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In this paper we introduce an applicative theory which cbiatizes the polynomial hierarchy of
time.

1 Introduction

In this paper we define an applicative theory whose provaiisl functions are those which belong to
the polynomial hierarchy of time.

Considering theories which characterize classes of ccatipatl complexity, there are three differ-
ent approaches: in one, the functions which can be defindiinatie theory are “automatically” within
a certain complexity class. In such an account, the syntaxdibe restricted to guarantee that one stays
in the appropriate class. This results, in general, in tloblpm that certain definitions of functions do
not work any longer, even if the function is in the complexitsiss under consideration. In a second ac-
count, the underlying logic is restrictddn the third account, one does not restrict the syntax, atigw
in general, to write down “function terms” for arbitrary (tial recursive) functions, nor the logic, but
only for those function terms which belong to the complexityss under consideration, one qanve
that they have a certain characteristic property, usugdey,property that they are “provably total” (see
Definition[14 below). While the function terms, accordinghie underlying syntactical framework, may
have a straightforward computational character, i.e) @asrms, the logic which is used to prove the
characteristic property may well ls¢assical

Here, we follow the third account, usirggpplicative theoriess underlying framework.

Applicative theories are the first-order part Feferman&teyn of explicit mathematics [Fefii5, Fef79].
They provide a very handy framework to formalize theoriedifferent strength, including to charac-
terize classes of computational complexity. A first chagazation of polynomial time operations in
applicative theories was given by Strahm([in [Str97]. A umifcapproach to varies complexity classes,
including FPrime, FPspPACE FPTIME-FLINSPACE, and FUNSPACE was given by the same author in
his Habilitationsschrift, published in [Str03]. These &werizations are based on bounded schemes in
the vein of Cobhanm [Cob65] (see also [Cl099]). Cantini [CAnfave, at the same time, a characteri-
zation of FAIME in an applicative framework following the approach of Betlani and Cook[[BC92]
which separates the input positions of functions in normadl safe.
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On the base of a characterization of the functions in therfeohjal Hierarchy which uses a mono-
tonicity condition, given in[[BALO1Xk], we present here arpépative theory forlFPH. Given a function
algebra, the main objective of defining a correspondingrhés) of course, to introduce an adequate
induction scheme which allows to prove properties for thecfions under consideration. In sectldn 2
we rewrite the input-sorted characterizatiorF&H given in [BALO1X] as a non-sorted characterization,
in Cobham style, by introducing bounds in the recursion sw®e The next sections are concerned with
the main goal of this paper: to define an induction schemewiaikes care of the monotonicity condi-
tion. While the proof of the lower bound follows from a (mongl@ss) straightforward embedding of the
function algebra described in sectidn 2, the upper boundrised out by an adaptation of the proof(s)
given by Strahm in [Str03].

Note, that Strahm also treats the polynomial hierarchy 0, but in a quite different way which
involves a special type two functional.

Notation. We useW to denote the word algebra generatedslfgource), andg andS; (successors).
W is usually interpreted over the set of binary wokds1}*. Givenx,y € W, |x| is the length ofx
andx|y denotes the word corresponding to the fig$thits of x. X' denotes the numeric successomxpf
and it defined according to the equatiaris= S(¢), (X)) = Si(x) and(S1(x))’ = S(X). The letters
X,y,z,W,... denote usually variables, whilé g,h,s,r,... denote function symbolsX and f denote,
respectively, a sequence of variables and functions offpeoariate arity.

2 Function algebras forFPH

In this section we work with two function algebras. One folated in a non-sorted context, and the
other formulated in a two-input-sorted context followingtation introduced by Bellantoni and Cook in
[BC92]. In the sorted context, function arguments have terdssnormal andsafe We write them by
this order, separated by a semicolditx;y).

PH, the polynomial hierarchy of time, is usually defined #&; or |J; A with 9 = Ag = P and, for
i >0, 21 =NP(%) andAi;1 = P(Z;j). The corresponding function classes ate= FPTIME (4;) =
FPTIME(Zi_1), fori > 1, andFPH = | J;0; = FPTIME(PH).

Consider the following partial order ov&V, using< as the natural one of0,1}.
Definition 1. For w,v € W, we write w=< v if |w| < |v|, or |w| = |v| andVi.w; <v;. We write w=< Vv if
w =V but w# v.
Definition 2. 1. Afunction h is calleanonotoneif, for all z e W, z< h(X,z).

2. A two-sorted function h, with at least one safe argumentailed monotoneif, for all z ¢ W,

z=<h(xV,2).

Definition 3. 1. Given a function h, itmonotone sectiois the function

hM(%,2) = h(X,z) ifz=<h(X 2),
’ z otherwise

2. Given atwo-sorted function h, with at least one safe aguiritsmonotone sectiors the function

h(Xy,2) ifz=<h(Xy,2),
z otherwise

h™(X;¥,2) = {

Clearly, monotone sections are always monotone functions.
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2.1 Predicative approach

Consider the clasg®; PC, PRN, PPR] of two-input-sorted functions.
A is the set of basic functions defined as follows:

1. ¢ (a zero-ary function);
2. qu’”(xl,...,xk;xk+1,...,xk+n) =X, foreach 1< i < k+n;
3. S(x)=xi,i €{0,1};
i if
4. S(Z;X) _ {XI | |X| < |Z| {0 1}

X other\lee

5. P(;e)=¢, P(; XI)—X i € {0,1};

6. p(;e) =€, p(;X) =

7. Q(€,Y,20,21) =Y, Q(;xi,y,Zo,zl) =z,i€{0,1};
8. x(x,y;) = X,

PC, PRN and PPR are the following operators:
e Predicative composition: Givemr,3, their predicative compositioh = PC(g,T,3) is defined by

f(XY) =9(F(X;);S(XY)).

e Predicative recursion on notation: Givgrhg, hy, the predicative recursion on notation scheme
defines a functiorf = PRN(g,hp,h;) by

f(e,Xy) =09(Xy),
f(zi,Xy) =h(z XY, f(z%32), ic{0,1}

e Predicative primitive recursion: Givapandh, the predicative primitive recursion scheme defines
a functionf = PPR(g,h) by

f(e,xy) =a(xy),
f(Z,%y)=h(zXy, f(zX2)).

Proposition 4 ([BC92] and [Qit97]) e [#;PC,PRN] = FPtime
e [#;,PC,PRN,PPR] = FPspace

Definition 5. Given g and h, th@redicative monotone primitive recursion sche@PR is defined by
MPPR(g,h) = PPR(g,h™).

Proposition 6 (BALO1X]). [%; PC,PRN,MPPR] = FPH.
Remark 7. For all f € [%; PC, PRN, PPR]:
1. there exists a [ [#; PC, PRN, PPR] such thatvX,y.F (X,y;) = f(X;y);
2. there exists a polynomiak cpuch thatvX y.| f (X; )| < max{as (|X|),max |yi|}.
This remark holds also {f%; PC, PRN, PPR] is replaced by %; PC, PRN, MPPR).
See|[[Oit97] for details.
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2.2 Bounded approach

Consider the class?; C, BRN, BPR] where:
e .7 is the set of initial functions:
1. ¢,
S(x)=xi, ie€{0,1},
(X1, %) =X}, 1< j<n,
Q(e.y.20,z1) =Y, Q(Xi.y, 0,21) =2z, 1€{0,1},
X (X, y) — X<yl
e C, BRN and BPR are the following operators:
— Composition: Givery andh, their compositionf = C(g, h) is given by f (%) = g(h()),
— Bounded recursion on notation: Givegnhg, h;, andt, the bounded recursion on notation
f = BRN(g,ho, hy,t) is given by:

fe.%) = 9i¥)
f(yl,X) = hi(yaxaf(%x))‘t(yﬂ)? |€{071}

— Bounded primitive recursion: Giveg, h, andt, the bounded primitive recursiofi =
BPR(g,h,t) is given by

a s wnN

f(e.x) = g¥)
f(y,%) = hy,X (%) ks
Proposition 8. e [.#; C,BRN] = FPtime
e [7;C,BRN,BPR] = FPspace
These are well-known results, essentially due to CobhanbEpand Thompsor [Tho71], here
formulated oveiV. Seel[Oit9¥] or[[Qit01] for a reference.

PR is the usual operator for primitive recursion, i.e5= PR(g,h) means thaf is defined by primi-
tive recursion, withg as base function arfuas step function.

Definition 9. Given gh,t, themonotone bounded primitive recursion schamdefined by

Remark 10. Given a functionty,X) in [.#; C, BRN, MBPR], we may define within the same class a func-
tion t*, which is non-decreasing in the first argument, i.e., fpyy, we havelt™ (y,X)| < [tT(y2,X)],
such that for all yX, t(y,X) <t*(y,X). For instance:

t™(e,%) :=t(g,X),
R {EW) i LyR)] < Y9,

(y,X) otherwise

In fact, if t is itself non-decreasing in the first argumehen t* is equal to t.
Now, we get that

MBPR(gv hvt) = PR(Q»(hh)m) = BPR(gv(h|t)m>t+)'
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Remark 11. 1. If hit € [.; C,BRN,MBPR] (or [%; PC,PRN, MPPR]), then we have also|he
[-#; C,BRN, MBPR] (or [%; PC, PRN, MPPR)], respectively).

2. Ifhe [.7;C,BRN, MBPR] (or [%; PC,PRN, MPPR]), then we have'he [.7; C,BRN, MBPR)
(or [#; PC,PRN,MPPR], respectively).
Moreover, the function definitions of;land H" do not make any extra use of ttMBPR (or MPPR
respectively) scheme (relatively to the definitions of htand

Define by bounded recursion on notatiB(e) = € andP(xi) = x|x andD(g,x) = x andD(yi,Xx) =
P(X)|x. Thenx|y = D(D(y,x),x). This justifies item (i) of the remark above. Item (2) is an iobg
consequence of being decidable in P. The case[&#; PC, PRN, MPPR)] is similar.

Theorem 12. [.#; C, BRN, MBPR] = FPH.

Proof. We prove that

1. for all f € [.#; C,BRN, MBPR)] there exists & € [%; PC,PRN,MPPR] such thatvX.f(X) =
F(X);

2. forallF € [#; PC,PRN,MPPR)] there exists & € [.7; C, BRN, MBPR)] such that'X y.F (X;y) =
f(%,9).

This shows tha{.#; C, BRN, MBPR] and [%#; PC,PRN,MPPR] can be identified. Thus, the present
statement is a consequence of Proposl[tion 6.

(1) is proven by induction on the complexity of the functiogfiditions. The proof is analogous to
the proof of Theorem 3.2 in [Oit97, p. 121]. It uses remark 11.

The proof of (2) is straightforward, by induction on the cdexity of the function definition of
F € [%;PC,PRN, MPPR). It uses remarkl7(2). Obviously, th# functions (4)—(6) are defined using
bounded recursion on notation. O

3 The theory APH

The applicative theorAPH is based on the basic theoByof operations and words, as introduced by
Strahm in[[StrOBg 3.1], with slight modifications indicated below. In partiay our application is total,
while Strahm works in a partial setting.

We formulateB in a standard first order language, wittdividual variables xy,z,..., individual
constants k,s (combinators);p, pg, p; (pairing and projection)¢y (case distinction)g (empty word);
so,s1 (binary successorshyy (binary predecessork,,p, (lexicographic successor and predecessor);
cc (initial subword relation);, x (word concatenation and word multiplication). There is bireary
function symbol- for term application, which, however, is usually written joxtaposition. We have
only one unary relation symbaV (binary words), and one binary relation symbokequality). Terms
(r,s,t,...) are build from variables and constants by term application

We use the usual abbreviations of the framework of appliedtieories, which include, in particular,
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the following ones:

0:=5p¢,

1l:=s;¢,
sCti=ccst=0,
s<t:=IlwsC Iwt,
Skl 1= xSt
sxt:=xst

As we will definelyt by 1x t, s<t stands actually for ¥ sC 1 x tB Forwe W, wis the corresponding
applicative term.

Formulasare usual first-order formulas, build from the atomic forasllV(t) andt = s by use of
negation {), conjunction {\), disjunction {/), implication (), and universalYx) and existential x)
guantification. As abbreviation we use

Vx e W.@:=VXW(x) — o,
Ixe W.@:=IXW(X)A @,
Ix<t.p:=Ixe WXtAQ,
t:W—W:=v¥xe WW(tx),
t: W2 — W :=Vxe W.vy € W.W(txy).

Note that Strahm formulate3 within the logic of partial terms which includes an extra existence
predicate. However, for the present purpose, partialibptsessential and hence we stick to total applica-
tion. Thus, our logic is standardlassicalfirst order logic. For more background on applicative thesri
see, for instance, [Bee85], [JKS99], or [Kah07].

The non-logical axioms dB are the following oneld:

I. Combinatory algebra and pairing

(1) kxy=x,
(2) sxyz=xz(y2),
(3) Po(pxy) =XApi(pxy) =Y.

II. Definition by cases onv
(4) cwesru=s,
(5) W(t) = cw (sot)sru=r,
(6) W(t) = cw (sit)sru=u,

lll. Closure, binary successors, and predecessors
(7) W(e) ANYXW(X) = W(spX) AW(s1X),

2Note that, inAPH the relation< compares the lengths of the terms, while we used the sameosyetore, outsidé\PH,
to compare the terms themselves.

3In [Sfr03], Strahm axiomatizes also the tally length of bjnaords, lyy, since his theor8 does not include word concate-
nation and word multiplication from the very beginning. hetpresence of word multiplication the tally length can biéngel
by lettinglyyt = 1 xt.

40ur case distinction checks the last bit of a word, while I8traises a case distinction which compares words as a whole.
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(8) soX# s XASpXF£ ENSIXEE,
9 pw W—=WApwe=c¢,

(10) W(X) — pw (S0X) = XA pw (s1X) =X,
(11) W(X) AX# € = so(pwX) = XVs1 (pwX) = X

IV. Lexicographic successor and predecessor
(12) sp: W —>WAs;e=0,
(13) W(X) — s¢(soX) = s1XAs¢(s1X) = sp (s¢X),
(24) p,: W - WAsp e =€,
(15) W(x) = py (s¢X) =X,
(16) W(X) AX# € = s¢(pyX) = X

V. Initial subword relation
(17) W(X) AW(Y) = cc xy=0Vccxy=1,
(18) W(x) = (xC e <> x=¢),
(19) WX) AW(y) Ay # € = (XS Y > XS pwYVX=Y),
(20) W(X) AW(y) AW(2) AXCYyAyCz—xCz

VI. Word concatenation
(21) % : W2 > W,
(22) W(X) — xx € =X,
(23) W(X) AW(y) — X (soy) = so (X*Y) AXx(s1Y) = 51 (X*Y).
VII. Word multiplication

(24) x :W? - W,
(25) W(X) = xx g =¢,
(26) W(X) AW(Y) = XX spY = (XX Y)*XAXX S Y= (XXY)*X.

Induction on notation.
fiW—=WA@E)A(VXeW.@(X) — @(soX) A P(s1 X)) — VX e W.@(X),

where@(x) is of the form3dy < fx.y(f,x,y) for ¢(f,x,y) apositive andW-free formulal3
This induction is called=8,-ly) in [Str03].

Monotonicity relation. It is easy to observe that the monotonicity relatigris polytime decidable.
As the theoryB + (Z\t}v-lw) allow to represent all polytime functions (as provably kdiactions in the
sense of Definitiof 14 below), we know that there is tegmwith

1. B+ (5-lw) Fty, WiW; = X< (W1, W2), for all wi,w; € W, and
2. B+ (Z0-lw) F X YW (X) AW(Y) = t,_Xy= 0Vt xy=1.

In the following, we will usec- as abbreviation foAx,y.t,_ yx Moreover,s =t is used as abbrevia-
tion of c- st= 0. We also introduce quantifieix >~ t.¢ as abbreviation foEx.W(x) AX = t A .

Note that 2. above means that s total as function fronw? — W. But, of coursecs is not total as
a binary relation, as we have, for instance, 010 and 10/ 01.

5positive formulas are defined, as usual, as negation andtatiph free formulas.
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Remark 13. For u and v inW, we can show if\PH:
1. u<v—u=<1xv,
2. u=Xv—=u<v.

And we can define a low-level pairing functién-) and projections(-)p and ()1 on W, which are, at
most, inNFPTIME, such thatAPH proves for the representing terms:

3. u={u,v) and v= (u,v),
4. (Uu)p 2uand(u); < u.

Monotone induction (25,-MPI).

t:W—WA(GxeW.p(e,x) A (Vy e W.¥xe W.@(y,X) — Fz= X.@(s¢y,2)) —
Yy e W.3x e W.g(y, Xx),

where(y,x) is of the formx <ty A g(t,y,x) for g(t,y,x) apositive andW-freeformulanot containing
disjunctions For the reason of the exclusion of disjunctions, see ref@@tkelow.
EssentiallyAPH is equal to Strahm’s theolyT plus the monotone induction scher(rﬁ{}v—l\/IPI).

4 The lower bound

Definition 14. A function F: W" — W is called provably total inAPH, if there exists a closed term t
such that

1. APHEteWy ... W, = F(wy,...,wy) for all wy,...,w, € W, and

2. APHFte: W' — W.

Using the result of [Str03; 4] about the provably total function in Strahm'’s theory esponding to
FPTIME, it remains to show that functions defined by the monotonetied primitive recursion scheme

MBPR(g,h,t) are provably total irAPH.
So, let us assume thgt h, andt are provably total iPAPH, and f be defined a®//BPR(g,h,t) =

PR(g, (hlt)™).

Now, in APH, let
f(e,2 =9(2)
hit(v.2, f(y,2)) if f(y,2) <hlt(y.Z, f(y,Z
F(syy,2) = 4 MRORBT0:Z) i 1(42) < hlk(,2, 1 (5,2))
f(y,2) otherwise

and we show by monotone induction thgte W.3x € W.x <t;(y,2) A f(y,2) = x, where

t*(y,Z) otherwise.

Induction base:As f(g,2) = g(Z), andg is provably total inAPH, we have3dx € W.x < g(Z) A
f(e,2) =x

Induction step: We have to show thaty € W.vx € W.x < ti(y,2) A f(y,2) = X — Ixg = X
X1 <ti(sey,2) A f(seY,2) = 1.
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By definition,

f(s1y.2) = hie(y,2, f(y,2)) if f(y,2) < hl(Y,2 f(y,2)),
’ f(y,2) otherwise

In the first case, the assertion follows immediately fromdbedition f(y,2) < h|(y,Z, f(y,2)).
In the second case, the assertion follows immediately ftptemise (choosing; := X).
Thus, we can conclude by monotone induction that W.3x € W.x <t;(y,Z) A f(spy,2) = x.
Thus, we get the following result:

Lemma 15. The provably total functions &PH includeFPH.

5 The upper bound

The proof of the upper bound follows quite closely the prddhe upper bound of Strahm for his theory
PT in [Str03,§ 6]. For it, one reformulates the theory first in Gentzen'ssleal sequence calculus, and
proves partial cut elimination, such that the remaining eueé restricted to positive formulas. In a second
step, one realizes positive derivations with realizersftbe appropriate complexity class. In this step,
one uses the open term mod# (A n) of the applicative ground structure, which is based on thelus
An reduction of the untyped -calculus. In factyy allows us to treat extensionality of operations, i.e.,
we may add the following axiom tAPH:

(Ext) Vf,0.(Vx.fx=9gx) — f=g.
For the treatment oAPH, we will follow Strahm’s proof forPT, and check only, how to take care
of our additional monotone induction scheii®, -MPI).
Let APHT the Gentzen-style sequent calculus reformulatiod\BH such that all main formulas

of non-logical axioms and rules are positive. In this calsylthe monotone inductio(E5,-MPI) is
rewritten as the following rule:

M, W(u) = W(tu),A
M= 3InW(n)A@(e,n),A
r,W(a),W(b),p(a,b) = 3Im> b.g(spa,m),A
r,W(s) = In.W(n) A @(s,n),A ’

where@(s,n) is of the formn <tsA g(t,s n) for Y(t,s,n) a positive andV-free formula which does
not contain disjunctions.

We write APHT T = A if the sequenf = A is derivable inAPH™, andAPH" . T = Alifit has a
proof where all cut formulas aggositive

5.1 Partial cut elimination
Theorem 16(Partial cut elimination, cf[ [Str03, Theorem 12For all sequents” = A, APHT T = A
impliesAPHT K. T = A.

We only have to check that the main formulas of our inductides are positive, but that is the case
since, in particulardm = b.¢(s,a,m) is positive.

Corollary 17 (cf. [Str03, Corollary 13]) If I = A is a sequent of positive formulas witiPH™ =T = A,
then there is @APH™ derivation ofl = A which contains only positive formulas.
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5.2 Realizability
Definition 18. Letp € W and ¢ a positive formula. Thep > @ is inductively defined as folloviis:

po Wt if  4(An)t=p,

p > (1=t if p=cand.Z(An)Eti=ty,
> (@AY) if  p=(po,p1)andpo > @andp; > Y,

> (V) if p = (i,po) and eitheri=0andpy > @ori=1landpy > ¢,
)
)

p > (VX.@(X) if p > @(u) for a fresh variable u
p > (Ix.(x) if p > @(t) for some term.t

p realizes a sequenceof nformulase, ..., @, if p = (i2,po0), 1 <i < n, iy the dyadic representation
of the natural number andpg > @.

To improve readability, we use the following abbreviatioegarding our low-level pairing in the
context of realizability: When we realizes a conjunctiop A ¢, left(p) for the (p)o, i.e., the realizer of
@, and, analogouslyight(p) for the realizerp); of Y. Whenp realizes a sequenag, . . ., ¢, we write
no(p) for (p)o, i.e., the index of the realized formula, asd(p) for (p)i1, the realizer of the selected
formula.

Theorem 19 (Realizability for APH™, cf. [Str03, Theorem 15])Let " = A be a sequent of positive
formulas withl’ = ¢,..., @ and assume thaAPH" K, I'[U] = A[0]. Then there exists a function :F
W" — W in FPH such that for all terms and allpy,...,pn € W:

pL>@d,....;n>@l§ = F(p1,...,on) > AfS].

The proof runs by induction on the length of a quasi cut-freevdtion. We have only to check the
case of our monotone induction rule, as all other caseslkaeni[StrO3].
By induction hypothesis, we get for the three premises:

M, W(u) = W(tu),A (1)
= 3In.W(n) A g(g,n),A (2)
r,W(a),W(b),p(a,b) = 3Im> b.¢(spa,m),A (3)

that there are functions, G andH in FPH such that for alp, o, 1, u:

poTls = T f)) W(t[8/(0)),A[8]

o,
prTlg = G({P)

> InW(n) A @(g,n)[s],AfS] 4)
poTE,ue o1 = HOpT )>3m>r¢(sm m)[s],A[s] (5)

Now, we need a functiok in FPH, such that
porg = F(0.p)>nWN)A0,NE.AS ©)

We set

H(o,p,w) = (1, (left(se(H (o, p, left(w), right(w)))),
right(right(selH (o, B, left(w), right(w))))))).

SHere(, ) is a low-level pairing function on binary words, with its jeotions(-)o and(-)1.
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This definition looks quite involved, its idea is, howevéragyhtforward: when, according tol (Bﬁ,
will realize a formula of the formm = 1.¢(sy o,m)[g], H is supposed to realizm.W(m) A ¢(s; o, m)[g].
Thus we have to “cut out” the second conjuntt- T under the existential quantifie¥{(m) is the first
conjunct which is not visible in the abbreviati@m > 7).

Before defining the functioR which should realize the conclusion of our rule, we defineladliary
function F’ which returns a pair, having the intended valueFofs its second component. The first
component serves only to guarantee the monotonicity.

So,F'(o,p, 1) is defined by monotone recursion as:

F'(e.p) = (¢,G(P)),
F'(0,P) it na(right(F'(0,8))) # 1
(F will realize one of the\s),
F'(sc0,p) = (F'(0,5),T(0.p)) it no(right(F'(0,p))) = 1 andno(T (0,8)) # 1

(T realizes one of thAs),
(e,H(o,p,selright(F'(0,p))))) otherwise.

With this function,F (o, p) is defined asight(F'(o,p)).

To check[(6) we can use a straightforward (meta-)inductioo o

o = ¢€: Givenp > I'[g, in this caseF (¢,p) = G(p) > In.W(n) A @(g,n)[3],A[5] by (@).

s¢0: In the first and second case, we know that one of the side fasd\g is realized, and, of
course(sy 0, p) realizes one of these side formulas, too. In the third caséjave to show that

H(o,p,selF(o,p))) > In.W(n) A (s, 0,n)[3],A[S].

We know thatno(F (0,p)) = 1, thus, using the induction hypothesis, we know that theffirsnula
of the sequence is realized, i.e.,

selF(o,p)) > In.W(n) A @(o,n)[3.

—

That means/eft(selF(o),p)) = 1 for a T with right(se(F(0),p)) > ¢(o,T1)[5. By definition of
H(o,p,selF(o,p)))isH(o,p, left(selF (a,p))),right(selF (c,p)))). Letting T be as above the term
left(selF(0),p)), andu := right(selF (o,p))), we get from[(5) that

H(0.B,selF (0.p)))m=
H(o,p, left(selF (a,p))), right(selF (a,p)))) > 3m> left(selF (a,p))).@(s,o,m)[s],A[d.

The remaining coding serves to get rid of the redundant nomicity condition.

It remains to show thef is in FPH. For it, we only need to check that the step functigris of the
form h|, with h andt in [.#; C, BRN, MBPR], and monotone.

That the step function is bounded follows essentially abéngroof of [StrO3, Theorem 15] with the
fact that the formulap(y,n) has the shape <tyA Y (t,y,n).

Monotonicity: as in the first and second case, the functiagsstonstant, we only have to check
that the value is greater or equal (in the sense of our moiuitypnelation <) as the recursive argument
F'(o,p). This is trivial in the first case (where it is equal), anddelk in the second case from the fact
thatF’(o,p) is coded in the first argument of the pair. In the third casehawe to show that, for aly,
F'(0,p) < (g,H(0,p,selright(F'(0,p))))). From the case distinction, we know, thight(F'(o,p)) =
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(1,selright(F'(0,p)))), andselright(F'(c,p))) > In.W(n) A@(o,n)[d], i.e.,selright(F'(c,p))) is of
the form (wy, ) with w; > @(0, wy)[3]. On the other hand,

H(o,p,selright(F'(0,p))))
= (1, (left(selH (o, B, left(sel right(F' (0, B)))), right(right(sel right(F' (a,3)))))))),
right(right(selH (o, B, left(selright(F'(a,)))), right(sel right(F' (a,$))))))))))
= (1, (left(selH (0, B, w, w1))), right(right(se(H (0, B, an, @1)))))).-

According to [5) and the condition of the case distinctionhage

selH(0,B,w,w)) > IM= wy.@(s;o,m)[§

or, more detailed,

selH(0,B,w, @) > IMW(m) Am= ap A @(s; o, m)[g].

From the second conjunct we can concludex left(selH (o, B, o, wy))). It remains to show thab, <
right(right(selH (0,8, wo,w1)))). We havew, > (0, w)[s andright(right(selH(o,p, w, w1)))) >
o(s¢ 0, left(se[H (g, P, wn, w))))[g. Now, it is important thatp is a positive,W-free formulawithout
disjunction For these class of formulas, the realizers do not depenteotetms occurring in them (as
long as they are realizable, of course). Thwsand right(right(selH (o, B, wn, w;)))) are equal. Now,
the monotonicity follows from the properties we have for thenotonicity relation together with the
pairing (see Remafk13).

Remark 20. The proof of the monotonicity property of the step functiepehds on our restriction
to disjunction-free formulas in the monotone inductionesab. In fact, if we allow disjunctions, the
monotonicity is not any longer guaranteed, as, dependinghenterms, different disjuncts could be
realized and the value of the realizers may differ. In fagjwhction has a “hon-monotonic” flavor.
However, it is not clear whether one can make any use of dispmto enlarge the class of provably
total functions. So, we pose as a question:

Question 21. What is the class of provably total functions APH if the monotone induction scheme
allows disjunctions in the formule(y, n)?

The final result follows now as a corollary:
Corollary 22 (cf. [Str03, Corollary 16]) Let t be a closed term and assume that

APHY = W(ug) A--- A W(up) = W(tuy ... Uy),

for distinct variables y, ... ,us. Then there exists a function: W" — W in FPH such that we have for
all words wi,...,w,in W,

AMAN) EtWL.. W, =F(Wy,...,Wy).
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