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Bi-intuitionistic logic is the conservative extension otuitionistic logic with a connective dual to
implication. It is sometimes presented as a symmetric coctbte subsystem of classical logic.

In this paper, we compare three sequent calculi for bi-fithaistic propositional logic: (1) a ba-
sic standard-style sequent calculus that restricts thmipes of implication-right and exclusion-left
inferences to be single-conclusion resp. single-asswmptid is incomplete without the cut rule, (2)
the calculus with nested sequents by Goré et al., where pleterclass of cuts is encapsulated into
special “unnest” rules and (3) a cut-free labelled sequalietitus derived from the Kripke semantics
of the logic. We show that these calculi can be translatexiéath other and discuss the ineliminable
cuts of the standard-style sequent calculus.

1 Introduction

Classicallogic is a logic ofdualities some of which are made evident with the help of its sequdotites
formulations. For example, the duality between conjumctind disjunction is manifest in the traditional
sequent calculus rules for these connectives, or the panfegroving a formulaA, i.e., deriving the
sequent- A, is dual to the process of refutidy i.e., deriving the sequewtt. However, if one considers
implication as a “first-class” connective and wants to re@ualities, its dual connective @xclusion
(or pseudo-difference, or subtraction) should also haviendas status. In classical logic, exclusion is
definable from other connective8=B is equivalent tAA A —B. Classical logic with exclusion in sequent
calculus format has been considered by Curien and HerbetinCaolard [6/ 4], in connection to the
study of dualities in functional computation, e.g. the dyailf values and continuations or the duality of
call-by-value and call-by-name evaluation strategies.

Bi-intuitionistic logic (also known as Heyting-Brouwer logic and subtractogic) results from clas-
sical logic with exclusion by taking the implication to buitionistic and, in order to preserve duality,
making exclusiordual-intuitionistic (hence the wordbi’-intuitionistic). Bi-intuitionistic logic can also
be seen as the union of intuitionistic logic (lacking ex@a$ with dual-intuitionistic logic (lacking im-
plication). The former has the disjunction property while tatter has the dual conjunction property (if
AA B is refutable, eitheA is refutable oB is refutable). In the union, both of these properties art los
yet one cannot prove excluded middle (nor refute contramiidor the dual-intuitionistic weak negation).

Bi-intuitionistic logic first got attention by C. Rauszeérd113,[15], who studied its algebraic and
Kripke semantics, alongside with an Hilbert-style systemd a sequent calculus. A sequent calculus
characterization of the logic is easily obtained by extegdhe multiple-conclusion sequent calculus for
intuitionistic logic a la Dragalin with exclusion rules auo the implication rules. But contrary to what
is suggested, e.g., in [17], cut is not fully eliminable imsthalculus. Neither is cut eliminable in the
sequent calculus of Rauszer [13] (the proof in the papercsriect).
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The lack of cut elimination in a sequent calculus is problégenfar proof search, since the subfor-
mula property is not guaranteed. In order to overcome tlsiseisextended sequent calculi have been
considered. In particular, a calculus of nested sequendgovaposed by Goré, Postniece and Tiu [7] and
a calculus with labelled formulas was proposed by the aatfid].

In the presence of various sequent calculi for bi-intuistio logic, a natural question to ask is how
they relate to each other. In this paper, we give translatimiween the standard-style (=Dragalin-style),
nested and labelled sequent calculi for bi-intuitionigiropositional logic. By analysing such transla-
tions, we are able to identify a complete class of cuts forfdheulation with standard sequents and we
are able to read the proofs resulting from proof search imtsted or labelled sequent calculus back
into the standard-style sequent calculus. Reed and Pfgifibéij have remarked that relating labelled
intuitionistic derivations with standard unlabelled ome%a surprisingly difficult question”.

2 Thesyntax and semantics of Bilnt

We start by defining the syntax and semantics of bi-intuisittm propositional logic Bil nt).
The language oBilnt extends that of intuitionistic propositional logitnf), by one connective,
exclusion, thus théormulasare given by the grammar:

AB:=p|T|L|AAB|AVB|ADB|A<B

wherep ranges over a denumerable sepafpositional variablesvhich give us atoms; the formuka<B
is theexclusionof B from A. We do not take negations as primitive, but in addition toitiitionistic (or
strong) negation, there is also a dual-intuitionistic (@ak) negation. The two negations are definable
by -A:=AD> | andw-A:=T <A

The semantics dBilnt is usually given a la Kripke, although one can also proceeaah fan algebraic
semantics (in terms of Heyting-Brouwer algebras) and thezdurther alternatives. The Kripke seman-
tics is about truth relative to worlds in Kripke structurbattare the same as flont. A Kripke structureis
atripleK = (W, <,1) whereW is a non-empty set whose elements we think ovadds, < is a preorder
(reflexive-transitive binary relation) oW (the accessibility relatioh and | —the interpretation—is an
assignment of sets of propositional variables to the workdsch is monotone w.r.t<, i.e., whenever
w < w, we have (w) C |(w).

Truthin Kripke structures is defined as fomnt, but covers also exclusion, interpreted dually to impli-
cation as possibility in the past:

w = piff pel(w);

w = T always;w = L never;

wE AABIff we=Aandw =B; wE= AVBIff wi=Aorw = B;
e W= ADBIff, foranyw >w,w £ Aorw EB;

e W= A<Biff, for somew <w,w = Aandw }~ B.

A formula is calledvalid if it is true in all worlds of all structures. It is easy to séwt monotonicity
extends from atoms to all formulas thanks to the universdleaistential semantics of implication and
exclusion.

It is important for this paper that instead of general Krigkrictures, one may equivalently work
with Kripke trees These are Kripke structurd8V, <,1) whereW is finite and the preordex arises
as the reflexive-transitive closure of some binary relatiomn W, subject to the condition that any two
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Initial rule and cut (necessary):

r-AA T AFA

T AFAD WP rra oW
Structural rules:
r-a r-a LAAEA r-AAA
I',AI—AweakL FEAA weakR FACA contrL AL contrR
Logical rules:
rea o n  TABHA (EAA THEBA o
r7ra '~ Tr7.a 'R TFTAarBra " r-arsa
] FEA AFA TBHA ~— THABA
rira -+ FELA FAVBED Y FrFAVBA ¥
ASBFAA T.BEA rAFB o
LASBFA - FFASBA -
AFBA  THAA T,BFA<BA
FA<BFA © F-A<BA A

Figure 1: Inference rules dafBil

worldsw, w’ are related by the reflexive-transitive-symmetric closfre; in a unique wayw is reached
from w by exactly one path along> U +).

It is also a basic observation that the Godel translatiombinto the modal logic$4 extends to a
translation into the future-past tense lo#itT4 (cf. [8]). As the semantics dtT4 does not enforce
monotonicity of interpretations, atoms must be translatetluture necessities or past possibilities (these
are always monotone)” = Cp (or #p); T#=T; 1# = 1; (AAB)* = A AB*, (AvB)* = A* v B,
(ADB)* = O(A* > BY); (A<B)* = ¢(A*<B¥).

3 Threesequent calculi for Bilnt

We will now recall three different sequent calculi il nt that we will later compare to each other.

3.1 Standard-style sequent calculus L Bil

A sequent calculus fdBilnt is most easily obtained by extending Dragalin’s sequemiubas forint, as
has been done by Restall [17] and Crolard [4]. (RausZerkddiginal sequent calculus was different.)
In Dragalin’s system, sequents are multiple-conclusiar,the DR rule is constrained. The extension,
which we will now show, imposes a dual constraint on-herule.

The sequentf our calculus (henceforth referred to as the standatd-sigiculusL Bil) are pairs
I = A wherel | A (the antecedenaind succedentare finite multisets of formulas (we omit braces and
denote union by comma as usual). The inference rulésBoff are displayed in Fid.]1.



60 Relating Sequent Calculi for Bi-intuitionistic Propositial Logic

Note thatA is missing in the premise of theR rule and dually in the premise ef. we do not have
the context .

Regarding structural rules, both inBil and the other two sequent calcuN-LBil andL-LBil)
considered in this paper, we have chosen to work with fortimla oriented at root-first proof search,
which means that, as a general guideline, we want to havenfenence rules “as invertible as possi-
ble”. We have weakening and contraction built in to the otiuées to the degree thatBil andL-L Bil
are complete without explicit versions of them. This regsipf course that the two-premise rules are
context-sharing etc. But there are also more specific coesegs. IrLBil, we have duplications of the
implication and exclusion formulas in the premises of tleand<R rules.

LBil is sound and complete for the Kripke semantic8Bdint for the following generalization of
validity from formulas to sequents. A sequént A is taken to be valid if, for any in Kripke structure
(W, <,1) and any worldwv, we have that if all formulas ifi are true inw, then so is some formula i.
This has been proved (for variantsloBil), e.g., by Restall [17] and Monteird![9].

However,L Bil is incomplete without cut, as shown by Pinto and Uustalu 0@@rivate email mes-
sage from T. Uustalu to R. Goré, 13 Sept. 2004, quoted in [B3uffices to consider the obviously valid
sequentpt g,r O ((p=<Qq)Ar). The only possible last inference (other than weakeningcantraction,
which are redundant) in a derivation could be

?
p.rE(p<qg)Ar
pEa,ro>((p<a)Ar)

DR

but the premise is invalid as the succedent fornguteas been lost. With cut, the sequent can be proved
as follows:

hyp —h
hyp hyp p.p<qrip<q 7P |o,|0<q,rHA3;'{O

pHa.p... p,qu7p<q,...{R p,p=<q,r = (p=<q)Ar R
pka,p=q,... p,p<qka,r > ((p<q)Ar) cut

pEa,ro>((p<a)Ar)

Notice that permutation of the cut on the exclusipr q up past theoR inference, for which the cut
formula is a side formula, is not possible. This is one typeuwss that cannot be eliminated; there are
altogether three such types [9]. This situation remindshefriaive standard-style sequent calculus for
S5 where the sequerg - [ p cannot be proved without cut, but can be proved by applyirigccthe
sequentp - OpandOptk Lo p that are provable without cut.

In Sec[b, with the help of the translations proposed in thjzap, we identify a class of cuts complete
for LBil.

3.2 Nested sequent calculus N-LBil

Next we introduce a calculuN-LBil of nested sequents, which is a minor variation of the catculu
LBilnt, of Goré et al. [‘7ﬂ N-LBil is an extension of Bil where the concept of contexts is generalized
so that, alongside formulas, they can also contain nestptesés, manipulated by dedicated additional
inference rules.

1The main difference is that LBilptdoes not build weakening and contraction into other rulesy@do in some cases to
have a direct match with corresponding rules in the otheesys considered.
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Rulesfor nested sequents:

_ToFfoA _FloFlo i
[ (ToFdo)FA e° M- (ToFBo),A 1C°

[ (Fok o) F A [ (Fok Ag),A
CT,ToF Do, A unnestL CT,ToF Do, A unnestR

Figure 2: Inference rules dfl-LBil for manipulating nested sequents; differently fraBil, cut is
redundant

Thesequent®f N-LBil (ranged over by) are defined simultaneously witontext{ranged over by
I",A) by the following grammar:
S = TFA
rA = 0|AT|ST

where contexts, just as InBil, are quotiented down to multisets (so identified up to peatris of the
member formulas/nested sequents). Just as commas indemésand succedents intuitively correspond
to conjunctions and disjunctions, nested turnstiles shbelunderstood as structural-level implications
and exclusion.

The inference rules dfl-L Bil are those of Bil in Fig.[d (including the cut rule and the structural
rules) together with additional inference rules for intioshg and eliminating nested sequents. These
additional rules appear in Figl 2. ThestLandnestRrules are structural versions @f. and DR. The
unnestl/R rules areeliminationrules for exclusions on the left and implications on the tighis fair
to think of them as masqueraded versions of certain rathesifsptypes of cuts (we come to this in
SECBE

Stating soundness and completeness-afBil requires defining what it means for a nested sequent
to be valid. This is achieved via a translation that “flattemssted sequents into standard sequents,
reducing validity of nested sequents to that of standardesgtg. We give a formal definition of this
translation of sequents in Séc.14.1, where we show thatatens of N-LBil can be translated into
LBil. Goré et al.[[V] established soundnessNek Bil wrt. this notion of validity directly, but showed
completeness by an embedding of Rauszer's sequent caltdlus

They also showed cut to be redundant in the strong sensestérge of a cut-eliminating transfor-
mation of derivationd [7]. The example of the previous secis proved irN-L Bil without cut (but with
unnestl) as follows:

h h
prap 7P barap<q jép
pka,p<q
(pFQ),ermneStL (pFQ),rH:ﬁO

(pFq),r=(p<a)Ar
(pFa)Fro((p<a)Ar)
pra,r>((p<a)Ar)

unnestL

2|n[[7], a nested sequent in the antecedent (resp. succederprent sequent (a structural-level exclusion resplidaon)
is writtenl” < A (resp.l' > A).

SFor the sake of simplicity of presentation, we have optedafémrmulation ofunnestl/R rules that does not incorporate
formula contraction. For a version bF-LBil that is complete without theontrL/R rules, theunnestl/R rules must be stated
differently.
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3.3 Labelled sequent calculus L-LBil

The third sequent calculus we consider in this paper is dié&bsequent calcululs-L Bil, a variation on
the calculus L of ours [lﬂ.The design of_-L Bil follows the method of S. Negli [10] for obtaining cut-
free sequent calculi for normal modal logics defined by frameditions of a certain type. Essentially,
L-LBil is a formalization of the first-order theory of the Kripke samtics ofBilnt, using an explicit
device of labels for worlds.

A sequentf L-LBil is atriplel g AwhereGis a label tree anfl andA are labelled contexts. More
precisely, théabel tree G= (N, E) is a directed graph that has its set of noNdgalled labels) nonempty
and finite and is amndirectedtree in the sense that any nodey are in the relatiofE UE~1)* in only
one way, i.e., are connected by a single path of forward aokMmrd arcs. We writéG| for N andxGy
for (x,y) € E. Thelabelled context§” andA are multisets of labelled formulas and these, in their turn,
are pairs<: Awith x a label drawn fromG| andA a formula.

Any label tree can be built (generally in many ways) from ¢nrions(x) for the tree with a single
nodex, (x,y) for the tree with two nodeg,y and one arxGy, andG ¢« G’ for the join of two trees at
X. In the last construction, we require (as a welldefinednesslition) that the tree& and G’ satisfy
|G| N |G| = {x}, which guarantees that the joint graph really is a tree. €mly, any directed graph
built in terms of these constructions is necessarily a tree.

Intuitively, we use label trees to represent Kripke treed arabelled formula is about truth at a
particular world.

The inference rules df -L Bil are presented in Figl 3. Some of them have provisos, that see al
write as rule premises. The conditios|y resp.G Ty mean that there is np such thatzGy resp.
yGz The wellformedness condition of amgy expression occurrence must also be read as a proviso. In
the rulesDR and <L, we have freshness conditions pnNote the presence of the monotonicity rules
intuitively accounting for propagation of truth (resp.di&) to future (resp. past) worlds. Tin@desplit
and nodemergestructural rules are auxiliary and redundant to the degfeexigtence of eliminating
transformations (alongsideeakand contr); we included them here, because they come handy in the
translation of Sed._4l3nodesplitl/R split a node into a pair of nodes connected by an arc, so that no
paths are losthodemerge}R merge two nodes connected by an arc.

A labelled sequenk +g A is valid if, for any Kripke structurgW, <,I) and functionv: |G| — W
such thakGyimpliesv(x) < v(y), we have that, if/(x) = Afor everyx: Ain I, thenv(x) = A for some
x:Ain A. L-LBil is sound and complete wrt. this notion of validity.

L-LBil is complete without cut (as we proved by a semantic argunme[itl]]) and one should also
be able to give a cut-eliminating transformation of deiivas.

Our counterexample to cut eliminationlirBil is proved inL-LBil as follows:

h h
XIPye Fgy) X1Ps - yp X0, Fy) X1, yp
XIPs.- iy X0, X p<Q <R
XIPy... Fxy X1QY:p<(q XIPY:irbuy XiQy:r

AR
XIP,Yir iy XiQY: (p<qg) AT

DR
X:phyyX:g,x:ro((p<g)Ar)

4In fact, L-L Bil lies between the calculi L and*lof [11]]. Similarly to L*, the sequent calculus here is a calculus of finite
Kripke trees rather than general Kripke structures, so \weae in terms of adjaceney rather than the induced accessibility
relation< = —*. Differently from L, there are no reflexivity and transitiyirules, the monotonicity rules propagate truth/falsity
to adjacent labels only (but can, of course, be applied pieltimes), and theoL and<R rules analyse and duplicate the main
formula locally.
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Initial rule and cut (redundant):

63

MNex:AA TX:AFgA

Fx Arcx An WP oA cut
Structural rules:
MN-gA MN-gA
Fx:AFca Weakh  Fr St an WeakR
MXx:AX:AFgA L Mg Xx:AX:AA R
rx:AfFga oM FFex:AA oMY
Glx Tk A Gtx Ik A
CotyCVX 7 odesplitU CYPAEYCo 7 o desplitD
r '_Goeay(y.X)eaxG A r l_G@x(Xsy)@yGO A
M+ A M+ A
Gody (1) ®4G nodemergeD Gox(xy)ByGo nodemergeU
CIX/Y] Feolx/yjaxc AX/Y] CIX/Y] Feacox/y AX/Y]
Monotonicity rules:
xGy IMx:Ay:AtbgA yGx TFgy:AX:AA
Fx:Arga  monotk Frox:Ah  MOnotR
Logical rules:
ke
Mx:TkFcgA MNgx: T,A
MNx:AX:BFgA MN-ex:AA TFegx:BA R
[ X:AABrGA FFox:ArBA )
. _TFed 4
MNx:1lkFcgA MNgx: LA
MNXx:AFcA T,X:BFcA N x:AX:B,A R
FX:AVBroA Frox:AVBA
M X:ADBFgX:AA T ,Xx:BFgA My Abce,xy Y:BA R
FX:ADBrgA FFoXx:ADBA  ~
My AbyxecY:BA Mex:AA T,x:BFgx:A<B,A R
{

Mx:A<BFkgA

Mg Xx:A<B,A

Figure 3: Inference rules df-L Bil



64 Relating Sequent Calculi for Bi-intuitionistic Propositial Logic

Notice the downward information propagation by thenotRinference to an already existing label.

4 Trandations

In this section, we study syntactic embeddings betweerthiiee tcalculi.
We present six translations in all possible directions etiog to the following plan (the sixth trans-
lation we will only sketch).
L Bil

Se?/ = Secl44
ACEIZ\;' -

N-LBil =~ L-LBIil

Sec[4.B

4.1 From N-LBil toLBil and back

As sequents and rules afBil are also sequents and rulesMiL Bil, a derivation inLBil is also a
derivation inN-LBil. Note, however, that a cut inBil is rendered by a cut also M-LBil. This is an
issue and we will reconsider it in section Sec. 5.

For now, we move on to the converse direction.

We define simultaneously two functions on nested contéxty" and|(—)|R that produce formulas.
They are meant to be applied to antecedents and succedagguants. We also introduce two further
functions||(—) |- and||(—)||R, defined in terms off —)|- and|(—)|R, to produce standard contexts instead
of formulas. They are used to translate top-level sequentseoid unnecessary rewriting of commas as
A Or V.

o- = T o7 = L
ATIE = AAC ATIR = Av|IR
[(To = 0),TI = (IFo|"<[Ao[F) A IF[* [(Fo = 80), TR = (IFol" 2 |80[%) VIR
- = o lo* = o
IAT]S = Alr|t IATIR = AJr|®
I(Fo+20),FII5 = (IFol" < |Aol%), IT|I" I(FoF20), TR = (ITol" > [00[%),[IF[

Theorem 1 If I - Ais derivable inN-LBil, then||I"||* I- ||A||R is derivable inL Bil.

Proof The proof is by induction on the structure of tNeL Bil derivation ofl - A. The cases corre-
sponding to rules other than the nesting rules are immediatee there is a directly matching rule in
L Bil.
CasenestR The given derivation has the form
DT
Mok Ao

FFTorboy8 "

It can be mapped to
:IHonm
IS ol - [1Ao®?
IT)" Fol" F |AolR
ITI- = 1ol > (2o fR, AR

(AL, VR)*
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CaseunnestL. The given derivation is of the form

ST
ML (Tok Ag) A
W unnestL
and we can transform it to

IHon 1T
ITJ5, [Tl < Ao = [|AIR

(weakl/R)*
TN ol Tl < (AR F [|Ao] R, (AR
. hyp . hyp
Vi, IFoll" F ITollk, . .. Viooo 100IR = Fols < |AolR, [|A0]R, - ..
L L (/\R)* R L R R (\/L)*
O [ e o | B0RE Tols < AR, [|180]IR, . .. R
TN ol F [Fol < |AolR, [|Ao] R, [|A]IR cut
T IToll™ = flaol R, AR

O

4.2 From L-LBil to N-LBiIl

The translation fronlL-LBil to N-LBil is more involved than those of the previous section, but also
more illuminating.

The translation of a labelled sequent into a nested seqokkmw/é the idea that we can view any label
of the label tree as its root (intuitively, the focus of atten) and produce a nesting structure for a nested
sequent by mimicking this rooted tree.

The translation of a labeled sequent wrt. a chosen label fiotabel tree is defined by recursion on
the rooted tree structure by

(ThxyA)x = T(X)FAX)

(T Feayayco A )x = A (AokTlg),N
whereA I = (( T[G] -6 A[G] ))x and/o - Mo = ({ T[Go] Fa, AlGo] Yy

(T Feyeyymac D x = N, (NobTo) =11
whereA - M = (( T[G] g A[G] )x and/Ao - Mo = (( T[Go] Fa, AlGo] )y

wherel' (x) = {A|x:AeTlT}andlNG] = {x:A|xe |G|andx: AcT}.

Intuitively, the formulas labelled witk in the given sequent are kept where they are, whereas those
with labels reachable through the labels immediately be&sp. above are arranged into nested sequent
members of the antecedent resp. succedent of the top-lestdchsequent produced.

Lemma 1 (Readdressing) For any zx € |G|, if (( I Fg A )); is derivable inN-LBil, then so is( T g

A H)x.

Proof By induction on the unique path aloi@u G from x to z. The base case= zis trivial.
We consider one of the two symmetric step cases, namely thevberexGy. In this case we have
G = G &y (x,y) @y Go, with the path frony to zlying in G.
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The given derivation is
LT
(Thcl)),
The nested sequefitl” g A ))x can be derived by

:IHonm
Ao, (AFT) Mg
(AFT)F (Ao kM)
AF (Ao F Mo), M

nestR
unnestL

whereA N = ((T[G] e A[G] ))x and/Ag - Mo = ({ T[Go] g, A[Go] Yy, SO that(( T Fg A ))x = A+
(/\ol—rlo),n Whereas<( FI—(;A>>y:/\0,(/\I— |_|) F Mo. O

Theorem 2 If ' g Ais derivable inL-LBil, then{( I g A ))x is derivable inN-LBil for any xe |G]|.
Proof By induction on the derivation df g A in L-LBil. We show the prototypical cases.
CasemonotL The given derivation is of the form
LT
MXx:Ay:A "G@x(xy)@yeo A

monotL
r, X A l_GEBx()Qy)EByGO A

By readdressing, it suffices to proye, x: AT Gay(xy)yGo B Nx-
We construct this derivation:

: IHon mm,y

(N AF ), Ao, Ao
(NAF ), AF (Ao Mo)
A AAF (Ao F o), M
A A (Ao F Mo), M

nestR
unnestL
contrL

Here, AF T = (( [[G] Fc A[G] ))x and Ag - Mo = (( '[Gg| Fg, A[Go] ))y, Which gives us(( I',x:
Al Gay(xy)oyGo B Nx = NAE (Ao o), M and(( T, X: A Y Abga,xy)e,Ge & )y = (AAFTT), Ao, Al
Mo.

CaseDR: The given derivation is of the form

T
ry: Al_GEB'x(X,y) y:B,A
Necx:ADBA

We prove(( I kg x: ADB,A ))x, which we know is enough by readdressing. The derivatiohiss t

: IHon mm,y
(AFM),AFB
AN FASB R
AFASB.M unnestL

Here, AT = (T FgA))x, which gives ug( T FgX: ADB,A )y =AFADB,Mand((T,y: Algae,xy)
y:B,A))y=(AFM),AFB. O
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4.3 From N-LBil to L-LBil

The translation fronN-LBil to L-LBil is intended as an inverse for that of the previous section. On
sequents, it is a true inverse (translating a sequent RenBil to L-L Bil and back, we arrive at exactly
the same sequent; starting with larl. Bil sequent, we get an isomorphic label tree with the same root).
On derivations, the isomorphism should hold up to a suitaloligon of equivalence of derivations on
both sides (i.e., in botN-LBil andL-LBil). We will not pursue this here. But we expect that the right
notions of equivalence would be best formulated and the ésphism established with the help of term
calculi.

We define a translation df-LBil sequents td_-LBil sequents, by induction on the antecedent
and succedent of the given nested sequent, by the followingtibn, which also takes a labelas an
additional argument. The root of the nesting structure efglven nested sequent (i.e., its top level) is
sent to labek in the label tree of the labelled sequent.

[Flx = Fw
[FAA]x = AFgx:AnN
whereA g M = [ A]x
[“_ (ro F AO),AHX = /\7/\0 '_Ga;x(x.y)@yGo |_|o,|_|
whereA g M = [[l— A]]x and/\g l_Go Mg = [[ro H Ao]]y
[FLAFA], = AX:AFgN
whereA g M = [T A]x
[F(FoF20) FATx = A NoFeye,yxec Mo,
whereA g M = [[F H Aﬂx and/\g |—G0 M= [[ro F Aoﬂy

Intuitively, any formula in the top-level sequent is laleellbyx and remains where it is. Any sequent in
the antecedent resp. succedent of the top-level sequelstiethe creation of a new labgimmediately
below resp. above The translated elements of its antecedent resp. succadapiaced in the antecedent
resp. succedent of the sequent in the making.

Note that we have given the mathematical definition by firstireing on the antecedent and then
the succedent. In fact, the order is immaterial, one coutl @s well start with the antecedent or, in-
deed, remove formulas/nested sequents from the antecad@rsiccedent in turns, in any order. This
commutativity is used extensively in our translation ofigations.

Theorem 3 If ' - Ais derivable inN-LBil, then[ " - A]y is derivable inL-LBil for any x.

Proof By induction on the given derivation. We look at the followinases.
CasenestR The given derivation is of the form

gn
ok Ag

FFTor b8 "
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We can produce this derivation of the translated sequent:
: (IHon m)[y/x
Ndly/X;No Feq [y/lx]EByGo Mo, Maly/X]
NdlY/Xs No Fegay(xy)e,Go Mos Maly/X
Na%,Y/X], No =Gy (xy)@yGo Mo, Md
N, No gy (xy)@yGo Mos Md

nodesplitD
(weakD*
(monoth*
(nodesplitU/D)*
(weakl/R)*

Nd; No Fye,Guax(xy)eyGo M0, Md

Nd; N, No Feya,Guey(xy)ey,Go 110, Md; My

whereAg kg, Mg = [T Flx, AuFe, Mu=[FAlx andAg g, Mo = [0 F Aoy, andAg[x,y/x] stands
for the union ofAy4[y/x] with the context formed by the-labelled formulas of\q. Notice thatx ¢ |M4],
which tells us thafl4]y/X] = M4. The side condition of the topmost applicationrafdesplitDis met

because5y T x. Note also that particular cases rmddesplitU/D allow the addition of new nodes to a
label tree.

Caseunnestl. We are given a derivation in the form

ST
M, (Tok Ag) A
W unnestL
We make the derivation
:IHonm
AWAY) [y/x] '_Go[y/x]eay(y.x)@xG nO[y/X]7 M
A Ao Gaere Mo, Tl nodemergeD
whereA g M = [[F F A]]X and/\g l_Go Mo = [[ro F Ao]]x.
CaseDR: The given derivation is of the form
DT
rA-B R
FFASBA -
We transform it to
| (IH on m)[y/X
Ndly/X,y - Abgyyx Y B, Maly/X] nodesplitD
Ndly/X,y 1 At gyaxy) ¥ - B, Maly/X] (weakl)*
W
Nd[X,Y/X,Y : At guaxy) Y B, Md e
/\d7y : Al_GdEBx(X,y) y: B7 I-Id R(mono L)
AdFo, X: ADB, Mg Dd D)
Al oo X ASB.Mg (nodesplitU/D)
wea
(weakl/R)*

/\d,/\u '_Gd@xGu X AD B,nd,nu

whereAg kg, Mg = [l F]xandAy kg, My = [F A]x. Notice thatx ¢ |Mq4], with the effect thaflq]y/x] =
Mq. The side condition on the topmost applicatiomofiesplitDis satisfied a&q 1 x. O
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4.4 From LBil intoL-LBil and back

The translation o Bil into L-L Bil is not demanding. Essentially, it suffices to annotate tliesequent
with the sole label of a singleton label tree and follow theicture of thel Bil-derivation bottom-up,
introducing new labels abR and<L. But again (like in the translation fromBil to N-LBil), a cut in
LBil is rendered by a cut ib-LBil, which is not so perfect, since we should not need cut-inBil
derivations.

When we wrote the translation, we did not think of it like tHisit it can be described as composition
of the translations froni. Bil to N-LBil and fromN-LBil further on toL-LBil. SinceLBil sequents
yield no nesting irN-L Bil, the readdressing that is needed in translating derivatias only to do with
the DRand~L rules.

Given a standard contekt we writex: I for the labelled context obtained by labelling all formulas
of I with x.

Theorem 4 If ' - Ais derivable inLBil, then x I |—<X> Xx:Ais derivable inL-LBil.

Proof By induction on the derivation df - A in LBil. We show one case.
CaseDR: The given derivation
T
rA-FB
FEASBA -R

is matched with the derivation

:IHonm
y:y:Atbyy:B
y:ly:Abxyy:B

X1y Ty Abxy y:B
X[y Abxy y:B
X:[HxX:ADB

X:[FxyXtADBX:A (

nodesplitD

weakL
monotL
DR
weakR*

O
The translation froni-L Bil to LBil is best found by as a compound translation throbghBil.
We omit the details here, but it is quite instructive. In adar, it gives a kind of explanation of why it
is so difficult to translate labelled derivations into starttiderivations in the case bfit. We learn that
the natural way uses exclusion, and this is not availablatin

5 Applications of the trandlations

By analysing the targets of the various translations, omefiral some immediate applications. Our
analysis essentially focuses on how much cuts are needdeitranslations, thus finding complete
classes of cuts. A direct use of the translations, not egdlbere, is as a means of mapping proofs found
by known search procedures Brilnt, based on the nested calculus and on the labelled calcwdak, b
into standard-style sequent calculus.
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Trandation from N-LBil into L Bil

In this translation, the cut rule &fBil is used only for the translation of the cut ruleNfL Bil and of
the unnesting-rules. Let us calhnest cutshe cuts ofL Bil of one of the following two forms:
LToE ATo<VAg,Ag, A T,To, ATo< Vg Ag,A
Mok Ao, A

unnestcutL

MTo-AToD VA0, 80,8 T,T0,AT0DVAE Ao, A
Mok A A

unnestcutR

Observe that these two special cases of cut are the onesrugeltranslations of thennestrules. As
N-LBil is complete without cut, we have that unnest cuts are comfdet Bil.

Proposition 1 The sequent calculus obtained frdnBil by restricting to unnest cuts is complete for
Bilnt.

Now of course the first premise ahnestcutland the second premise wfnestcutRare derivable,
so a more practical idea would be to remove cuts altogetheemstead make the rules
Mo, ATo<VAg Ao, A Tok AToDVAg,Ag, A

[ ToF Do unnestL F Fof Do unnestR

From N-LBil to LBil and back and then there again

The attempt at a direct cut elimination transformation li@il fails because of three combinations of
cuts with other rules [9]. They fall into two wider combinatis:

rACFD . CFDALA
FFACOD,A T,AFCOD.A ?t FC<DFAA - I.C<D,AFA i
FFCoD.A u F.C<DFA u

TheunnestlandunnestRules give a possibility to permute the cuts up pastiRand<L inferences
in these two configurations.
We show this for theoR case:
r-ACoOD,A
FFACoDAD WeakR )
AT =V(A,CDOD),AD (AL, VR) NCAED
FAT<V(ACoDL,CFAD - T.(AT<V(5,CoD)),CAFD Weak
(AT <V(A,C5D)),CFD cut
M (AT <V(A,CSD))FCoD,A ~
FFCoD.A unnestL

The possibility of this permutation may give a transforrmatieplacing the cuts inlaBil derivation with
unnestLandunnestRbut we have not checked if it is welldefined, i.e., termisate
Trandations between L-LBil into N-L Bil

Inthese translations, cuts in the target are only needddiiioslating cuts in the source. Thus, redundancy
of cut in one implies redundancy of cut in the other.
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6 Final remarks

Our translations between standard-style, nested andddsdquent calculi foBilnt provide a frame-
work for comparison of proof transformations within eachtloése systems. A basic question is to
understand the relationship between ways of performingelitination in the three systems: (i) for the
nested system, Goré et all [7] have described a cut-eltrmimprocedure; (ii) for the labelled system, one
should be able to adapt Negri's procedurel [10], which appliea wide range of normal modal logics;
(iii) for the standard-style system, cuts are not fully efiable, but unnest cuts are a complete and simple
form of cuts.

A tool that should be helpful to perform comparison of cuteghation processes is term assignment.
We are not aware of term assignment done directly for systeased on nested sequents. This kind
of formalisms have been used mostly in connection with pesairch and modal logics, exploiting the
subformula property [2], but foBilnt, besides the study of shallow inference and nested seqaénts
Goré et al.[[V], a study of deep inference and nested segjthmdaugh still with emphasis on proof
search) is also available [12]. As to labelled systems, ReedPfenning [16] consider term assignment
in the context of labelled intuitionistic logic. They worktv natural deduction and use control operators
letccandthrowto account for the multiple conclusions of the labelled seqealculus that they proceed
from. A term assignment foBilnt corresponding to Dragalin’s style can be obtained from tled-w
studied calculus\ ufi with the typing systenh K, ; of Curien-Herbelin[[6]. From these systems, which
are for classical logic (or for classical logic with exclosi[6]), we obtain thed, <-fragment ofBilnt by
imposing the usual single formula restriction in the suecgdresp. antecedent) of the rule corresponding
to DR (resp.<L), i.e.,

r,x:AkFv:B| le:BFB:AA
DR <L
M=Axv:ADB|A FBA.e:B<AFA

The exclusion operation has been given computational mgawy, e.g., Crolard [5] and Ariola et
al. [1]. Crolard considered multiple-conclusion naturatidction systems both for classical logic with
exclusion and foBilnt, the latter being obtained from the former by a mechanismegpkirack of
dependencies between hypotheses and conclusions ané #émsBil nt-restrictions, arriving at aafe
A-calculus where coroutines (a restricted form of continuations)opee first-class objects. Ariola et
al. considered classical logic with exclusion in a natueduttion system close to that of Crolard’s, to
provide a typing system for &-calculus with delimited continuations. It would be intstiag to revisit
these ideas in connection to the sequent calculi studiddsmpaper and understand whether the sequent
calculus format (standard or extended) has anything newfén. oAs Crolard’s mechanism to keep
track of dependencies resembles our labelled systerBifott, a specific goal would be to investigate
relationships between the two systems.
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