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Several proof translations of classical mathematics into intuitionistic mathematics have been pro-
posed in the literature over the past century. These are normally referred to as negative translations
or double-negation translations. Among those, the most commonly cited are translations due to Kol-
mogorov, Gödel, Gentzen, Kuroda and Krivine (in chronological order). In this paper we propose a
framework for explaining how these different translations are related to each other. More precisely,
we define a notion of a (modular) simplification starting from Kolmogorov translation, which leads
to a partial order between different negative translations. In this derived ordering, Kuroda and Kriv-
ine are minimal elements. Two new minimal translations are introduced, with Gödel and Gentzen
translations sitting in between Kolmogorov and one of these new translations.

1 Introduction

With the discovery of paradoxes and inconsistencies in the early formalisation of set theory, mathemati-
cians started to worry about the logical foundations of mathematics. Proofs by contradiction, which
concluded the existence of a mathematical object without actually constructing it, were immediately
thought by some to be the source of the problem. Mathematicians were then segregated between those
who thought classical reasoning should be allowed as long as it was finitistically justified (e.g. Hilbert)
and those who thought proofs in mathematics should avoid non-constructive arguments (e.g. Brouwer).
Constructivism and intuitionistic logic were born.

It was soon discovered, however, that the consistency of arithmetic based on intuitionistic logic
(Heyting arithmetic) is equivalent to the consistency of arithmetic based on classical logic (Peano arith-
metic). Therefore, if one accepts that intuitionistic arithmetic is consistent, then one must also accept
that classical arithmetic is consistent. That was achieved via a simple translation of classical into intu-
itionistic logic which preserves the statement 0 = 1. So any proof of 0 = 1 in Peano arithmetic (if ever
one is found) can be effectively translated into a proof of 0 = 1 in Heyting arithmetic.

The first such translation is due to Kolmogorov [19] in 1925. He observed that placing a double
negation ¬¬ in front of every subformula turns a classically valid formula into an intuitionistically valid
one. Formally, defining

(A∧B)Ko :≡ ¬¬(AKo∧BKo) PKo :≡ ¬¬P, for P atomic
(A∨B)Ko :≡ ¬¬(AKo∨BKo) (∀xA)Ko :≡ ¬¬∀xAKo

(A→ B)Ko :≡ ¬¬(AKo→ BKo) (∃xA)Ko :≡ ¬¬∃xAKo,

one can show that A is provable classically if and only if AKo is provable intuitionistically. Kolmogorov’s
translation, however, was apparently not known to Gödel and Gentzen who both came up with similar
translations [9, 10, 12] a few years later. Gentzen’s translation (nowadays known as Gödel-Gentzen
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negative translation [4, 16, 27]) simply places a double negation in front of atomic formulas, disjunctions,
and existential quantifiers, i.e.

(A∧B)GG :≡ AGG∧BGG PGG :≡ ¬¬P, for P atomic
(A∨B)GG :≡ ¬¬(AGG∨BGG) (∀xA)GG :≡ ∀xAGG

(A→ B)GG :≡ AGG→ BGG (∃xA)GG :≡ ¬¬∃xAGG.

As with Kolmogorov’s translation, we also have that CL ` A if and only if IL ` AGG, where CL and
IL stand for classical and intuitionistic logic, respectively. Gödel’s suggested translation was in fact
somewhere in between Kolmogorov’s and Gentzen’s, as it also placed a double negation in front of the
clause for implication, i.e.

(A→ B)GG :≡ ¬(AGG∧¬BGG) ⇔IL ¬¬(AGG→ BGG).

In the 1950’s, Kuroda revisited the issue of negative translations [21], and proposed a different (somewhat
simpler) translation:

(A∧B)Ku :≡ AKu∧BKu PKu :≡ P, for P atomic
(A∨B)Ku :≡ AKu∨BKu (∀xA)Ku :≡ ∀x¬¬AKu

(A→ B)Ku :≡ AKu→ BKu (∃xA)Ku :≡ ∃xAKu.

Let AKu :≡ ¬¬AKu. Similarly to Kolmogov, Gödel and Gentzen, Kuroda showed that CL ` A if and
only if IL ` AKu. In particular, if A does not contain universal quantifiers then CL ` A iff IL ` ¬¬A, since
(·)Ku is the identity mapping on formulas not containing universal quantifiers. Finally, relatively recently,
following the work of Krivine [20], yet another different translation was developed1, namely

(A∧B)Kr :≡ AKr ∨BKr PKr :≡ ¬P, for P atomic
(A∨B)Kr :≡ AKr ∧BKr (∀xA)Kr :≡ ∃xAKr

(A→ B)Kr :≡ ¬AKr ∧BKr (∃xA)Kr :≡ ¬∃x¬AKr.

Letting AKr :≡ ¬AKr, we also have that CL ` A if and only if IL ` AKr.
It is also known that all these translations lead to intuitionistically equivalent formulas, in the sense

that AKo,AGG,AKu and AKr are all provably intuitionistically equivalent. As such, one could say that they
are all essentially the same. On the other hand, it is obvious that they are intrinsically different. The
goal of the present paper is to explain the precise sense in which Gödel-Gentzen, Kuroda and Krivine
translations are systematic simplifications of Kolmogorov’s original translation, and show that, in a pre-
cise sense, the latter two are optimal (modular) translations of classical logic into intuitionistic logic.
Gödel-Gentzen translation is in between Kolmogorov’s and a new optimal variant we discuss in Section
5 below.

For more comprehensive surveys on the different negative translations, with more historical back-
ground, see [17, 18, 23, 30, 31].

Note. Due to space restriction all proofs have been omitted. For all proofs see the full version of the
paper at the authors webpages.

1Throughout the paper this translation is going to be called “Krivine negative translation” as currently done in the literature
(see [28, 18]) even though it should be better called Streicher-Reus translation. Although inspired by the Krivine’s work in [20]
it is the syntactical translation studied by Streicher and Reus [29] in a version presented in [3, 28] we are using here.
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1.1 Some useful results

Our considerations on the different negative translations is based on the fact that formulas with various
negations can be simplified to intuitionistically equivalent formulas with fewer negations. The cases
when this is (or isn’t) possible are outlined in the following lemma.

Lemma 1 The following equivalences are provable in IL:

1. ¬¬(¬¬A∧¬¬B)↔¬¬(A∧B) 9. ¬¬(¬¬A∧¬¬B)↔ (¬¬A∧¬¬B)
2. ¬¬(¬¬A∨¬¬B)↔¬¬(A∨B) 10. ¬¬(¬¬A∨¬¬B)↔ (¬¬¬A→¬¬B)
3. ¬¬(¬¬A→¬¬B)↔¬¬(A→ B) 11. ¬¬(¬¬A→¬¬B)↔ (¬¬A→¬¬B)
4. ¬¬∃x¬¬A↔¬¬∃xA 12. ¬¬∀x¬¬A↔∀x¬¬A

5. ¬¬(¬A∧¬B)↔¬(A∨B) 13. ¬(¬¬A∧¬¬B)↔ (¬¬A→¬B)
6. ¬¬(¬A∨¬B)↔¬(A∧B) 14. ¬(¬¬A∨¬¬B)↔ (¬A∧¬B)
7. ¬¬(¬A→¬B)↔¬(¬A∧B) 15. ¬(¬¬A→¬¬B)↔ (¬¬A∧¬B)
8. ¬¬∀x¬A↔¬∃xA 16. ¬∃x¬¬A↔∀x¬A.

The following equivalences are provable in CL but not in IL:

17. ¬¬∀x¬¬A↔¬¬∀xA 20. ¬¬∃x¬¬A↔∃x¬¬A
18. ¬¬∃x¬A↔¬∀xA 21. ¬∀x¬¬A↔∃x¬A
19. ¬¬(¬¬A∨¬¬B)↔ (¬¬A∨¬¬B) 22. ¬(¬¬A∧¬¬B)↔ (¬A∨¬B).

1.2 Logical framework

In the language of classical logic CL and intuitionistic logic IL, we consider as primitive the constants
⊥, >, the connectives ∧, ∨, → and the quantifiers ∀ and ∃. We write ¬A as an abbreviation for A→
⊥. Note that CL can be formulated using a proper subset of the symbols we consider as primitive. It
would be sufficient, for instance, to consider the fragment {⊥,→,∨,∃} or {⊥,→,∧,∀} (as adopted by
Schwichtenberg in [26]). Our choice of dealing directly with the full set {⊥,>,→,∧,∨,∀,∃} in the
classical framework has two main reasons: First, it emphasises which symbols are treated in a similar or
different manner in classical and intuitionistic logic; second, in some embeddings of CL into IL we are
going to analyse, the translations of certain formulas are syntactically different to the derived translations
we would obtain considering just a subset of primitive symbols. In fact, usually when we choose to work
with a subset of the logical connectives in classical logic, we are implicitly committing ourselves to one
of the particular negative translations.

2 Modular Translations

Let us first observe that all negative translations mentioned above are in general not optimal – in the sense
of introducing the least number of negations in order to turn a classically valid formula into an intuitionis-
tically valid one. For instance, Kuroda translation of a purely universal formula ∀xP(x) is ¬¬∀x¬¬P(x),
whereas Gödel-Gentzen would give the optimal translation ∀x¬¬P(x). On the other hand, for purely
existential formulas ∃xP(x) we have that Kuroda gives the optimal translation, whereas Gödel-Gentzen
introduces unnecessary negations. The important property of all these translations, however, is that they
are modular, i.e. except for a single non-modular step applied to the whole formula, the translation of a
formula is based on the translation of its immediate sub-formulas. The following definition makes this
precise.
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Definition 1 (Modular negative translations) We say that a translation (·)Tr from CL to IL is modular
if there are formula constructors ITr

� (·, ·) for � ∈ {∧,∨,→}, ITr
Q (·, ·) for Q ∈ {∀,∃}, ITr

at (·) and ITr
` (·)

called translation of connectives, quantifiers, atomic formulas and the provability sign, respectively,
such that for each formula A of CL:

ATr ≡ ITr
` (ATr)

where (·)Tr is defined inductively as:

(A∧B)Tr :≡ ITr
∧ (ATr,BTr) PTr :≡ ITr

at (P), for P atomic
(A∨B)Tr :≡ ITr

∨ (ATr,BTr) (∀xA)Tr :≡ ITr
∀ (x,ATr)

(A→ B)Tr :≡ ITr
→ (ATr,BTr) (∃xA)Tr :≡ ITr

∃ (x,ATr).

A modular translation is called a negative translation if (i) A↔CL ITr
` (ATr) and (ii) IL ` ITr

` (ATr) when-
ever CL ` A.2

For instance, Krivine negative translation is a modular translation with

IKr
∧ (A,B) :≡ A∨B IKr

at (P) :≡ ¬P, for P atomic
IKr
∨ (A,B) :≡ A∧B IKr

∀ (x,A) :≡ ∃xA
IKr
→ (A,B) :≡ ¬A∧B IKr

∃ (x,A) :≡ ¬∀x¬A

and IKr
` (A) :≡ ¬A. Similarly, one can easily see how Kolmogorov, Gödel-Gentzen, and Kuroda transla-

tions are also modular translations.

Definition 2 (Relating modular translations) We define a relation ∼ between modular translations as
follows: Given translations T1 and T2 we define T1∼ T2 if the following equivalences are intuitionistically
valid:

IT1
� (A,B) ↔IL IT2

� (A,B) IT1
at (P) ↔IL IT2

at (P)

IT1
Q (x,A) ↔IL IT2

Q (x,A) IT1
` (A) ↔IL IT2

` (A),

for all formulas A, B, and atomic formulas P, � ∈ {∧,∨,→} and Q ∈ {∀,∃}.

In other words, two modular translations are related via ∼ if the corresponding translations of con-
nectives, quantifiers, atoms and provability are equivalent formulas in IL. It is immediate that ∼ is an
equivalence relation. In what follows we say that two modular translations are the same if they are in the
same equivalent class for the relation ∼ (i.e. they are the same mod ∼). When two translations are not
the same (in the previous sense), we say they are different. Two different translations T1 and T2 from CL
to IL are said to be equivalent if for each formula A, the two translations of A, namely AT1 and AT2 , are
equivalent formulas in IL. For instance, changing the clause for ∃xA in the Gödel-Gentzen translation to
(∃xA)GG :≡ ¬∀x¬AGG does not change the interpretation, since intuitionistically we have that ¬∀x¬A is
equivalent to ¬¬∃xA. So, these would be just two ways of writing the same translation. On the other
hand, Kuroda translation is different from Gödel-Gentzen’s since, for instance, we do not normally have
that ∀xA is equivalent to ∀x¬¬A intuitionistically.

2A negative translation is usually assumed to satisfy a third condition (iii) ITr
` (ATr)↔IL B for some B constructed from

doubly negated atomic formulas by means of ∀,∧,→,⊥; ensuring that all negative translations are equivalent (see [30]).
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3 Simplifications

Noticing that Kuroda and Gödel-Gentzen negative translations could be reached (in a modular way) from
Kolmogorov translation via equivalences in IL, arose the idea of looking for a general strategy covering
the standard negative translations.

Thus, our goal is to show that the different negative translations are obtained via a systematic simpli-
fication of Kolmogorov translation. For that, we need the concept of “simplification” we define below.
Intuitively, the idea of a simplification is to transform formulas into intuitionistically equivalent formulas
with less negations preserving the modularity of the translation.

Definition 3 (Simplification from inside/outside) A simplification from inside is a set of transforma-
tions (at most one for each connective and quantifier) of the following form:

¬¬(NA�NB) r⇒ N(N1A �rN2B)

¬¬QxNA r⇒ N(QrxN1A),

where �,�r ∈ {∧,∨,→}, and Q,Qr ∈ {∀,∃}, N stands for a single or a double negation (same choice
in all the set of transformations), and N1 and N2 are negations (possible none and not necessarily the
same in all transformations) such that

(i) both sides are equivalent formulas in IL and

(ii) the number of negations on right side is strictly less than on left side.

A simplification from outside is defined in a similar way replacing the shape of the transformation before
by

N(¬¬A�¬¬B) r⇒ N1NA�rN2NB

NQx¬¬A r⇒ QrxN1NA.

Intuitively, in the first case we are moving negations N outwards over the outer double negation ¬¬,
whereas in the second case we are moving N inwards over the inner ¬¬. The moving of negations is
done so that we reduce the number of negations while keeping the modularity of the translation.

Definition 4 (Maximal simplification) A simplification is maximal if

(i) it is not properly included in any other simplification, i.e. including new transformations for other
connectives prevents the new set of being a simplification, and

(ii) it is not possible to replace �r, Qr, N1 and N2 so as to reduce the number of negations on the right
side of any transformation.

Intuitively, a simplification being maximal means that we can not get ride of more negations.

Proposition 1 Let r1 and r2 be the set of transformations:

¬¬(¬¬A∧¬¬B) r1⇒ ¬¬(A∧B) ¬¬(¬A∧¬B) r2⇒ ¬(A∨B)
¬¬(¬¬A∨¬¬B) r1⇒ ¬¬(A∨B) ¬¬(¬A∨¬B) r2⇒ ¬(A∧B)
¬¬(¬¬A→¬¬B) r1⇒ ¬¬(A→ B) ¬¬(¬A→¬B) r2⇒ ¬(¬A∧B)
¬¬∃x¬¬A r1⇒ ¬¬∃xA, ¬¬∀x¬A r2⇒ ¬∃xA,

respectively. The sets r1 and r2 are maximal simplifications from inside.
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Proposition 2 Let r3 and r4 be the set of transformations:

¬¬(¬¬A∧¬¬B)
r3⇒ ¬¬A∧¬¬B ¬(¬¬A∧¬¬B) r4⇒ ¬¬A→¬B

¬¬(¬¬A∨¬¬B)
r3⇒ ¬¬¬A→¬¬B ¬(¬¬A∨¬¬B) r4⇒ ¬A∧¬B

¬¬(¬¬A→¬¬B)
r3⇒ ¬¬A→¬¬B ¬(¬¬A→¬¬B) r4⇒ ¬¬A∧¬B

¬¬∀x¬¬A
r3⇒ ∀x¬¬A, ¬∃x¬¬A r4⇒ ∀x¬A,

respectively. The sets r3 and r4 are maximal simplifications from outside.

Proposition 3 The simplifications r1, r2, r3 and r4 are the only maximal simplifications.

4 Kolmogorov Simplified

Definition 3 identifies a class of transformations which can be applied to Kolmogorov negative translation
without spoiling the modularity property of the translation. We now present standard ways of simplifying
Kolmogorov translation via the maximal (or proper subsets of the maximal) simplifications introduced
above.

Definition 5 (Simplification path) Applying a simplification to a formula A consists in changing the
formula through successive steps, applying in each step a transformation allowed by the simplification
(i.e. transforming a subformula having the shape of the left-hand side of the transformation by the cor-
responding right-hand side), till no longer be possible to simplify the expression via that simplification.
We call the path of formulas starting in A we obtain this way a simplification path.

Note that every step in a simplification path acts over a particular connective or quantifier and all
formulas in a simplification path are equivalent formulas in IL. The process of applying a simplification
is not unique and can lead to different formulas. Nevertheless, all simplification paths are obviously finite
since in each step the number of negations is decreasing. From now on, we consider that all simplification
paths start with formulas in Kolmogorov form (i.e. formulas of the form AKo).

Definition 6 (Length of simplification path) The length of a simplification path P, denoted s(P), is the
number of steps in P, or equivalently the number of nodes in P minus one, where by node we refer to
each formula in P.

Clearly, it is not true that two simplification paths with the same length lead to the same formula, i.e.
have the same final node. For instance, consider applying simplification r1 to the formula below in two
different ways:

¬¬(¬¬(¬¬A∧¬¬B)∧¬¬∃x¬¬A)

¬¬(¬¬(¬¬A∧¬¬B)∧¬¬∃xA) ¬¬(¬¬(A∧B)∧¬¬∃x¬¬A)

¬¬((¬¬A∧¬¬B)∧∃xA) ¬¬((A∧B)∧∃x¬¬A)

���
HHH

Nevertheless, we prove that if a simplification is maximal or is a subset of a maximal simplification then
the length of the longest paths is determined by the initial formula and, moreover, all the paths with
longest length lead to the same formula. In other words, we have a kind of confluence property for
longest paths. First some definitions and auxiliary results.

Notation. In order to simplify the formulation of Lemmas 2 and 3 we use the following abbreviations
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• Removing the double negations from inside over � or Q, with � ∈ {∧,∨,→} and Q ∈ {∀,∃},
stands for replacing ¬¬(¬¬A�¬¬B) by ¬¬(A�B), or ¬¬Qx¬¬A by ¬¬QxA.

• Removing the double negation from outside over �∈{∧,→} or Q consists in replacing the formula
¬¬(¬¬A�¬¬B) by ¬¬A�¬¬B, or replacing ¬¬Qx¬¬A by Qx¬¬A.

• Removing the double negation from outside over ∨ consists in replacing ¬¬(¬¬A∨¬¬B) by
¬¬¬A→¬¬B.

• Removing single negations (from inside or outside) over �∈{∨,→} in the formula¬¬(¬¬A�¬¬B)
consists in transforming the double negations in single negations, replacing � by ∧ and in the case
� ≡→ adding a negation before A. Removing a single negation (from inside or outside) over a
quantifier symbol Q in the formula ¬¬Qx¬¬A consists in replacing the double negations by single
negations and replacing Q by its dual.

• Removing a single negation from inside (respectively outside) over ∧ in the formula ¬¬(¬¬A∧
¬¬B) consists in replacing this formula by ¬(¬A∨¬B) (or replacing this formula by ¬(¬¬A→
¬B) respectively).

We denote by #A
� and #A

Q the number of symbols � and Q respectively, occurring in the formula A.
For the sake of counting symbols, the negation symbols ¬ introduced by the translations are considered
as primitive, and hence do not change the value of #A

→. For example (#A
→) = (#AKo

→ ).

Lemma 2 For the simplification r1 and for any formula AKo there is a simplification path Pr1 from AKo

such that
s(Pr1) = (#AKo

∧ )+(#AKo

∨ )+(#AKo

→ )+(#AKo

∃ )

and the formula in the last node can be obtained from AKo locating in this formula all the occurrences
of conjunctions, disjunctions, implications and existential quantifications and removing at once all the
double negations from inside these connectives and quantifiers.

Any simplification r′1 obtained from r1 by removing one or more transformations admits a similar
result discounting and disregarding the logical symbols in the left-hand side of the transformations re-
moved.

The (omitted) proof above in fact provides an algorithm to construct a simplification path for the
simplification r with r ≡ r1 or r ≡ r′1. The simplification path from AKo constructed this way is called
standard path for r.

Lemma 3 For the simplifications r2, r3, r4 and for any formula AKo, there are simplification paths Pr2 ,
Pr3 , Pr4 such that

s(Pr2) = (#AKo

∧ )+(#AKo

∨ )+(#AKo

→ )+(#AKo

∀ ),

s(Pr3) = (#AKo

∧ )+(#AKo

∨ )+(#AKo

→ )+(#AKo

∀ ) and

s(Pr4) = (#AKo

∧ )+(#AKo

∨ )+(#AKo

→ )+(#AKo

∃ ).
Moreover, in Pr2 the last node can be obtained from AKo removing at once the single negations from
inside all the conjunctions, disjunctions, implications and universal quantifications; the formula in the
last node in Pr3 can be obtained from AKo by removing at once the double negations from outside the
conjunctions, disjunctions, implications and universal quantifications; and the formula in the last node
of Pr4 can be obtained from AKo by removing at once the single negations from outside the conjunctions,
disjunctions, implications and existential quantifications.

The result can be adapted in the expected way to simplifications obtained from r2, r3 or r4 by remov-
ing one or more transformations.
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Again, the proof above provides algorithms to construct simplification paths for the simplifications
r2, r3, r4 and its subsets. The simplification paths from AKo constructed via these algorithms are called
standard paths.

Lemma 4 If the simplification is a subset of a maximal one, in each step of a simplification path we act
over a connective or a quantifier already occurring in the initial formula, and we never act twice over
the same connective or quantifier.

Note that, in the previous lemma, the hypothesis of considering just subsets of maximal simplifi-
cations is essential. In the example below we present a (non maximal) simplification from inside that
contradicts the lemma. Consider the simplification:

¬¬(¬A∧¬B) ⇒ ¬(A∨¬¬B)

¬¬(¬A∨¬B) ⇒ ¬(A∧B).

From ¬¬(¬¬A∧¬¬(¬¬B∧¬¬C)) we can construct the following two paths:

¬¬(¬¬A∧¬¬(¬¬B∧¬¬C))

¬(¬A∨¬¬¬(¬¬B∧¬¬C)) ¬¬(¬¬A∧¬(¬B∨¬¬¬C))

¬(¬A∨¬¬(¬B∨¬¬¬C))

¬(¬A∨¬(B∧¬¬C))

���
HHH

H
HH

�
��

The two corollaries below are now immediate:

Corollary 1 For each formula AKo and each simplification that is a subset of r1, r2, r3 or r4, any simpli-
fication path from AKo has length smaller or equal to the length of the corresponding standard path.

Corollary 2 If the simplification is a subset of a maximal one, two simplification paths with the longest
length lead to the same formula.

The result above justifies the next definition:

Definition 7 Let r be a subset of a maximal simplification and AKo a formula in Kolmogorov form. We
denote by r(AKo) the formula in the last node of a simplification path with longest length.

5 Standard Translations

Simplifying the Kolmogorov negative translation via the maximal simplifications r1 and r2 we obtain
exactly Kuroda and Krivine negative translations.

Proposition 4 r1(AKo)≡ AKu and r2(AKo)≡ AKr.
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This study concerning maximal simplifications led us not only to the two standard negative transla-
tions above but also to the discovery of two new minimal modular embeddings from CL to IL. Consider
the translations described below:

(A∧B)G :≡ AG∧BG PG :≡ ¬¬P, for P atomic
(A∨B)G :≡ ¬AG→ BG (∀xA)G :≡ ∀xAG

(A→ B)G :≡ AG→ BG (∃xA)G :≡ ¬¬∃xAG

which is like the (·)GG-translation except for the ∨-clause where only one negation (rather than two) is
introduced, and

(A∧B)E :≡ ¬AE → BE PE :≡ ¬P, for P atomic
(A∨B)E :≡ AE ∧BE (∀xA)E :≡ ¬∀x¬AE

(A→ B)E :≡ ¬AE ∧BE (∃xA)E :≡ ∀xAE

with AE :≡ ¬AE , which is similar to Krivine except that negations are introduced in the {∧,∀}-clauses
whereas Krivine introduces negations on the ∃-clause.

Immediately as a corollary of the next proposition, we have that the translations (·)G and (·)E are
embeddings from CL to IL, different but equivalent to the standard embeddings considered previously.

Proposition 5 r3(AKo)≡ AG and r4(AKo)≡ AE .

Let r′3 be the (non-maximal) simplification we obtain from r3 by removing the transformation¬¬(¬¬A∨
¬¬B)⇒¬¬¬A→¬¬B. We can easily prove that r′3(A

Ko)≡ AGG. Thus, Gödel-Gentzen negative trans-
lation is strictly in between Kolmogorov and the (·)G-translation.

6 Final remarks

We conclude with a few remarks on two other negative translations, some related work and other avenues
for further research.

6.1 On non-modular negative translations

Working with modular translations brings various benefits. For instance, we can prove properties of the
translation by a simple induction on the structure of the formulas, and when applying the translation to
concrete proofs this can be done in a modular fashion. On the other hand, if we allow a translation to be
non-modular, we can of course construct simpler embeddings, i.e. we can simplify Kolmogorov negative
translation even more, getting ride of more negations.

For example, consider the simplification r3 followed by one more transformation ¬¬∃x¬¬A ⇒
¬∀x¬A to be applied, whenever possible, at the end of the simplification path. As such we could first
simplify ¬¬(¬¬A∧¬¬∃x¬¬B) using r3 to the formula ¬¬A∧¬¬∃x¬¬B and then apply the final sim-
plification to obtain ¬¬A∧¬∀x¬B. Although non-modular, these kind of procedures also give rise to
translations of classical into intuitionistic logic.

Avigad [2] presented a more sophisticated non-modular translation that results from a fragment of
r1, avoiding unnecessary negations. More precisely, Avigad’s M-translation is defined as:

(A∧B)M :≡ ¬(∼ A∨ ∼ B)M PM :≡ P, for P atomic

(A∨B)M :≡ AM ∨BM P̄M :≡ ¬P

(∀xA)M :≡ ¬(∃x∼ A)M (∃xA)M :≡ ∃xAM,
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where in classical logic we consider the negations of atomic formulas P̄ as primitive and the formula∼ A
is obtained from A replacing ∧, ∀, P respectively by ∨, ∃ and P̄ and conversely. Avigad showed that

(1) `IL ¬AM ↔¬AS

(2) If `CL A then `IL ¬(∼ A)M,

where AS stands for any of the standard equivalent translations mentioned before such as Gödel-Gentzen,
Kolmogorov, Kuroda or Krivine negative translation.

Lemma 5 ¬(∼ A)M ↔IL ¬¬AM

Although translation (·)M, as presented by Avigad, is not modular, notice that it can be equivalently
written in a modular way as

(A∧B)M′ :≡ ¬¬AM′ ∧¬¬BM′ PM′ :≡ P, for P atomic

(A∨B)M′ :≡ AM′ ∨BM′ P̄M′ :≡ ¬P

(∀xA)M′ :≡ ∀x¬¬AM′ (∃xA)M′ :≡ ∃xAM′ ,

since (∀xA)M :≡ ¬(∃x∼ A)M :≡ ¬∃x((∼ A)M)↔IL ∀x¬(∼ A)M L5↔IL ∀x¬¬AM and

(A∧B)M :≡ ¬(∼ A∨ ∼ B)M :≡ ¬((∼ A)M ∨ (∼ B)M)

↔IL ¬(∼ A)M ∧¬(∼ B)M L5↔IL ¬¬AM ∧¬¬BM.

The translation (·)M′ can be obtained from Kolmogorov negative translation via a non-maximal simpli-
fication, more precisely the simplification r1 (corresponding to Kuroda translation) without the transfor-
mation ¬¬(¬¬A∧¬¬B) r1⇒¬¬(A∧B).

Avigad’s translation (·)M is a non-modular simplification of (·)M′ since for universal quantifications,
for conjunctions and for provability we replace ¬¬AM by ¬(∼ A)M which, although equivalent, has
possibly less negations, as we see in the (omitted) proof of Lemma 5. Moreover, as pointed by Avigad
in [2], we can simplify the translation (·)M even further defining (A∧B)M as being AM ∧ BM. The
corresponding modular version in this case is exactly Kuroda negative translation.

6.2 On Gödel-Gentzen negative translation

Although nowadays it is common to name the translation (·)GG, presented in Section 1, by Gödel-Gentzen
negative translation, a few remarks should be made at this point. The translations due to Gödel and
Gentzen ([12] and [10], respectively) where introduced in the context of number theory translating an
atomic formula P into P itself. Later Kleene [17] considered the translation of the pure logical part,
observing that double-negating atomic formulas was necessary, since one does not have stability ¬¬P→
P in general.

Rigorously, Gentzen’s original formulation instead of double negating disjunctions and existential
quantifiers used the following intuitionistic equivalent definitions (A∨B)GG :≡ ¬(¬AGG ∧¬BGG) and
∃xAGG :≡ ¬∀x¬AGG, since, as such, one can then work in the {∃,∨}-free fragment of intuitionistic
logic.

Moreover, as pointed in Section 1 already, Gödel’s original double-negation translation differs from
Gentzen’s negative translation in the way implication is treated. We can easily see, however, that Gödel’s
negative translation can be obtained from Kolmogorov negative translation via the non-maximal simpli-
fication consisting in r′3 without the transformation ¬¬(¬¬A→¬¬B)⇒¬¬A→¬¬B, being, therefore,
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more expensive in term of negations than Gentzen’s negative translation. Another non-maximal simpli-
fication, more precisely r′3 without the transformation ¬¬(¬¬A∧¬¬B)⇒¬¬A∧¬¬B, leads to Aczel’s
(·)N variant [1].

Finally, we observe that sometimes in Kolmogorov or Gödel-Gentzen negative translations, ⊥ is
transformed differently from the other atomic formulas, not into ¬¬⊥ but into ⊥ itself. This change is
easily adapted to our framework, considering in the modular definition of a translation an extra operator
ITr
⊥ (⊥) and defining ⊥Tr :≡ ITr

⊥ (⊥). Note that the translations where ITr
⊥ (⊥) :≡ ⊥ are the same as the

ones with ITr
⊥ (⊥) :≡ ¬¬⊥, since ⊥↔¬¬⊥ in IL.

6.3 On intuitionistic versus minimal logic

More than translating CL into IL, it is well known that some negative translations produce embeddings
of CL into minimal logic ML (i.e. intuitionistic logic without ex-falso-quodlibet). More precisely

CL ` A iff ML ` A∗,

where ∗ ∈ {Ko,GG}, for instance. But for Kuroda negative translation we just have CL ` A iff IL ` AKu

(see [31]). In our framework, this appears as no surprise since the direct implication in the transformation

¬¬(¬¬A→¬¬B) r1⇒ ¬¬(A→ B)

is valid in IL but not in ML. All the other equivalences in Lemma 1 are provable in minimal logic. We
observe, however, that a small change in Kuroda negative translation produces an embedding in ML.
More precisely, if we change in r1 the clause for implication to

¬¬(¬¬A→¬¬B) r̃1⇒¬¬(A→¬¬B)

we obtain a non-maximal simplification (in IL) which corresponds to a modular translation (·)K̃u be-
tween Kolmogorov and Kuroda negative translations. Since ¬¬(¬¬A→¬¬B)↔ML ¬¬(A→¬¬B) the
simplification r̃1 is maximal in ML. Therefore, the negative translation (·)K̃u that inserts ¬¬ in (i) the
beginning of the formula, (ii) after each universal quantifier, and (iii) in front of the conclusion of each
implication is such that CL ` A iff ML ` AK̃u.

6.4 Other related work

Strong monads. Part of the present study could have been developed in a more general context. Let T be
a (logical operator having the properties of a) strong monad and consider the translation (·)T that inserts
T in the beginning of each subformula. Assuming that (TA)T ↔ TAT what we obtain is a translation of
ML+(TA→ A) into ML. We name such embedding Kolmogorov T-translation. It can be seen that all
the transformations in simplifications r̃1 and r′3 remain valid equivalences in ML when we replace ¬¬
by any strong monad T. Thus, from Kolmogorov T-translation we can obtain, by means of the previous
simplifications, the corresponding Kuroda (ML variant) and Gödel-Gentzen T-translations. As particular
cases we have

• TA :≡ ¬¬A (recovering the standard double-negation translations),

• TB :≡ (B→ A)→ A (corresponding to Friedman A-translations [7]),

• TA :≡ ¬A→ A or TA :≡ (A→ R)→ A (Peirce translations [6]).
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As references on these more general embeddings see [1, 6].

Semantical approaches. In this paper we did not discuss semantical approaches to the negative trans-
lations. Some considerations concerning conversions between Heyting and Boolean algebras whose
valuation of formulas is related via negative translations can be found in [13, 25] and a more abstract
treatment of negative translations in terms of categorical logic can be found in [15].

CPS transformations. There is a close connection between negative translations and continuation pass-
ing style (CPS) transformations. In the literature [8, 14, 29], we can find various CPS-translations from
λ µ-calculus into λ -calculus that correspond (at the type level) to the standard negative translations.
Since the CPS technique captures evaluation ordering for the source language (such as call-by-name,
call-by-value, call-by-need) it would be interesting to see if our simplifications linking the standard neg-
ative translations can be expressed and are meaningful at the calculus reduction strategy level. See also
Chapters 9 and 10 in [24].

Linear logic. Although not addressed in this paper, the refined framework of linear logic with its ex-
ponentials can be useful in the study of the negative translations. It would be interesting to analyse our
simplifications through the refined lens of Linear Logic. For related references see [11, 5, 22].
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