations:

• Every term stores the set of its free hypotheses and free (expression) variables. These are fields
in the Scala classes implementing the proof terms. We can hence efficiently (in logarithmic time)
check whether a given hypothesis or variable is free in a proof term.

• Due to this extra data, we can effectively skip many calls of the normalization procedure. We do not
need to substitute or evaluate cuts if the hypothesis for the cut formula is not free in the subterm, in
this case we can immediately return the subterm.

• When producing the resulting proof terms, we check whether we can skip any inferences. For
example, instead of NegL(h1,h2 : π) we can directly return π if h2 is not free in π . In Fig. 3
we denote these “skipping” constructors with the ·? superscript. This optimization is extremely
important from a practical point of view, since it effectively prevents a common blow-up in proof
size.
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N(Cut(ϕ,h1: ϕ,h2: ψ)) = E(ϕ,h1: N(ϕ),h2: N(ψ))

N(Ax(h1,h2)) = Ax(h1,h2)

N(NegL(h1,h2: π)) = NegL?(h1,h2: N(π))

... (other cases recurse analogously)

(if h1 is not free in π1:) E(ϕ,h1: π1,h2: π2) = π1

(if h2 is not free in π2:) E(ϕ,h1: π1,h2: π2) = π2

E(ϕ,h1: Ax(h2,h1),h3: π) = π[h3\h2]

E(ϕ,h1: π,h2: Ax(h2,h3)) = π[h1\h3]

E(¬ϕ,h1: NegR(h1,h2: π1),h3: NegL(h3,h4: π2)) = E(ϕ,h4: π
′
2,h2: π

′
1)

E(ϕ ∧ψ,h1: AndR(h1,h2: π1,h3: π2),h4: AndL(h4,h5: h6: π3)) = E(ψ,h3: π
′
2,h6: S(π ′3,ϕ,h5 := h2: π

′
1))

E(ϕ �ψ,h1: AndL(h1,h2: h3: π1),h4: AndR(h4,h5: π2,h6: π3)) = E(ψ,h2: S(π ′1,ϕ,h3 := h5: π
′
3),h5: π

′
2)

E(∀x ϕ(x),h1: AllR(h1,y,h2: π1),h3: AllL(h3, t,h4: π2)) = E(ϕ(t),h2: π1[y\t]′,h3: π
′
2)

E(∃x ϕ(x),h1: AllL(h1, t,h2: π1),h3: AllR(h3,y,h4: π2)) = E(ϕ(t),h2: π
′
1,h4: π2[y\t]′)

(if h1 is not a main formula of π1:) E(ϕ,h1: π1,h2: π2) = S(π1,ϕ,h1 := h2: π2)

(if h2 is not a main formula of π2:) E(ϕ,h1: π1,h2: π2) = S(π2,ϕ,h2 := h1: π1)

(otherwise:) E(ϕ,h1: π1,h2: π2) = Cut?(ϕ,h1: π1,h2: π2)

S(Ax(h1,h2),ϕ,h1 := h3: π) = π[h3\h2]

S(Ax(h1,h2),ϕ,h2 := h3: π) = π[h3\h1]

S(NegL(h1,h2: π1),ϕ,h3 := h4: π2) = NegL?(h1,h2: S(π1,ϕ,h3 := h4: π2)) (if h1 6= h3)
... (other cases recurse analogously)

S(π1,ϕ,h1 := h2: π2) = E(ϕ,h1: π1,h2: π2) (otherwise, if h1 < 0)

S(π1,ϕ,h1 := h2: π2) = E(ϕ,h2: π2,h1: π1) (otherwise, if h1 > 0)

NegL?(h1,h2: π) = π (if h2 not free in π)

NegL?(h1,h2: π) = NegL(h1,h2: π) (otherwise)
... (other cases analogously)

Figure 3: Evaluator for LKt, where � ∈ {∨,→}. For reasons of space, we use the abbreviation π ′2 to
abbreviate the proof substitution which substitutes the opposite part of the cut for the main formula: for
example, π ′2 abbreviates S(π2,ϕ,h2 := h1: π1) in the case of E(ϕ,h1: π1,h2: NegL(h2,h3: π2)).
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The cut-normalization in [34] is presented as a single-step reduction relation. The strong normalization
of that relation depends on the fact that all cuts can be eliminated in their calculus. In LKt however,
cuts can be irreducible—for example because they are stuck on an induction or on Eql. This has the
unfortunate consequence that the natural single-step reduction relation for LKt is not strongly normalizing.
Since multiple cuts can be stuck on the same inference we have the traditional counterexample of two
commuting cuts, where for example π3 = Eql(h2,h4,true, . . .):

Cut(ϕ,h1: π1,h2: Cut(ψ,h3: π2,h4: π3)) 7→ Cut(ψ,h3: π2,h4: Cut(ϕ,h1: π1,h4: π3)) 7→ . . .

3.1 Induction unfolding

We typically consider proofs with induction of sequents such as for example ∀x x+0 = x,∀x∀y x+ s(y) =
s(x+ y) ` ϕ where ϕ is quantifier-free (or maybe existentially quantified), and the antecedent contains
recursive definitions for all contained function symbols such as (but not limited to) +,∗, etc. If ϕ contains
free variables or strong quantifiers, then we can in general not eliminate all inductions—however the
quantifier instances of a normalized proof may still provide valuable insights. In particular we are
interested in the quantifier instances of formulas in the antecedent, as their structure plays an important
role in our approach to inductive theorem proving [9]. The language always contains the constructors 0
and s. Injectivity of these constructors is included as an explicit formula in the antecedent when necessary.
We consider arbitrary recursively defined functions, also on other data types such as lists.

Elimination of induction inferences is handled in a similar way to Gentzen’s proof of the consistency
of Peano Arithmetic [16]. Induction inferences whose terms are constructor applications are unfolded:

Ind(h1,ϕ,0,h2: π1,x: h3: h4: π2) 7→ π1[h2\h1]

Ind(h1,ϕ,s(t),h2: π1,x: h3: h4: π2) 7→ Cut(ϕ(t),h1: Ind(h1,ϕ, t,h2: π1,x: h3: h4: π2),h3: π2[x\t][h4\h1])

The full induction-elimination procedure then alternates between cut-normalization and full induction
unfolding until we can no longer unfold any induction inferences. We also rewrite the term t in the
induction inference using the universally quantified equations representing the recursive definitions to
bring the term into constructor form. The generated proof πs :: Γ,h5: ϕ(t ′) ` h4: ϕ(t) is then added via a
cut, where t ′ is the simplified term which is now in constructor form:

Ind(h1,ϕ, t, . . .) 7→ Cut(ϕ(t ′),h4: Ind(h1,ϕ, t ′, . . .),h5: πs)

We can perform this induction reduction even if the problem contains function symbols that are not
recursively defined. In this case inductions can remain in the output. We conjecture that the full induction-
elimination procedure (alternating induction-unfolding and cut-normalization) always terminates.

3.2 Equational reduction

As noted in Section 3, cuts on equational inferences are stuck. Consider for example the following term,
which cannot be reduced further: Cut(∀x P(x,0),h1: Eql(h1,h2,true,λy∀x P(x,y),h3: π1),h4: π2)

This is clearly a problem since we cannot obtain Herbrand disjunctions from proofs with such
quantified cuts. On the other hand, cuts on atoms would pose no problem since we can still obtain
Herbrand disjunctions by examining the weak quantifier inferences. We hence reduce quantified equational
inferences to atomic equational inferences—then only atomic cuts can be stuck.

Concretely, we define a function sim such that sim(ϕ,h1,h2,h3) :: h1: l = r,h2: ϕ(l) ` h3: ϕ(r) for
any terms l and r, where sim only uses Eql inferences on atoms. This function hence simulates Eql
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inferences using only Eql inferences on atoms, and is straightforwardly defined by recursion on ϕ . We
only show the case for conjunction as an example:

sim(λx(ϕ(x)∧ψ(x)),h1,h2,h3)=AndL(h2,h4: h5: AndR(h3,h6: sim(ϕ,h1,h4,h6),h7: sim(ψ,h1,h5,h7)))

We then replace Eql inferences on non-atoms using the translation Eql(h1,h2,true,ϕ,h3 : π) 7→
Cut(ϕ(r),h4: sim(ϕ,h1,h2,h4),h3: π). Note that this translation depends on the typing derivation (to
obtain the term r for the cut formula) and can fail if we have equations between predicates.

4 Empirical evaluation

4.1 Artificial examples

The calculus and normalization procedure presented in this paper has been implemented in the open
source GAPT system2 for proof transformations [12], version 2.10. We now compare the performance of
several cut-normalization procedures implemented in GAPT on benchmarks used in [28].

• LK: Gentzen-style reductive cut-elimination in LK. The proofs in LK are tree-like data structure
where every node has a (formula) sequent. The output is again a proof in LK, atomic cuts can
appear directly below equational inferences.

• CERES (LK): Cut-elimination by resolution [5] reduces the problem of cut-elimination in LK to
finding a resolution refutation of a first-order clause set. The output is a proof in LK with at most
atomic cuts.

• CERES (expansion): a variant of CERES that takes proofs with cuts in LK, and directly produces
expansion proofs [28]. This uses the same first-order clause sets as CERES (LK).

• semantic: by “semantic cut-elimination”, we refer to the procedure that throws away the input
proofs, and generates a cut-free proof from scratch. GAPT contains interfaces to several resolution
provers, including the built-in Escargot prover. Here we used Escargot to obtain a cut-free expansion
proof of the end-sequent of the input proof.

• expansion proof: the expansion proofs implemented in GAPT support cuts—such cuts corresponds
to cuts in LK and are simply expansions of the formula ∀X (X → X). First-order cuts in expansion
proofs can eliminated using a procedure described in [26], which operates just on the quantifier
instances of the proof, and is similar to the proofs of the epsilon theorems [27]. Both the input and
output formats are expansion proofs, the resulting expansion proof is cut-free.

• LKt: the normalization procedure shown in Section 3.

• LKt (until atomic): same as LKt, but we do not reduce atomic cuts. The resulting proof may still
contain cuts on atoms, but this is sufficient for the extraction of Herbrand disjunctions. We can
directly extract Herbrand disjunctions from proofs as long as all cut formulas are propositional.

• LKt (until quant.-free): same as LKt, but we do not reduce quantifier-free cuts.

The graphs in Fig. 4 show the runtime for each of these procedures on several artificial example proofs.
The runtime is measured in seconds of wall clock time; we used a logarithmic scale for the time since the
performance of the procedures differs by several orders of magnitude. In one case, LKt (until quant.-free)
is 1000000 times faster than LK. All of the example proofs are parameterized by a natural number n≥ 0
(the x-axis of the plot), the size of the input proofs is polynomially bounded in n.

2available at https://logic.at/gapt

https://logic.at/gapt
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Figure 4: Runtime of cut-elimination procedures implemented in GAPT on several artificial examples.
(Some of the lines overlap: e.g. in linearacnf, the runtimes for LKt (until atomic) and LKt (until
quant.-free) are almost identical.)
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Linear example after cut-introduction (ci_linear) The name “linear example” refers to the se-
quence of (proofs of) the sequent P(0),∀x (P(x)→ P(s(x))) ` P(sn(0)). We take natural cut-free proofs
of this sequent and then use an automated method that introduces universally quantified cuts [10] to
obtain a proof with cut. In GAPT, these proofs with universally quantified cuts are produced with
CutIntroduction(LinearExampleProof(n)).get.

In this example, all of the LKt normalization procedures are faster than the CERES variants by a factor
of about 100x. Even semantic cut-elimination is faster. LKt normalization is also faster than expansion
proof cut-elimination by a factor of about 10x. We also see that not eliminating atomic cuts is a bit faster
than full cut-elimination, and not eliminating quantifier-free cuts is even faster.

Linear example proof with manual cuts (linear) Cut-introduction often produces unnecessarily
complicated lemmas, resulting in irregularity when used in proof sequences. It is also limited to small
proofs. To produce a more regular sequence and obtain larger proofs, we manually formalized natural
proofs of the linear example for 2n using n− 1 cuts with the cut formulas ∀x (P(x)→ P(s2k

(x))) for
1≤ k < n. These proofs can be obtained with LinearCutExampleProof(n). (Note that this sequence
of proofs produces exponentially larger cut-free proofs than the other sequences.)

The results are similar to the proofs obtained with cut-introduction, although we observe new phe-
nomena at both ends of the sequence: for n = 0, the proofs consist of a single axiom. Here, the LKt-based
procedures produce a cut-free proof in about 15 nanoseconds. On the other end, at n≥ 6, we finally see
CERES becoming slightly faster than semantic cut-elimination.

Linear example proof with atomic cuts (linearacnf) To complete the discussion of the linear
example, we also consider a proof sequence in atomic cut-normal form (ACNF). In these proofs, the
quantifier and propositional inferences are on the top of the proof, and the bottom part consists only
of atomic cuts—very much like a ground resolution refutation. Interestingly, atomic cut-elimination is
surprisingly cheap in this example: the LKt-based normalization only takes 10 microseconds. On the
other hand, the CERES-based methods require as much time as they do for the proofs with universally
quantified cuts: they refute a clause set whose size is linear in n.

Square diagonal proof after cut-introduction (ci_sqdiag) Just as in the linear example, we take
cut-free proofs of P(0,0),∀x∀y (P(x,y)→ P(s(x),y)),∀x∀y (P(x,y)→ P(x,s(y))) ` P(sn(0),sn(0)) and
then automatically introduce universally quantified cuts. LKt normalization until quantifier-free cuts is an
order of magnitude faster than expansion proof cut-elimination, and two orders of magnitude faster than
CERES.

Linear equality example proof after cut-introduction (ci_lineareq) These proofs are generated
using CutIntroduction(LinearEqExampleProof(n)). Note that we replaced the equality predicate
by a binary E relation to prevent accidental introduction of equational inferences. Again, LKt normalization
until propositional cuts is 10x faster than expansion proof cut elimination, which is 10x faster than CERES.

The astute reader will have noticed the spikes in the runtime of the reductive cut-elimination procedures
at n ∈ {7,9,11,13,17}. These spikes are due to convoluted cut formulas produced by cut-introduction.
For example at n = 17, the cut formula is ∀x ((E( f (x),a)→ E( f 3(x),a))∧ (E(x,a)→ E( f (x),a))) and
we use it to prove E(a,a)→ E( f 17(a),a)—this proof is almost as complicated on the propositional level
as the cut-free proof, even though it has a lower quantifier complexity.
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Figure 5: Runtime of induction-elimination procedures on lemmas formalized in GAPT’s library. (Results
are omitted for some methods due to excessive runtime.)

4.2 Mathematical proofs

GAPT contains a small library of formalized proofs for testing. These are mostly basic properties of
natural numbers and lists. The biggest formalized result is the fundamental theorem of arithmetic, showing
the existence and uniqueness of prime decomposition for natural numbers. We evaluated the performance
of LKt as well as other procedures (see Section 4.1) on several of these proofs. Figure 5 shows the runtime
of the induction- and cut-elimination. We tested instances of proofs of the following statements:

add0l ∀x (0+ x = x)
mul1 ∀x (x∗1 = x)

filterrev ∀p∀l (filter(p, rev(l)) = rev(filter(p, l)))
divmodgtot ∀a∀b (b 6= 0→∃d ∃r (r < b∧d ∗b+ r = a))
primedecex ∀n (n 6= 0→∃d primedec(d,n))

The proofs contain the primitive recursive definitions in the antecedent. For example, add0l is a
proof with induction of the sequent ∀x (x+0 = x), ∀x∀y (x+ s(y) = s(x+y)) ` ∀x (0+x = x). As before,
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induction-elimination in LK is several orders of magnitude slower than in LKt. Semantic cut-elimination
is surprisingly fast, it is as fast as LKt for small instances of filterrev.

4.3 Furstenberg proof

Furstenberg’s well-known proof of the infinitude of primes [13] equips the integers with a topology
generated by arithmetic progressions, and uses this machinery to show that there are infinitely many
primes. For every natural number n ∈N we hence get a second-order proof πn showing that there are more
than n prime numbers. Cut-elimination of πn then extracts the computational content of Furstenberg’s
argument: we get a new prime number as a witness.

CERES was used to perform this extraction manually [3]. The key step in cut-elimination using
CERES consists of the refutation of a so-called characteristic clause set. In the case of Furstenberg’s proof
automated theorem provers could only refute this first-order clause set for n = 0, that is, to show that
there is more than one prime number. The authors hence manually constructed a sequence of refutations,
taking Euclid’s proof of the infinitude of primes as a guideline to obtain a prime divisor of 1+ p0 . . . pn as
a witness. The authors also present another refutation for n = 2, which yields more than one witness: one
of the numbers p0 +1, p1 +1, or 5 contains the third prime as a divisor.

Using LKt, GAPT can now perform the cut-elimination and extract the witness term automatically.
Figure 6 shows the performance of the LKt normalization on instances of Furstenberg’s proof. The
concrete formalization closely resembles the one described in [3], however there have been minor changes
to account for subtle differences in the LK calculus currently implemented in GAPT. Now that we could
cut-eliminate this particular formalization for the first time, we were excited to find an interesting feature.
We expected that the cut-elimination of Furstenberg’s proof would compute the same witness as Euclid’s
proof: a prime divisor of p0 · · · pn +1. However we got the following witness instead, which contains 2 as
an additional factor: primediv of(1+2∗ p(0)∗ · · · ∗ p(n))

This constant factor seems to depend on the concrete way in which we formalize the lemma that
nonempty open sets are infinite (this lemma is called ϕ2 in [3]). With a slightly different quantifier instance
there, we can also get 3 instead of 2.

0 2 4 6 8
n

10 2

10 1

100

se
co

nd
s

LKt
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Figure 6: Normalization runtime on a formalization of Furstenberg’s proof of the infinitude of primes.
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5 Future work

As our focus here lies in the practical applications of cut-elimination, termination of the LKt normalization
procedure is only of secondary concern. For an actual implementation, there is little difference between
an algorithm that does not terminate or one that terminates after a thousand years—as long as it quickly
terminates on the instances we apply it to. For some classes of proofs, it is straightforward to see
that normalization indeed always terminates. Due to the direct correspondence with the traditional
presentation of LK, we can reuse termination arguments. Whenever we observe non-termination in the
LKt normalization, we get a corresponding non-terminating reduction sequence in LK with an uppermost-
first strategy. We believe that induction unfolding can be shown to terminate via a similar argument as
used in [33] for the proof of the consistency of Peano Arithmetic. It remains open whether normalization
terminates for proofs with higher-order (or even just second-order) quantifier inferences.

The current handling of equational and induction inferences as described in Sections 3.1 and 3.2 is
unsatisfactory as they are not integrated in the main normalization function but require a separate pass
over the proof. Furthermore, the normalized proof may contain Eql inferences on atoms. We are not
aware of any terminating procedure using local rewrite rules that eliminates unary equational inferences
such as the ones used in LKt.

Renaming hypotheses and applying expression substitutions incurs a significant cost in the benchmarks.
An obvious solution is to introduce an explicit substitution inference to implement these operations without
the need to traverse the proof term. In fact, one of the motivations behind the substitution parameter σ in
the typing judgment ::σ was the support for explicit substitution inferences.

As a cheap optimization, we could grade-reduce blocks of quantifier inferences in a single substitution.
This should speed up the common case of eliminating lemmas with many universal quantifiers. Another
possible optimization is the use of caching: all of the functions N,E, and S are pure, making it easy to
cache their results. However in practice caching seems to degrade performance: simply caching the result
of E causes a 10-20% increase in runtime on the benchmarks of Section 4.1. Normalization problems in
LKt do not seem to repeat often enough to warrant a cache.

We used named variables as a binding strategy since this is traditionally used in GAPT. As expected,
this choice has resulted in a number of overbinding-related bugs, which were difficult to debug. However,
with named variables we can often avoid renaming when traversing and substituting proofs—where other
approaches such as de Bruijn indices or locally nameless would always require renaming, or instantiation
and abstraction, resp. Since every term in LKt contains (multiple) binders, it seems prudent to avoid
renaming in the common case. It may be possible to implement an efficient binding strategy using
de Bruijn indices or a locally nameless representation by adding explicit renaming inferences.

Proof assistants such as Lean, Coq, or Minlog also provide functions to normalize proofs. It would be
interesting to compare their performance to the approaches implemented in GAPT.

6 Conclusion

Term assignments to proofs provide an elegant implementation technique for the efficient computation and
transformation of proofs. We have obtained a speed-up of several orders of magnitude just by switching the
representation from trees of sequents to untyped proof terms. The normalization procedure implemented
in this paradigm and described in this paper is fast, supports higher-order cuts, can unfold induction
inferences, and can normalize cuts in the presence of all inference rules supported by GAPT. As shown in
Section 4.3, we can now practically cut-eliminate proofs which were out of reach before.
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However our ultimate interest lies in the quantifier structure of (cut-free) proofs as captured by
Herbrand disjunctions or (in general) expansion proofs. From this point of view, we are not restricted
to cut-elimination in LK or inessential variations like LKt. Another option that is radically different
from what we have considered so far is to use functional interpretation to compute expansion proofs as
described by Gerhardy and Kohlenbach in [17].

For proofs with only universally quantified first-order cuts, a certain type of tree grammar describes
the quantifier inferences [21], and the language generated by such a grammar then directly corresponds to
a Herbrand sequent. We plan to develop and implement extensions of this grammar-based approach to
general first-order cuts for an efficient extraction of Herbrand disjunctions, see [1] for grammars describing
general prenex cuts.
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