
Steffen van Bakel, Stefano Berardi, Ulrich Berger (Eds.):
Classical Logic and Computation 2010 (Cl&C’10)
EPTCS 47, 2011, pp. 44–56, doi:10.4204/EPTCS.47.6

An applicative theory for FPH

Reinhard Kahle
CENTRIA and DM, FCT, Universidade Nova de Lisboa, P-2829-516 Caparica, Portugal

kahle@mat.uc.pt

Isabel Oitavem
CMAF, Universidade de Lisboa and DM, FCT, Universidade Novade Lisboa, P-2829-516 Caparica, Portugal

oitavem@fct.unl.pt

In this paper we introduce an applicative theory which characterizes the polynomial hierarchy of
time.

1 Introduction

In this paper we define an applicative theory whose provably total functions are those which belong to
the polynomial hierarchy of time.

Considering theories which characterize classes of computational complexity, there are three differ-
ent approaches: in one, the functions which can be defined within the theory are “automatically” within
a certain complexity class. In such an account, the syntax has to be restricted to guarantee that one stays
in the appropriate class. This results, in general, in the problem that certain definitions of functions do
not work any longer, even if the function is in the complexityclass under consideration. In a second ac-
count, the underlying logic is restricted.1 In the third account, one does not restrict the syntax, allowing,
in general, to write down “function terms” for arbitrary (partial recursive) functions, nor the logic, but
only for those function terms which belong to the complexityclass under consideration, one canprove
that they have a certain characteristic property, usually,the property that they are “provably total” (see
Definition 14 below). While the function terms, according tothe underlying syntactical framework, may
have a straightforward computational character, i.e., asλ terms, the logic which is used to prove the
characteristic property may well beclassical.

Here, we follow the third account, usingapplicative theoriesas underlying framework.
Applicative theories are the first-order part Feferman’s system of explicit mathematics [Fef75, Fef79].

They provide a very handy framework to formalize theories ofdifferent strength, including to charac-
terize classes of computational complexity. A first characterization of polynomial time operations in
applicative theories was given by Strahm in [Str97]. A uniform approach to varies complexity classes,
including FPTIME, FPSPACE, FPTIME-FLINSPACE, and FLINSPACE was given by the same author in
his Habilitationsschrift, published in [Str03]. These characterizations are based on bounded schemes in
the vein of Cobham [Cob65] (see also [Clo99]). Cantini [Can02] gave, at the same time, a characteri-
zation of FPTIME in an applicative framework following the approach of Bellantoni and Cook [BC92]
which separates the input positions of functions in normal and safe.

Work partially supported by the ESF research projectDialogical Foundations of Semanticswithin the ESF Eurocores
programLogICCC, LogICCC/0001/2007 (funded by the Portuguese Science Foundation, FCT). The second author was also
supported by the projectFunctional interpretations of arithmetic and analysis, PTDC/MAT/104716/2008 from FCT.

1As an example for this approach we may cite [Sch06].

http://dx.doi.org/10.4204/EPTCS.47.6

Reinhard Kahle and Isabel Oitavem 45

On the base of a characterization of the functions in the Polynomial Hierarchy which uses a mono-
tonicity condition, given in [BALO1x], we present here an applicative theory forFPH. Given a function
algebra, the main objective of defining a corresponding theory is, of course, to introduce an adequate
induction scheme which allows to prove properties for the functions under consideration. In section 2
we rewrite the input-sorted characterization ofFPH given in [BALO1x] as a non-sorted characterization,
in Cobham style, by introducing bounds in the recursion schemes. The next sections are concerned with
the main goal of this paper: to define an induction scheme which takes care of the monotonicity condi-
tion. While the proof of the lower bound follows from a (more or less) straightforward embedding of the
function algebra described in section 2, the upper bound is carried out by an adaptation of the proof(s)
given by Strahm in [Str03].

Note, that Strahm also treats the polynomial hierarchy in [Str03], but in a quite different way which
involves a special type two functional.

Notation. We useW to denote the word algebra generated byε (source), andS0 andS1 (successors).
W is usually interpreted over the set of binary words{0,1}∗. Given x,y ∈ W, |x| is the length ofx
andx|y denotes the word corresponding to the first|y| bits of x. x′ denotes the numeric successor ofx,
and it defined according to the equationsε ′ = S0(ε), (S0(x))′ = S1(x) and(S1(x))′ = S0(x′). The letters
x,y,z,w, . . . denote usually variables, whilef ,g,h,s, r, . . . denote function symbols.~x and ~f denote,
respectively, a sequence of variables and functions of the appropriate arity.

2 Function algebras forFPH

In this section we work with two function algebras. One formulated in a non-sorted context, and the
other formulated in a two-input-sorted context following notation introduced by Bellantoni and Cook in
[BC92]. In the sorted context, function arguments have two sorts,normal andsafe. We write them by
this order, separated by a semicolon:f (~x;~y).

PH, the polynomial hierarchy of time, is usually defined as
⋃

i Σi or
⋃

i ∆i with Σ0 = ∆0 = P and, for
i ≥ 0, Σi+1 = NP(Σi) and∆i+1 = P(Σi). The corresponding function classes are�i = FPTIME(∆i) =
FPTIME(Σi−1), for i ≥ 1, andFPH=

⋃

i �i = FPTIME(PH).
Consider the following partial order overW, using≤ as the natural one on{0,1}.

Definition 1. For w,v∈ W, we write w� v if |w| < |v|, or |w| = |v| and∀i.wi ≤ vi . We write w≺ v if
w� v but w 6= v.

Definition 2. 1. A function h is calledmonotoneif, for all z∈W, z� h(~x,z).

2. A two-sorted function h, with at least one safe argument, is calledmonotoneif, for all z ∈ W,
z� h(~x;~y,z).

Definition 3. 1. Given a function h, itsmonotone sectionis the function

hm(~x,z) =

{

h(~x,z) if z� h(~x,z),

z otherwise.

2. Given a two-sorted function h, with at least one safe argument, itsmonotone sectionis the function

hm(~x;~y,z) =

{

h(~x;~y,z) if z� h(~x;~y,z),

z otherwise.

Clearly, monotone sections are always monotone functions.

46 An applicative theory forFPH

2.1 Predicative approach

Consider the class[B;PC ,PRN ,PPR] of two-input-sorted functions.
B is the set of basic functions defined as follows:

1. ε (a zero-ary function);

2. πk,n
i (x1, . . . ,xk;xk+1, . . . ,xk+n) = xi , for each 1≤ i ≤ k+n;

3. Si(x;) = xi, i ∈ {0,1};

4. Si(z;x) =

{

xi if |x|< |z|,

x otherwise,
i ∈ {0,1};

5. P(;ε) = ε , P(;xi) = x, i ∈ {0,1};

6. p(;ε) = ε , p(;x′) = x;

7. Q(;ε ,y,z0,z1) = y, Q(;xi,y,z0,z1) = zi , i ∈ {0,1};

8. ×(x,y;) = 1|x|×|y|.

PC , PRN andPPR are the following operators:

• Predicative composition: Giveng,~r ,~s, their predicative compositionf = PC (g,~r ,~s) is defined by

f (~x;~y) = g(~r(~x;);~s(~x;~y)).

• Predicative recursion on notation: Giveng,h0,h1, the predicative recursion on notation scheme
defines a functionf = PRN(g,h0,h1) by

f (ε ,~x;~y) = g(~x;~y),

f (zi,~x;~y) = hi(z,~x;~y, f (z,~x;~z)), i ∈ {0,1}

• Predicative primitive recursion: Giveng andh, the predicative primitive recursion scheme defines
a function f = PPR(g,h) by

f (ε ,~x;~y) = g(~x;~y),

f (z′,~x;~y) = h(z,~x;~y, f (z,~x;~z)).

Proposition 4 ([BC92] and [Oit97]). • [B;PC ,PRN] = FPtime,

• [B;PC ,PRN ,PPR] = FPspace.

Definition 5. Given g and h, thepredicative monotone primitive recursion schemeMPPR is defined by
MPPR(g,h) = PPR(g,hm).

Proposition 6 ([BALO1x]) . [B;PC ,PRN ,MPPR] = FPH.

Remark 7. For all f ∈ [B;PC ,PRN ,PPR]:

1. there exists a F∈ [B;PC ,PRN,PPR] such that∀~x,~y.F(~x,~y;) = f (~x;~y);

2. there exists a polynomial qf such that∀~x,~y.| f (~x;~y)| ≤ max{qf (|~x|),maxi |yi |}.

This remark holds also if[B;PC ,PRN ,PPR] is replaced by[B;PC ,PRN ,MPPR].

See [Oit97] for details.

Reinhard Kahle and Isabel Oitavem 47

2.2 Bounded approach

Consider the class[I ;C,BRN,BPR] where:

• I is the set of initial functions:

1. ε ,
2. Si(x) = xi, i ∈ {0,1},
3. πn

j (x1, . . . ,xn) = x j , 1≤ j ≤ n,
4. Q(ε ,y,z0,z1) = y, Q(xi,y,z0,z1) = zi , i ∈ {0,1},
5. ×(x,y) = 1|x|×|y|.

• C, BRN andBPR are the following operators:

– Composition: Giveng and~h, their compositionf =C(g,~h) is given by f (~x) = g(~h(~x)),
– Bounded recursion on notation: Giveng, h0, h1, andt, the bounded recursion on notation

f = BRN(g,h0,h1, t) is given by:

f (ε ,~x) = g(~x)

f (yi,~x) = hi(y,~x, f (y,~x))|t(y,~x), i ∈ {0,1}

– Bounded primitive recursion: Giveng, h, and t, the bounded primitive recursionf =
BPR(g,h, t) is given by

f (ε ,~x) = g(~x)

f (y′,~x) = h(y,~x, f (y,~x))|t(y,~x)

Proposition 8. • [I ;C,BRN] = FPtime,

• [I ;C,BRN,BPR] = FPspace.

These are well-known results, essentially due to Cobham [Cob65] and Thompson [Tho71], here
formulated overW. See [Oit97] or [Oit01] for a reference.

PR is the usual operator for primitive recursion, i.e.,f = PR(g,h) means thatf is defined by primi-
tive recursion, withg as base function andh as step function.

Definition 9. Given g,h, t, themonotone bounded primitive recursion schemeis defined by

MBPR(g,h, t) = PR(g,(h|t)
m).

Remark 10. Given a function t(y,~x) in [I ;C,BRN,MBPR], we may define within the same class a func-
tion t+, which is non-decreasing in the first argument, i.e., for y1 ≤ y2 we have|t+(y1,~x)| ≤ |t+(y2,~x)|,
such that for all y,~x, t(y,~x)≤ t+(y,~x). For instance:

t+(ε ,~x) := t(ε ,~x),

t+(y′,~x) :=

{

t(y′,~x) if |t(y,~x)| ≤ |t(y′,~x)|,

t(y,~x) otherwise.

In fact, if t is itself non-decreasing in the first argument, then t+ is equal to t.
Now, we get that

MBPR(g,h, t) = PR(g,(h|t)
m) = BPR(g,(h|t)

m, t+).

48 An applicative theory forFPH

Remark 11. 1. If h, t ∈ [I ;C,BRN,MBPR] (or [B;PC ,PRN ,MPPR]), then we have also h|t ∈
[I ;C,BRN,MBPR] (or [B;PC ,PRN,MPPR], respectively).

2. If h∈ [I ;C,BRN,MBPR] (or [B;PC ,PRN ,MPPR]), then we have hm ∈ [I ;C,BRN ,MBPR]
(or [B;PC ,PRN ,MPPR], respectively).

Moreover, the function definitions of h|t and hm do not make any extra use of theMBPR (or MPPR

respectively) scheme (relatively to the definitions of h andt).

Define by bounded recursion on notationP(ε) = ε andP(xi) = x|x andD(ε ,x) = x andD(yi,x) =
P(x)|x. Thenx|y = D(D(y,x),x). This justifies item (i) of the remark above. Item (2) is an obvious
consequence of� being decidable in P. The case of[B;PC ,PRN ,MPPR] is similar.

Theorem 12. [I ;C,BRN ,MBPR] = FPH.

Proof. We prove that

1. for all f ∈ [I ;C,BRN,MBPR] there exists aF ∈ [B;PC ,PRN ,MPPR] such that∀~x. f (~x) =
F(~x;);

2. for all F ∈ [B;PC ,PRN,MPPR] there exists af ∈ [I ;C,BRN,MBPR] such that∀~x,~y.F(~x;~y) =
f (~x,~y).

This shows that[I ;C,BRN,MBPR] and [B;PC ,PRN ,MPPR] can be identified. Thus, the present
statement is a consequence of Proposition 6.

(1) is proven by induction on the complexity of the function definitions. The proof is analogous to
the proof of Theorem 3.2 in [Oit97, p. 121]. It uses remark 11.

The proof of (2) is straightforward, by induction on the complexity of the function definition of
F ∈ [B;PC ,PRN ,MPPR]. It uses remark 7(2). Obviously, theB functions (4)–(6) are defined using
bounded recursion on notation.

3 The theoryAPH

The applicative theoryAPH is based on the basic theoryB of operations and words, as introduced by
Strahm in [Str03,§ 3.1], with slight modifications indicated below. In particular, our application is total,
while Strahm works in a partial setting.

We formulateB in a standard first order language, withindividual variables x,y,z, . . . , individual
constants: k,s (combinators);p,p0,p1 (pairing and projection);cW (case distinction);ε (empty word);
s0,s1 (binary successors),pW (binary predecessor);sℓ,pℓ (lexicographic successor and predecessor);
c⊆ (initial subword relation);∗,× (word concatenation and word multiplication). There is onebinary
function symbol· for term application, which, however, is usually written byjuxtaposition. We have
only one unary relation symbolW (binary words), and one binary relation symbol= (equality). Terms
(r,s, t, . . .) are build from variables and constants by term application.

We use the usual abbreviations of the framework of applicative theories, which include, in particular,

Reinhard Kahle and Isabel Oitavem 49

the following ones:

0 := s0 ε ,
1 := s1 ε ,

s⊆ t := c⊆ st= 0,

s≤ t := lW s⊆ lW t,

s∗ t := ∗st,

s× t :=×st.

As we will definelW t by 1× t, s≤ t stands actually for 1×s⊆ 1× t.2 Forw∈W, w is the corresponding
applicative term.

Formulasare usual first-order formulas, build from the atomic formulasW(t) and t = s by use of
negation (¬), conjunction (∧), disjunction (∨), implication (→), and universal (∀x) and existential (∃x)
quantification. As abbreviation we use

∀x∈W.φ := ∀x.W(x)→ φ ,
∃x∈W.φ := ∃x.W(x)∧φ ,
∃x≤ t.φ := ∃x∈W.x≤ t ∧φ ,

t : W→W := ∀x∈W.W(t x),

t : W2 →W := ∀x∈W.∀y∈W.W(t xy).

Note that Strahm formulatesB within the logic of partial terms, which includes an extra existence
predicate. However, for the present purpose, partiality isnot essential and hence we stick to total applica-
tion. Thus, our logic is standard,classicalfirst order logic. For more background on applicative theories
see, for instance, [Bee85], [JKS99], or [Kah07].

The non-logical axioms ofB are the following ones:3

I. Combinatory algebra and pairing

(1) kxy= x,

(2) sxyz= xz(yz),

(3) p0(pxy) = x∧p1(pxy) = y.

II. Definition by cases onW.4

(4) cW ε sru= s,

(5) W(t)→ cW (s0 t)sru= r,

(6) W(t)→ cW (s1 t)sru= u,

III. Closure, binary successors, and predecessors

(7) W(ε)∧∀x.W(x)→W(s0 x)∧W(s1 x),

2Note that, inAPH the relation≤ compares the lengths of the terms, while we used the same symbol before, outsideAPH,
to compare the terms themselves.

3In [Str03], Strahm axiomatizes also the tally length of binary words,lW, since his theoryB does not include word concate-
nation and word multiplication from the very beginning. In the presence of word multiplication the tally length can be defined
by lettinglW t = 1× t.

4Our case distinction checks the last bit of a word, while Strahm uses a case distinction which compares words as a whole.

50 An applicative theory forFPH

(8) s0 x 6= s1 x∧ s0 x 6= ε ∧ s1 x 6= ε ,
(9) pW : W→W∧pW ε = ε ,

(10) W(x)→ pW (s0 x) = x∧pW (s1 x) = x,

(11) W(x)∧x 6= ε → s0 (pW x) = x∨ s1 (pW x) = x.

IV. Lexicographic successor and predecessor

(12) sℓ : W→W∧ sℓ ε = 0,
(13) W(x)→ sℓ (s0 x) = s1 x∧ sℓ (s1 x) = s0 (sℓ x),

(14) pℓ : W→W∧ sℓ ε = ε ,
(15) W(x)→ pℓ (sℓ x) = x,

(16) W(x)∧x 6= ε → sℓ (pℓ x) = x.

V. Initial subword relation

(17) W(x)∧W(y)→ c⊆ xy= 0∨ c⊆ xy= 1,
(18) W(x)→ (x⊆ ε ↔ x= ε),
(19) W(x)∧W(y)∧y 6= ε → (x⊆ y↔ x⊆ pW y∨x= y),
(20) W(x)∧W(y)∧W(z)∧x⊆ y∧y⊆ z→ x⊆ z.

VI. Word concatenation

(21) ∗ : W2 →W,
(22) W(x)→ x∗ ε = x,
(23) W(x)∧W(y)→ x∗ (s0 y) = s0 (x∗y)∧x∗ (s1 y) = s1 (x∗y).

VII. Word multiplication

(24) × : W2 →W,
(25) W(x)→ x× ε = ε ,
(26) W(x)∧W(y)→ x× s0 y= (x×y)∗x∧x× s1 y= (x×y)∗x.

Induction on notation.

f : W→W∧φ(ε)∧ (∀x∈W.φ(x)→ φ(s0 x)∧φ(s1 x))→∀x∈W.φ(x),

whereφ(x) is of the form∃y≤ f x.ψ(f ,x,y) for ψ(f ,x,y) apositive andW-free formula.5

This induction is called(Σb
W

-IW) in [Str03].

Monotonicity relation. It is easy to observe that the monotonicity relation� is polytime decidable.
As the theoryB+(Σb

W
-IW) allow to represent all polytime functions (as provably total functions in the

sense of Definition 14 below), we know that there is termtχ� with

1. B+(Σb
W

-IW) ⊢ tχ� w1w2 = χ�(w1,w2), for all w1,w2 ∈W, and

2. B+(Σb
W

-IW) ⊢ ∀x,y.W(x)∧W(y)→ tχ� xy= 0∨ tχ� xy= 1.

In the following, we will usec� as abbreviation forλx,y.tχ� yx. Moreover,s� t is used as abbrevia-
tion of c� st= 0. We also introduce quantifier∃x� t.φ as abbreviation for∃x.W(x)∧x� t ∧φ .

Note that 2. above means thatc� is total as function fromW2 →W. But, of course,c� is not total as
a binary relation, as we have, for instance, 016� 10 and 106� 01.

5Positive formulas are defined, as usual, as negation and implication free formulas.

Reinhard Kahle and Isabel Oitavem 51

Remark 13. For u and v inW, we can show inAPH:

1. u≤ v→ u� 1×v,

2. u� v→ u≤ v.

And we can define a low-level pairing function〈·, ·〉 and projections(·)0 and (·)1 on W, which are, at
most, inFPTIME , such thatAPH proves for the representing terms:

3. u� 〈u,v〉 and v� 〈u,v〉,

4. (u)0 � u and(u)1 � u.

Monotone induction (Σb
W

-MPI).

t : W→W∧ (∃x∈W.φ(ε ,x))∧ (∀y∈W.∀x∈W.φ(y,x) →∃z� x.φ(sℓ y,z))→

∀y∈W.∃x∈W.φ(y,x),

whereφ(y,x) is of the formx≤ t y∧ψ(t,y,x) for ψ(t,y,x) apositive andW-freeformulanot containing
disjunctions. For the reason of the exclusion of disjunctions, see remark20 below.

Essentially,APH is equal to Strahm’s theoryPT plus the monotone induction scheme(Σb
W

-MPI).

4 The lower bound

Definition 14. A function F: Wn →W is calledprovably total inAPH, if there exists a closed term tF

such that

1. APH ⊢ tF w1 . . . wn = F(w1, . . . ,wn) for all w1, . . . ,wn ∈W, and

2. APH ⊢ tF : Wn →W.

Using the result of [Str03,§ 4] about the provably total function in Strahm’s theory corresponding to
FPTIME, it remains to show that functions defined by the monotone bounded primitive recursion scheme
MBPR(g,h, t) are provably total inAPH.

So, let us assume thatg, h, andt are provably total inAPH, and f be defined asMBPR(g,h, t) =
PR(g,(h|t)m).

Now, inAPH, let

f (ε ,~z) = g(~z)

f (sℓ y,~z) =

{

h|t(y,~z, f (y,~z)) if f (y,~z)� h|t(y,~z, f (y,~z))

f (y,~z) otherwise

and we show by monotone induction that∀y∈W.∃x∈W.x≤ t f (y,~z)∧ f (y,~z) = x, where

t f (y,~x) =

{

g(~z) if y= ε ,

t+(y,~z) otherwise.

Induction base:As f (ε ,~z) = g(~z), andg is provably total inAPH, we have∃x ∈ W.x ≤ g(~z)∧
f (ε ,~z) = x.

Induction step: We have to show that∀y ∈ W.∀x ∈ W.x ≤ t f (y,~z) ∧ f (y,~z) = x → ∃x1 � x.
x1 ≤ t f (sℓ y,~z)∧ f (sℓ y,~z) = x1.

52 An applicative theory forFPH

By definition,

f (sℓ y,~z) =

{

h|t(y,~z, f (y,~z)) if f (y,~z)� h|t(y,~z, f (y,~z)),

f (y,~z) otherwise.

In the first case, the assertion follows immediately from thecondition f (y,~z)� h|t(y,~z, f (y,~z)).
In the second case, the assertion follows immediately from the premise (choosingx1 := x).
Thus, we can conclude by monotone induction that∀y∈W.∃x∈W.x≤ t f (y,~z)∧ f (sℓ y,~z) = x.
Thus, we get the following result:

Lemma 15. The provably total functions ofAPH includeFPH.

5 The upper bound

The proof of the upper bound follows quite closely the proof of the upper bound of Strahm for his theory
PT in [Str03,§ 6]. For it, one reformulates the theory first in Gentzen’s classical sequence calculus, and
proves partial cut elimination, such that the remaining cuts are restricted to positive formulas. In a second
step, one realizes positive derivations with realizers from the appropriate complexity class. In this step,
one uses the open term modelM (λη) of the applicative ground structure, which is based on the usual
λη reduction of the untypedλ -calculus. In fact,η allows us to treat extensionality of operations, i.e.,
we may add the following axiom toAPH:

(Ext) ∀ f ,g.(∀x. f x= gx)→ f = g.

For the treatment ofAPH, we will follow Strahm’s proof forPT, and check only, how to take care
of our additional monotone induction scheme(Σb

W
-MPI).

Let APH+ the Gentzen-style sequent calculus reformulation ofAPH such that all main formulas
of non-logical axioms and rules are positive. In this calculus, the monotone induction(Σb

W
-MPI) is

rewritten as the following rule:

Γ,W(u)⇒W(t u),∆
Γ ⇒∃n.W(n)∧φ(ε ,n),∆

Γ,W(a),W(b),φ(a,b) ⇒∃m� b.φ(sℓa,m),∆
Γ,W(s)⇒∃n.W(n)∧φ(s,n),∆

,

whereφ(s,n) is of the formn ≤ t s∧ψ(t,s,n) for ψ(t,s,n) a positive andW-free formula which does
not contain disjunctions.

We writeAPH+ ⊢ Γ ⇒ ∆ if the sequentΓ ⇒ ∆ is derivable inAPH+, andAPH+ ⊢∗ Γ ⇒ ∆ if it has a
proof where all cut formulas arepositive.

5.1 Partial cut elimination

Theorem 16(Partial cut elimination, cf. [Str03, Theorem 12]). For all sequentsΓ ⇒ ∆, APH+ ⊢ Γ ⇒ ∆
impliesAPH+ ⊢∗ Γ ⇒ ∆.

We only have to check that the main formulas of our induction rules are positive, but that is the case
since, in particular,∃m� b.φ(sℓa,m) is positive.

Corollary 17 (cf. [Str03, Corollary 13]). If Γ ⇒ ∆ is a sequent of positive formulas withAPH+ ⊢ Γ ⇒ ∆,
then there is aAPH+ derivation ofΓ ⇒ ∆ which contains only positive formulas.

Reinhard Kahle and Isabel Oitavem 53

5.2 Realizability

Definition 18. Let ρ ∈W andφ a positive formula. Thenρ ⊲ φ is inductively defined as follows:6

ρ ⊲ W(t) if M (λη) |= t = ρ,
ρ ⊲ (t1 = t2) if ρ = ε andM (λη) |= t1 = t2,

ρ ⊲ (φ ∧ψ) if ρ = 〈ρ0,ρ1〉 andρ0 ⊲ φ andρ1 ⊲ ψ ,

ρ ⊲ (φ ∨ψ) if ρ = 〈i,ρ0〉 and either i= 0 andρ0 ⊲ φ or i = 1 andρ0 ⊲ ψ ,

ρ ⊲ (∀x.φ(x)) if ρ ⊲ φ(u) for a fresh variable u,

ρ ⊲ (∃x.φ(x)) if ρ ⊲ φ(t) for some term t.

ρ realizes a sequence∆ of n formulasφ1, . . . ,φn, if ρ = 〈i2,ρ0〉, 1≤ i ≤ n, i2 the dyadic representation
of the natural numberi, andρ0 ⊲ φi .

To improve readability, we use the following abbreviationsregarding our low-level pairing in the
context of realizability: When weρ realizes a conjunctionφ ∧ψ , left(ρ) for the(ρ)0, i.e., the realizer of
φ , and, analogouslyright(ρ) for the realizer(ρ)1 of ψ . Whenρ realizes a sequenceφ1, . . . ,φn, we write
no(ρ) for (ρ)0, i.e., the index of the realized formula, andsel(ρ) for (ρ)1, the realizer of the selected
formula.

Theorem 19 (Realizability forAPH+, cf. [Str03, Theorem 15]). Let Γ ⇒ ∆ be a sequent of positive
formulas withΓ = φ1, . . . ,φn and assume thatAPH+ ⊢∗ Γ[~u] ⇒ ∆[~u]. Then there exists a function F:
W

n →W in FPH such that for all terms~s and allρ1, . . . ,ρn ∈W:

ρ1 ⊲ φ1[~s], . . . ,ρn ⊲ φn[~s] =⇒ F(ρ1, . . . ,ρn) ⊲ ∆[~s].

The proof runs by induction on the length of a quasi cut-free derivation. We have only to check the
case of our monotone induction rule, as all other cases are like in [Str03].

By induction hypothesis, we get for the three premises:

Γ,W(u)⇒W(t u),∆ (1)

Γ ⇒∃n.W(n)∧φ(ε ,n),∆ (2)

Γ,W(a),W(b),φ(a,b) ⇒∃m� b.φ(sℓa,m),∆ (3)

that there are functionsT, G andH in FPH such that for all~ρ ,σ ,τ ,υ :

~ρ ⊲ Γ[~s] ⇒ T(σ ,~ρ) ⊲ W(t[~s](σ)),∆[~s]
~ρ ⊲ Γ[~s] ⇒ G(~ρ) ⊲ ∃n.W(n)∧φ(ε ,n)[~s],∆[~s] (4)

~ρ ⊲ Γ[~s],υ ⊲ φ(σ ,τ)[~s] ⇒ H̃(σ ,~ρ,τ ,υ) ⊲ ∃m� τ .φ(sℓ σ ,m)[~s],∆[~s] (5)

Now, we need a functionF in FPH, such that

~ρ ⊲ Γ[~s] ⇒ F(σ ,~ρ) ⊲ ∃n.W(n)∧φ(σ ,n)[~s],∆[~s] (6)

We set

H(σ ,~ρ,ω) = 〈1,〈left(sel(H̃(σ ,~ρ , left(ω), right(ω)))),

right(right(sel(H̃(σ ,~ρ , left(ω), right(ω)))))〉〉.

6Here〈·, ·〉 is a low-level pairing function on binary words, with its projections(·)0 and(·)1.

54 An applicative theory forFPH

This definition looks quite involved, its idea is, however, straightforward: when, according to (5),̃H
will realize a formula of the form∃m� τ .φ(sℓ σ ,m)[~s], H is supposed to realize∃m.W(m)∧φ(sℓσ ,m)[~s].
Thus we have to “cut out” the second conjunctm� τ under the existential quantifier (W(m) is the first
conjunct which is not visible in the abbreviation∃m� τ).

Before defining the functionF which should realize the conclusion of our rule, we define an auxiliary
function F ′ which returns a pair, having the intended value ofF as its second component. The first
component serves only to guarantee the monotonicity.

So,F ′(σ ,~ρ ,τ) is defined by monotone recursion as:

F ′(ε ,~ρ) = 〈ε ,G(~ρ)〉,

F ′(sℓ σ ,~ρ) =































F ′(σ ,~ρ) if no(right(F ′(σ ,~ρ))) 6= 1

(F will realize one of the∆s),

〈F ′(σ ,~ρ),T(σ ,~ρ)〉 if no(right(F ′(σ ,~ρ))) = 1 andno(T(σ ,~ρ)) 6= 1

(T realizes one of the∆s),

〈ε ,H(σ ,~ρ,sel(right(F ′(σ ,~ρ))))〉 otherwise.

With this function,F(σ ,~ρ) is defined asright(F ′(σ ,~ρ)).
To check (6) we can use a straightforward (meta-)induction on σ :
σ = ε : Given~ρ ⊲ Γ[~s], in this case,F(ε ,~ρ) = G(~ρ) ⊲ ∃n.W(n)∧φ(ε ,n)[~s],∆[~s] by (4).
sℓ σ : In the first and second case, we know that one of the side formulas ∆[~s] is realized, and, of

course,F(sℓ σ ,~ρ) realizes one of these side formulas, too. In the third case, we have to show that

H(σ ,~ρ,sel(F(σ ,~ρ))) ⊲ ∃n.W(n)∧φ(sℓ σ ,n)[~s],∆[~s].

We know thatno(F(σ ,~ρ)) = 1, thus, using the induction hypothesis, we know that the first formula
of the sequence is realized, i.e.,

sel(F(σ ,~ρ)) ⊲ ∃n.W(n)∧φ(σ ,n)[~s].

That means,left(sel(F(σ),~ρ)) = τ for a τ with right(sel(F(σ),~ρ)) ⊲ φ(σ ,τ)[~s]. By definition of
H(σ ,~ρ,sel(F(σ ,~ρ))) is H̃(σ ,~ρ , left(sel(F(σ ,~ρ))), right(sel(F(σ ,~ρ)))). Lettingτ be as above the term
left(sel(F(σ),~ρ)), andυ := right(sel(F(σ ,~ρ))), we get from (5) that

H(σ ,~ρ,sel(F(σ ,~ρ)))m=

H̃(σ ,~ρ , left(sel(F(σ ,~ρ))), right(sel(F(σ ,~ρ)))) ⊲ ∃m� left(sel(F(σ ,~ρ))).φ(sℓ σ ,m)[~s],∆[~s].

The remaining coding serves to get rid of the redundant monotonicity condition.
It remains to show thatF is in FPH. For it, we only need to check that the step functionF ′ is of the

form h|t , with h andt in [I ;C,BRN,MBPR], and monotone.
That the step function is bounded follows essentially as in the proof of [Str03, Theorem 15] with the

fact that the formulaφ(y,n) has the shapen≤ t y∧ψ(t,y,n).
Monotonicity: as in the first and second case, the function stays constant, we only have to check

that the value is greater or equal (in the sense of our monotonicity relation�) as the recursive argument
F ′(σ ,~ρ). This is trivial in the first case (where it is equal), and follows in the second case from the fact
thatF ′(σ ,~ρ) is coded in the first argument of the pair. In the third case, wehave to show that, for allσ ,
F ′(σ ,~ρ)� 〈ε ,H(σ ,~ρ,sel(right(F ′(σ ,~ρ))))〉. From the case distinction, we know, thatright(F ′(σ ,~ρ)) =

Reinhard Kahle and Isabel Oitavem 55

〈1,sel(right(F ′(σ ,~ρ)))〉, andsel(right(F ′(σ ,~ρ))) ⊲ ∃n.W(n)∧φ(σ ,n)[~s], i.e.,sel(right(F ′(σ ,~ρ))) is of
the form〈ω0,ω1〉 with ω1 ⊲ φ(σ ,ω0)[~s]. On the other hand,

H(σ ,~ρ,sel(right(F ′(σ ,~ρ))))
= 〈1,〈left(sel(H̃(σ ,~ρ , left(sel(right(F ′(σ ,~ρ)))), right(right(sel(right(F ′(σ ,~ρ)))))))),

right(right(sel(H̃(σ ,~ρ , left(sel(right(F ′(σ ,~ρ)))), right(sel(right(F ′(σ ,~ρ))))))))〉〉
= 〈1,〈left(sel(H̃(σ ,~ρ ,ω0,ω1))), right(right(sel(H̃(σ ,~ρ ,ω0,ω1))))〉〉.

According to (5) and the condition of the case distinction wehave

sel(H̃(σ ,~ρ ,ω0,ω1)) ⊲ ∃m� ω0.φ(sℓ σ ,m)[~s]

or, more detailed,

sel(H̃(σ ,~ρ ,ω0,ω1)) ⊲ ∃m.W(m)∧m� ω0∧φ(sℓ σ ,m)[~s].

From the second conjunct we can conclude,ω0 � left(sel(H̃(σ ,~ρ,ω0,ω1))). It remains to show thatω1 �
right(right(sel(H̃(σ ,~ρ ,ω0,ω1)))). We haveω1 ⊲ φ(σ ,ω0)[~s] andright(right(sel(H̃(σ ,~ρ ,ω0,ω1)))) ⊲

φ(sℓ σ , left(sel(H̃(σ ,~ρ ,ω0,ω1))))[~s]. Now, it is important thatφ is a positive,W-free formulawithout
disjunction. For these class of formulas, the realizers do not depend on the terms occurring in them (as
long as they are realizable, of course). Thus,ω1 andright(right(sel(H̃(σ ,~ρ ,ω0,ω1)))) are equal. Now,
the monotonicity follows from the properties we have for themonotonicity relation together with the
pairing (see Remark 13).

Remark 20. The proof of the monotonicity property of the step function depends on our restriction
to disjunction-free formulas in the monotone induction scheme. In fact, if we allow disjunctions, the
monotonicity is not any longer guaranteed, as, depending onthe terms, different disjuncts could be
realized and the value of the realizers may differ. In fact, disjunction has a “non-monotonic” flavor.
However, it is not clear whether one can make any use of disjunction to enlarge the class of provably
total functions. So, we pose as a question:

Question 21. What is the class of provably total functions ofAPH if the monotone induction scheme
allows disjunctions in the formulaφ(y,n)?

The final result follows now as a corollary:

Corollary 22 (cf. [Str03, Corollary 16]). Let t be a closed term and assume that

APH+ ⊢W(u1)∧ ·· ·∧W(un)⇒W(t u1 . . . un),

for distinct variables u1, . . . ,un. Then there exists a function f: Wn →W in FPH such that we have for
all words w1, . . . ,wn in W,

M (λη) |= t w1 . . .wn = F(w1, . . . ,wn).

References

[BALO1x] Amir M. Ben-Amram, Bruno Loff, and Isabel Oitavem.Monotonicity constraints in characterizations
of pspace.Journal of Logic and Computation, 201x. to appear.

[BC92] S. Bellantoni and S. Cook. A new recursion-theoreticcharacterization of the poly-time functions.
Computational Complexity, 2:97–110, 1992.

56 An applicative theory forFPH

[Bee85] Michael Beeson.Foundations of Constructive Mathematics. Ergebnisse der Mathematik und ihrer
Grenzgebiete; 3.Folge, Band 6. Springer, 1985.

[Can02] Andrea Cantini. Polytime, combinatory logic and positive safe induction.Archive for Mathematical
Logic, 41(2):169–189, 2002.

[Clo99] Peter Clote. Computational models and function algebras. In E. Griffor, editor,Handbook of Com-
putability Theory, pages 589–681. Elsevier, 1999.

[Cob65] A. Cobham. The intrinsic computational difficulty of functions. InLogic, Methodology, and Philsophy
of Science II, pages 24–30. North-Holland, 1965.

[Fef75] Solomon Feferman. A language and axioms for explicit mathematics. In J. Crossley, editor,Algebra
and Logic, volume 450 ofLecture Notes in Mathematics, pages 87–139. Springer, 1975.

[Fef79] Solomon Feferman. Constructive theories of functions and classes. In M. Boffa, D. van Dalen, and
K. McAloon, editors,Logic Colloquium 78, pages 159–224. North–Holland, 1979.

[JKS99] Gerhard Jäger, Reinhard Kahle, and Thomas Strahm.On applicative theories. In A. Cantini, E. Casari,
and P. Minari, editors,Logic and Foundation of Mathematics, pages 88–92. Kluwer, 1999.

[Kah07] Reinhard Kahle. The applicative realm, volume 40 ofTextos de Mateḿatica. Departamento de
Matemática, Universidade de Coimbra, 2007. Habilitationsschrift, Fakultät für Informations- und
Kommunikationswissenschaften, Universität Tübingen.

[Oit97] Isabel Oitavem. New recursive characterizations of the elementary functions and the functions
computable in polynomial space.Revista Mateḿatica de la Universidad Complutense de Madrid,
10(1):109–125, 1997.

[Oit01] Isabel Oitavem. Implicit characterizations ofPspace. In R. Kahle, P. Schroeder-Heister, and R. Stärk,
editors,Proof Theory in Computer Science, volume 2183 ofLecture Notes in Computer Science, pages
170–190. Springer, 2001.

[Sch06] Helmut Schwichtenberg. An arithmetic for polynomial-time computation. Theoretical Computer
Science, 357(1):202–214, 2006.

[Str97] Thomas Strahm. Polynomial time operations in explicit mathematics.Journal of Symbolic Logic,
62(2):575–594, 1997.

[Str03] Thomas Strahm. Theories with self-application andcomputational complexity.Information and Com-
putation, 185:263–297, 2003.

[Tho71] D. Thompson. Subrecursion: Machine-independent notions of computability in restricted time and
storage.Mathematical Systems Theory, 6(1):3–15, 1971.

	1 Introduction
	2 Function algebras for FPH
	2.1 Predicative approach
	2.2 Bounded approach

	3 The theory APH
	4 The lower bound
	5 The upper bound
	5.1 Partial cut elimination
	5.2 Realizability

