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Bi-intuitionistic logic is the conservative extension of intuitionistic logic with a connective dual to
implication. It is sometimes presented as a symmetric constructive subsystem of classical logic.

In this paper, we compare three sequent calculi for bi-intuitionistic propositional logic: (1) a ba-
sic standard-style sequent calculus that restricts the premises of implication-right and exclusion-left
inferences to be single-conclusion resp. single-assumption and is incomplete without the cut rule, (2)
the calculus with nested sequents by Goré et al., where a complete class of cuts is encapsulated into
special “unnest” rules and (3) a cut-free labelled sequent calculus derived from the Kripke semantics
of the logic. We show that these calculi can be translated into each other and discuss the ineliminable
cuts of the standard-style sequent calculus.

1 Introduction

Classicallogic is a logic ofdualities, some of which are made evident with the help of its sequent calculus
formulations. For example, the duality between conjunction and disjunction is manifest in the traditional
sequent calculus rules for these connectives, or the process of proving a formulaA, i.e., deriving the
sequent⊢ A, is dual to the process of refutingA, i.e., deriving the sequentA⊢. However, if one considers
implication as a “first-class” connective and wants to retain dualities, its dual connective ofexclusion
(or pseudo-difference, or subtraction) should also have a similar status. In classical logic, exclusion is
definable from other connectives:A�B is equivalent toA∧¬B. Classical logic with exclusion in sequent
calculus format has been considered by Curien and Herbelin and Crolard [6, 4], in connection to the
study of dualities in functional computation, e.g. the duality of values and continuations or the duality of
call-by-value and call-by-name evaluation strategies.

Bi-intuitionistic logic (also known as Heyting-Brouwer logic and subtractivelogic) results from clas-
sical logic with exclusion by taking the implication to beintuitionistic and, in order to preserve duality,
making exclusiondual-intuitionistic (hence the word ’bi’-intuitionistic). Bi-intuitionistic logic can also
be seen as the union of intuitionistic logic (lacking exclusion) with dual-intuitionistic logic (lacking im-
plication). The former has the disjunction property while the latter has the dual conjunction property (if
A∧B is refutable, eitherA is refutable orB is refutable). In the union, both of these properties are lost,
yet one cannot prove excluded middle (nor refute contradiction for the dual-intuitionistic weak negation).

Bi-intuitionistic logic first got attention by C. Rauszer [14, 13, 15], who studied its algebraic and
Kripke semantics, alongside with an Hilbert-style system and a sequent calculus. A sequent calculus
characterization of the logic is easily obtained by extending the multiple-conclusion sequent calculus for
intuitionistic logic à la Dragalin with exclusion rules dual to the implication rules. But contrary to what
is suggested, e.g., in [17], cut is not fully eliminable in this calculus. Neither is cut eliminable in the
sequent calculus of Rauszer [13] (the proof in the paper is incorrect).

http://dx.doi.org/10.4204/EPTCS.47.7
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The lack of cut elimination in a sequent calculus is problematic for proof search, since the subfor-
mula property is not guaranteed. In order to overcome this issue, extended sequent calculi have been
considered. In particular, a calculus of nested sequents was proposed by Goré, Postniece and Tiu [7] and
a calculus with labelled formulas was proposed by the authors [11].

In the presence of various sequent calculi for bi-intuitionistic logic, a natural question to ask is how
they relate to each other. In this paper, we give translations between the standard-style (=Dragalin-style),
nested and labelled sequent calculi for bi-intuitionisticpropositional logic. By analysing such transla-
tions, we are able to identify a complete class of cuts for theformulation with standard sequents and we
are able to read the proofs resulting from proof search in thenested or labelled sequent calculus back
into the standard-style sequent calculus. Reed and Pfenning [16] have remarked that relating labelled
intuitionistic derivations with standard unlabelled onesis “a surprisingly difficult question”.

2 The syntax and semantics of BiInt

We start by defining the syntax and semantics of bi-intuitionistic propositional logic (BiInt).
The language ofBiInt extends that of intuitionistic propositional logic (Int), by one connective,

exclusion, thus theformulasare given by the grammar:

A,B := p | ⊤ | ⊥ | A∧B | A∨B | A⊃B | A�B

wherep ranges over a denumerable set ofpropositional variableswhich give us atoms; the formulaA�B
is theexclusionof B from A. We do not take negations as primitive, but in addition to theintuitionistic (or
strong) negation, there is also a dual-intuitionistic (or weak) negation. The two negations are definable
by ¬A := A⊃⊥ and∽A :=⊤�A.

The semantics ofBiInt is usually given à la Kripke, although one can also proceed from an algebraic
semantics (in terms of Heyting-Brouwer algebras) and thereare further alternatives. The Kripke seman-
tics is about truth relative to worlds in Kripke structures that are the same as forInt. A Kripke structureis
a tripleK = (W,≤, I) whereW is a non-empty set whose elements we think of asworlds,≤ is a preorder
(reflexive-transitive binary relation) onW (the accessibility relation) and I—the interpretation—is an
assignment of sets of propositional variables to the worlds, which is monotone w.r.t.≤, i.e., whenever
w≤ w′, we haveI(w)⊆ I(w′).

Truth in Kripke structures is defined as forInt, but covers also exclusion, interpreted dually to impli-
cation as possibility in the past:

• w |= p iff p∈ I(w);

• w |=⊤ always;w |=⊥ never;

• w |= A∧B iff w |= A andw |= B; w |= A∨B iff w |= A or w |= B;

• w |= A⊃B iff, for any w′ ≥w, w′ 6|= A or w′ |= B;

• w |= A�B iff, for somew′ ≤ w, w′ |= A andw′ 6|= B.

A formula is calledvalid if it is true in all worlds of all structures. It is easy to see that monotonicity
extends from atoms to all formulas thanks to the universal and existential semantics of implication and
exclusion.

It is important for this paper that instead of general Kripkestructures, one may equivalently work
with Kripke trees. These are Kripke structures(W,≤, I) whereW is finite and the preorder≤ arises
as the reflexive-transitive closure of some binary relation→ onW, subject to the condition that any two
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Initial rule and cut (necessary):

Γ,A⊢ A,∆ hyp
Γ ⊢ A,∆ Γ,A⊢ ∆

Γ ⊢ ∆ cut

Structural rules:

Γ ⊢ ∆
Γ,A⊢ ∆ weakL Γ ⊢ ∆

Γ ⊢ A,∆ weakR
Γ,A,A⊢ ∆

Γ,A⊢ ∆ contrL
Γ ⊢ A,A,∆
Γ ⊢ A,∆ contrR

Logical rules:

Γ ⊢ ∆
Γ,⊤ ⊢ ∆ ⊤L Γ ⊢ ⊤,∆ ⊤R

Γ,A,B⊢ ∆
Γ,A∧B⊢ ∆ ∧L

Γ ⊢ A,∆ Γ ⊢ B,∆
Γ ⊢ A∧B,∆ ∧R

Γ,⊥ ⊢ ∆ ⊥L
Γ ⊢ ∆

Γ ⊢ ⊥,∆ ⊥R
Γ,A⊢ ∆ Γ,B⊢ ∆

Γ,A∨B⊢ ∆ ∨L
Γ ⊢ A,B,∆

Γ ⊢ A∨B,∆ ∨R

Γ,A⊃B⊢ A,∆ Γ,B⊢ ∆
Γ,A⊃B⊢ ∆ ⊃L

Γ,A⊢ B
Γ ⊢ A⊃B,∆ ⊃R

A⊢ B,∆
Γ,A�B⊢ ∆ �L

Γ ⊢ A,∆ Γ,B⊢ A�B,∆
Γ ⊢ A�B,∆ �R

Figure 1: Inference rules ofLBiI

worldsw, w′ are related by the reflexive-transitive-symmetric closureof→ in a unique way (w′ is reached
from w by exactly one path along→∪←).

It is also a basic observation that the Gödel translation ofInt into the modal logicS4 extends to a
translation into the future-past tense logicKtT4 (cf. [8]). As the semantics ofKtT4 does not enforce
monotonicity of interpretations, atoms must be translatedas future necessities or past possibilities (these
are always monotone):p# = �p (or �p); ⊤# = ⊤; ⊥# = ⊥; (A∧B)# = A#∧B#; (A∨B)# = A#∨B#;
(A⊃B)# =�(A#⊃B#); (A�B)# = �(A#�B#).

3 Three sequent calculi for BiInt

We will now recall three different sequent calculi forBiInt that we will later compare to each other.

3.1 Standard-style sequent calculus LBiI

A sequent calculus forBiInt is most easily obtained by extending Dragalin’s sequent calculus forInt, as
has been done by Restall [17] and Crolard [4]. (Rauszer’s [13] original sequent calculus was different.)
In Dragalin’s system, sequents are multiple-conclusion, but the⊃R rule is constrained. The extension,
which we will now show, imposes a dual constraint on the�L rule.

The sequentsof our calculus (henceforth referred to as the standard-style calculusLBiI) are pairs
Γ ⊢ ∆ whereΓ,∆ (the antecedentandsuccedent) are finite multisets of formulas (we omit braces and
denote union by comma as usual). The inference rules ofLBiI are displayed in Fig. 1.
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Note that∆ is missing in the premise of the⊃R rule and dually in the premise of�L we do not have
the contextΓ.

Regarding structural rules, both inLBiI and the other two sequent calculi (N-LBiI and L-LBiI)
considered in this paper, we have chosen to work with formulations oriented at root-first proof search,
which means that, as a general guideline, we want to have our inference rules “as invertible as possi-
ble”. We have weakening and contraction built in to the otherrules to the degree thatLBiI andL-LBiI
are complete without explicit versions of them. This requires of course that the two-premise rules are
context-sharing etc. But there are also more specific consequences. InLBiI, we have duplications of the
implication and exclusion formulas in the premises of the⊃L and�R rules.

LBiI is sound and complete for the Kripke semantics ofBiInt for the following generalization of
validity from formulas to sequents. A sequentΓ ⊢ ∆ is taken to be valid if, for any in Kripke structure
(W,≤, I) and any worldw, we have that if all formulas inΓ are true inw, then so is some formula in∆.
This has been proved (for variants ofLBiI), e.g., by Restall [17] and Monteiro [9].

However,LBiI is incomplete without cut, as shown by Pinto and Uustalu in 2003 (private email mes-
sage from T. Uustalu to R. Goré, 13 Sept. 2004, quoted in [3]). It suffices to consider the obviously valid
sequentp⊢ q, r⊃ ((p� q)∧ r). The only possible last inference (other than weakening andcontraction,
which are redundant) in a derivation could be

?
p, r ⊢ (p�q)∧ r

p⊢ q, r⊃ ((p�q)∧ r)
⊃R

but the premise is invalid as the succedent formulaq has been lost. With cut, the sequent can be proved
as follows:

p⊢ q, p, . . .
hyp

p,q⊢ q, p�q, . . .
hyp

p⊢ q, p�q, . . .
�R

p, p�q, r ⊢ p�q
hyp

p, p�q, r ⊢ r
hyp

p, p�q, r ⊢ (p�q)∧ r
∧R

p, p�q⊢ q, r⊃ ((p�q)∧ r)
⊃R

p⊢ q, r⊃ ((p�q)∧ r)
cut

Notice that permutation of the cut on the exclusionp� q up past the⊃R inference, for which the cut
formula is a side formula, is not possible. This is one type ofcuts that cannot be eliminated; there are
altogether three such types [9]. This situation reminds of the naive standard-style sequent calculus for
S5 where the sequentp ⊢ �♦p cannot be proved without cut, but can be proved by applying cut to the
sequentsp⊢ ♦p and♦p⊢�♦p that are provable without cut.

In Sec. 5, with the help of the translations proposed in this paper, we identify a class of cuts complete
for LBiI.

3.2 Nested sequent calculus N-LBiI

Next we introduce a calculusN-LBiI of nested sequents, which is a minor variation of the calculus
LBiInt1 of Goré et al. [7].1 N-LBiI is an extension ofLBiI where the concept of contexts is generalized
so that, alongside formulas, they can also contain nested sequents, manipulated by dedicated additional
inference rules.

1The main difference is that LBiInt1 does not build weakening and contraction into other rules, as we do in some cases to
have a direct match with corresponding rules in the other systems considered.
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Rules for nested sequents:

Γ0 ⊢ ∆0,∆
Γ,(Γ0 ⊢ ∆0) ⊢ ∆ nestL

Γ,Γ0 ⊢ ∆0

Γ ⊢ (Γ0 ⊢ ∆0),∆
nestR

Γ,(Γ0 ⊢ ∆0) ⊢ ∆
Γ,Γ0 ⊢ ∆0,∆

unnestL
Γ ⊢ (Γ0 ⊢ ∆0),∆

Γ,Γ0 ⊢ ∆0,∆
unnestR

Figure 2: Inference rules ofN-LBiI for manipulating nested sequents; differently fromLBiI, cut is
redundant

Thesequentsof N-LBiI (ranged over byS) are defined simultaneously withcontexts(ranged over by
Γ,∆) by the following grammar:

S ::= Γ ⊢ ∆
Γ,∆ ::= /0 | A,Γ | S,Γ

where contexts, just as inLBiI, are quotiented down to multisets (so identified up to permutations of the
member formulas/nested sequents). Just as commas in antecedents and succedents intuitively correspond
to conjunctions and disjunctions, nested turnstiles should be understood as structural-level implications
and exclusions.2

The inference rules ofN-LBiI are those ofLBiI in Fig. 1 (including the cut rule and the structural
rules) together with additional inference rules for introducing and eliminating nested sequents. These
additional rules appear in Fig. 2. ThenestLandnestRrules are structural versions of�L and⊃R. The
unnestL/R rules areelimination rules for exclusions on the left and implications on the right. It is fair
to think of them as masqueraded versions of certain rather specific types of cuts (we come to this in
Sec. 5).3

Stating soundness and completeness ofN-LBiI requires defining what it means for a nested sequent
to be valid. This is achieved via a translation that “flattens” nested sequents into standard sequents,
reducing validity of nested sequents to that of standard sequents. We give a formal definition of this
translation of sequents in Sec. 4.1, where we show that derivations ofN-LBiI can be translated into
LBiI. Goré et al. [7] established soundness ofN-LBiI wrt. this notion of validity directly, but showed
completeness by an embedding of Rauszer’s sequent calculus[13].

They also showed cut to be redundant in the strong sense of existence of a cut-eliminating transfor-
mation of derivations [7]. The example of the previous section is proved inN-LBiI without cut (but with
unnestL) as follows:

p⊢ q, p
hyp

p,q⊢ q, p�q
hyp

p⊢ q, p�q
�R

(p⊢ q), r ⊢ p�q
nestL

(p⊢ q), r ⊢ r
hyp

(p⊢ q), r ⊢ (p�q)∧ r
∧R

(p⊢ q) ⊢ r⊃ ((p�q)∧ r)
⊃R

p⊢ q, r⊃ ((p�q)∧ r)
unnestL

2In [7], a nested sequent in the antecedent (resp. succedent)of a parent sequent (a structural-level exclusion resp. implication)
is writtenΓ < ∆ (resp.Γ > ∆).

3For the sake of simplicity of presentation, we have opted fora formulation ofunnestL/R rules that does not incorporate
formula contraction. For a version ofN-LBiI that is complete without thecontrL/R rules, theunnestL/R rules must be stated
differently.
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3.3 Labelled sequent calculus L-LBiI

The third sequent calculus we consider in this paper is a labelled sequent calculusL-LBiI, a variation on
the calculus L of ours [11].4 The design ofL-LBiI follows the method of S. Negri [10] for obtaining cut-
free sequent calculi for normal modal logics defined by frameconditions of a certain type. Essentially,
L-LBiI is a formalization of the first-order theory of the Kripke semantics ofBiInt, using an explicit
device of labels for worlds.

A sequentof L-LBiI is a tripleΓ ⊢G ∆ whereG is a label tree andΓ and∆ are labelled contexts. More
precisely, thelabel tree G= (N,E) is a directed graph that has its set of nodesN (called labels) nonempty
and finite and is anundirectedtree in the sense that any nodesx, y are in the relation(E∪E−1)∗ in only
one way, i.e., are connected by a single path of forward and backward arcs. We write|G| for N andxGy
for (x,y) ∈ E. The labelled contextsΓ and∆ are multisets of labelled formulas and these, in their turn,
are pairsx : A with x a label drawn from|G| andA a formula.

Any label tree can be built (generally in many ways) from constructions〈x〉 for the tree with a single
nodex, (x,y) for the tree with two nodesx,y and one arcxGy, andG⊕x G′ for the join of two trees at
x. In the last construction, we require (as a welldefinedness condition) that the treesG andG′ satisfy
|G| ∩ |G′| = {x}, which guarantees that the joint graph really is a tree. Conversely, any directed graph
built in terms of these constructions is necessarily a tree.

Intuitively, we use label trees to represent Kripke trees and a labelled formula is about truth at a
particular world.

The inference rules ofL-LBiI are presented in Fig. 3. Some of them have provisos, that we also
write as rule premises. The conditionsG↓ y resp.G↑ y mean that there is noz such thatzGy resp.
yGz. The wellformedness condition of any⊕ expression occurrence must also be read as a proviso. In
the rules⊃R and�L, we have freshness conditions ony. Note the presence of the monotonicity rules
intuitively accounting for propagation of truth (resp. falsity) to future (resp. past) worlds. Thenodesplit
and nodemergestructural rules are auxiliary and redundant to the degree of existence of eliminating
transformations (alongsideweakandcontr); we included them here, because they come handy in the
translation of Sec. 4.3.nodesplitL/R split a node into a pair of nodes connected by an arc, so that no
paths are lost.nodemergeL/R merge two nodes connected by an arc.

A labelled sequentΓ ⊢G ∆ is valid if, for any Kripke structure(W,≤, I) and functionv : |G| →W
such thatxGy impliesv(x) ≤ v(y), we have that, ifv(x) |= A for everyx : A in Γ, thenv(x) |= A for some
x : A in ∆. L-LBiI is sound and complete wrt. this notion of validity.

L-LBiI is complete without cut (as we proved by a semantic argument in [11]) and one should also
be able to give a cut-eliminating transformation of derivations.

Our counterexample to cut elimination inLBiI is proved inL-LBiI as follows:

x : p, . . . ⊢(x,y) x : p, . . .
hyp

x : q, . . . ⊢(x,y) x : q, . . .
hyp

x : p, . . . ⊢(x,y) x : q,x : p�q, . . .
�R

x : p, . . . ⊢(x,y) x : q,y : p�q
monotR

x : p,y : r ⊢(x,y) x : q,y : r
hyp

x : p,y : r ⊢(x,y) x : q,y : (p�q)∧ r
∧R

x : p⊢〈x〉 x : q,x : r⊃ ((p�q)∧ r)
⊃R

4In fact, L-LBiI lies between the calculi L and L∗ of [11]. Similarly to L∗, the sequent calculus here is a calculus of finite
Kripke trees rather than general Kripke structures, so we reason in terms of adjacency→ rather than the induced accessibility
relation≤=→∗. Differently from L, there are no reflexivity and transitivity rules, the monotonicity rules propagate truth/falsity
to adjacent labels only (but can, of course, be applied multiple times), and the⊃L and�R rules analyse and duplicate the main
formula locally.
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Initial rule and cut (redundant):

Γ,x : A⊢G x : A,∆ hyp
Γ ⊢G x : A,∆ Γ,x : A⊢G ∆

Γ ⊢G ∆ cut

Structural rules:

Γ ⊢G ∆
Γ,x : A⊢G ∆ weakL

Γ ⊢G ∆
Γ ⊢G x : A,∆ weakR

Γ,x : A,x : A⊢G ∆
Γ,x : A⊢G ∆ contrL

Γ ⊢G x : A,x : A,∆
Γ ⊢G x : A,∆ contrR

G↓x Γ ⊢G0⊕yG[y/x] ∆
Γ ⊢G0⊕y(y,x)⊕xG ∆ nodesplitU

G↑x Γ ⊢G[y/x]⊕yG0
∆

Γ ⊢G⊕x(x,y)⊕yG0
∆ nodesplitD

Γ ⊢G0⊕y(y,x)⊕xG ∆
Γ[x/y] ⊢G0[x/y]⊕xG ∆[x/y]

nodemergeD
Γ ⊢G⊕x(x,y)⊕yG0

∆
Γ[x/y] ⊢G⊕xG0[x/y] ∆[x/y]

nodemergeU

Monotonicity rules:

xGy Γ,x : A,y : A⊢G ∆
Γ,x : A⊢G ∆ monotL

yGx Γ ⊢G y : A,x : A,∆
Γ ⊢G x : A,∆ monotR

Logical rules:

Γ ⊢G ∆
Γ,x :⊤ ⊢G ∆ ⊤L Γ ⊢G x :⊤,∆ ⊤R

Γ,x : A,x : B⊢G ∆
Γ,x : A∧B⊢G ∆ ∧L

Γ ⊢G x : A,∆ Γ ⊢G x : B,∆
Γ ⊢G x : A∧B,∆ ∧R

Γ,x :⊥ ⊢G ∆ ⊥L
Γ ⊢G ∆

Γ ⊢G x :⊥,∆ ⊥R

Γ,x : A⊢G ∆ Γ,x : B⊢G ∆
Γ,x : A∨B⊢G ∆ ∨L

Γ ⊢G x : A,x : B,∆
Γ ⊢G x : A∨B,∆ ∨R

Γ,x : A⊃B⊢G x : A,∆ Γ,x : B⊢G ∆
Γ,x : A⊃B⊢G ∆ ⊃L

Γ,y : A⊢G⊕x(x,y) y : B,∆
Γ ⊢G x : A⊃B,∆ ⊃R

Γ,y : A⊢(y,x)⊕xG y : B,∆
Γ,x : A�B⊢G ∆ �L

Γ ⊢G x : A,∆ Γ,x : B⊢G x : A�B,∆
Γ ⊢G x : A�B,∆ �R

Figure 3: Inference rules ofL-LBiI
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Notice the downward information propagation by themonotRinference to an already existing label.

4 Translations

In this section, we study syntactic embeddings between the three calculi.
We present six translations in all possible directions according to the following plan (the sixth trans-

lation we will only sketch).
LBiI

((

Sec. 4.1

��
N-LBiI

??

Sec. 4.3
11 L-LBiI

Sec. 4.2
qq

Sec. 4.4
hh

4.1 From N-LBiI to LBiI and back

As sequents and rules ofLBiI are also sequents and rules ofN-LBiI, a derivation inLBiI is also a
derivation inN-LBiI. Note, however, that a cut inLBiI is rendered by a cut also inN-LBiI. This is an
issue and we will reconsider it in section Sec. 5.

For now, we move on to the converse direction.
We define simultaneously two functions on nested contexts|(−)|L and|(−)|R that produce formulas.

They are meant to be applied to antecedents and succedents ofsequents. We also introduce two further
functions‖(−)‖L and‖(−)‖R, defined in terms of|(−)|L and|(−)|R, to produce standard contexts instead
of formulas. They are used to translate top-level sequents and avoid unnecessary rewriting of commas as
∧ or∨.

| /0|L = ⊤ | /0|R = ⊥
|A,Γ|L = A∧ |Γ|L |A,Γ|R = A∨ |Γ|R

|(Γ0 ⊢ ∆0),Γ|L = (|Γ0|
L � |∆0|

R)∧ |Γ|L |(Γ0 ⊢ ∆0),Γ|R = (|Γ0|
L⊃|∆0|

R)∨ |Γ|R

‖ /0‖L = /0 ‖ /0‖R = /0
‖A,Γ‖L = A,‖Γ‖L ‖A,Γ‖R = A,‖Γ‖R

‖(Γ0 ⊢ ∆0),Γ‖L = (|Γ0|
L � |∆0|

R),‖Γ‖L ‖(Γ0 ⊢ ∆0),Γ‖R = (|Γ0|
L⊃|∆0|

R),‖Γ‖R

Theorem 1 If Γ ⊢ ∆ is derivable inN-LBiI, then‖Γ‖L ⊢ ‖∆‖R is derivable inLBiI.

Proof The proof is by induction on the structure of theN-LBiI derivation ofΓ ⊢ ∆. The cases corre-
sponding to rules other than the nesting rules are immediate, since there is a directly matching rule in
LBiI.

CasenestR: The given derivation has the form
.... π

Γ,Γ0 ⊢ ∆0

Γ ⊢ (Γ0 ⊢ ∆0),∆
nestR

It can be mapped to
.... IH on π

‖Γ‖L,‖Γ0‖
L ⊢ ‖∆0‖

R

‖Γ‖L, |Γ0|
L ⊢ |∆0|

R
(∧L,∨R)∗

‖Γ‖L ⊢ |Γ0|
L⊃|∆0|

R,‖∆‖R
⊃R
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CaseunnestL: The given derivation is of the form

.... π
Γ,(Γ0 ⊢ ∆0) ⊢ ∆

Γ,Γ0 ⊢ ∆0,∆
unnestL

and we can transform it to

∀i. . . . ,‖Γ0‖
L ⊢ ‖Γ0‖

L
i , . . .

hyp

. . . ,‖Γ0‖
L ⊢ |Γ0|

L, . . .
(∧R)∗

∀i. . . . ,‖∆0‖
R
i ⊢ |Γ0|

L � |∆0|
R,‖∆0‖

R, . . .
hyp

. . . , |∆0|
R ⊢ |Γ0|

L � |∆0|
R,‖∆0‖

R, . . .
(∨L)∗

‖Γ‖L,‖Γ0‖
L ⊢ |Γ0|

L � |∆0|
R,‖∆0‖

R,‖∆‖R
�R

.... IH on π
‖Γ‖L, |Γ0|

L � |∆0|
R ⊢ ‖∆‖R

‖Γ‖L,‖Γ0‖
L, |Γ0|

L � |∆0|
R ⊢ ‖∆0‖

R,‖∆‖R
(weakL/R)∗

�
�
�
�
�
��

‖Γ‖L,‖Γ0‖
L ⊢ ‖∆0‖

R,‖∆‖R
cut

�

4.2 From L-LBiI to N-LBiI

The translation fromL-LBiI to N-LBiI is more involved than those of the previous section, but also
more illuminating.

The translation of a labelled sequent into a nested sequent follows the idea that we can view any label
of the label tree as its root (intuitively, the focus of attention) and produce a nesting structure for a nested
sequent by mimicking this rooted tree.

The translation of a labeled sequent wrt. a chosen label fromits label tree is defined by recursion on
the rooted tree structure by

〈〈 Γ ⊢〈x〉 ∆ 〉〉x = Γ(x) ⊢ ∆(x)

〈〈 Γ ⊢G⊕x(x,y)⊕yG0
∆ 〉〉x = Λ ⊢ (Λ0 ⊢Π0),Π

whereΛ ⊢Π = 〈〈 Γ[G] ⊢G ∆[G] 〉〉x andΛ0 ⊢Π0 = 〈〈 Γ[G0] ⊢G0 ∆[G0] 〉〉y

〈〈 Γ ⊢G0⊕y(y,x)⊕xG ∆ 〉〉x = Λ,(Λ0 ⊢Π0) ⊢Π
whereΛ ⊢Π = 〈〈 Γ[G] ⊢G ∆[G] 〉〉x andΛ0 ⊢Π0 = 〈〈 Γ[G0] ⊢G0 ∆[G0] 〉〉y

whereΓ(x) = {A | x : A∈ Γ} andΓ[G] = {x : A | x∈ |G| andx : A∈ Γ}.
Intuitively, the formulas labelled withx in the given sequent are kept where they are, whereas those

with labels reachable through the labels immediately belowresp. abovexare arranged into nested sequent
members of the antecedent resp. succedent of the top-level nested sequent produced.

Lemma 1 (Readdressing) For any z,x∈ |G|, if 〈〈 Γ ⊢G ∆ 〉〉z is derivable inN-LBiI, then so is〈〈 Γ ⊢G

∆ 〉〉x.

Proof By induction on the unique path alongG∪G−1 from x to z. The base casex= z is trivial.
We consider one of the two symmetric step cases, namely the one wherexGy. In this case we have

G= G′⊕x (x,y)⊕y G0, with the path fromy to z lying in G0.
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The given derivation is
.... π

〈〈 Γ ⊢G ∆ 〉〉z
The nested sequent〈〈 Γ ⊢G ∆ 〉〉x can be derived by

.... IH on π
Λ0,(Λ ⊢Π) ⊢Π0

(Λ ⊢Π) ⊢ (Λ0 ⊢Π0)
nestR

Λ ⊢ (Λ0 ⊢Π0),Π
unnestL

whereΛ ⊢Π = 〈〈 Γ[G′] ⊢G′ ∆[G′] 〉〉x andΛ0 ⊢ Π0 = 〈〈 Γ[G0] ⊢G0 ∆[G0] 〉〉y, so that〈〈 Γ ⊢G ∆ 〉〉x = Λ ⊢
(Λ0 ⊢Π0),Π whereas〈〈 Γ ⊢G ∆ 〉〉y = Λ0,(Λ ⊢Π) ⊢Π0. �

Theorem 2 If Γ ⊢G ∆ is derivable inL-LBiI, then〈〈 Γ ⊢G ∆ 〉〉x is derivable inN-LBiI for any x∈ |G|.

Proof By induction on the derivation ofΓ ⊢G ∆ in L-LBiI. We show the prototypical cases.
CasemonotL: The given derivation is of the form

.... π
Γ,x : A,y : A⊢G⊕x(x,y)⊕yG0

∆
Γ,x : A⊢G⊕x(x,y)⊕yG0

∆ monotL

By readdressing, it suffices to prove〈〈 Γ,x : A⊢G⊕x(x,y)⊕yG0
∆ 〉〉x.

We construct this derivation:
.... IH on π,y

(Λ,A⊢Π),Λ0,A⊢Π0

(Λ.A⊢Π),A⊢ (Λ0 ⊢Π0)
nestR

Λ,A.A⊢ (Λ0 ⊢Π0),Π
unnestL

Λ,A⊢ (Λ0 ⊢Π0),Π
contrL

Here, Λ ⊢ Π = 〈〈 Γ[G] ⊢G ∆[G] 〉〉x and Λ0 ⊢ Π0 = 〈〈 Γ[G0] ⊢G0 ∆[G0] 〉〉y, which gives us〈〈 Γ,x :
A⊢G⊕x(x,y)⊕yG0

∆ 〉〉x = Λ,A⊢ (Λ0 ⊢Π0),Π and〈〈 Γ,x : A,y : A⊢G⊕x(x,y)⊕yG0
∆ 〉〉y = (Λ,A⊢Π),Λ0,A⊢

Π0.
Case⊃R: The given derivation is of the form

.... π
Γ,y : A⊢G⊕x(x,y) y : B,∆

Γ ⊢G x : A⊃B,∆ ⊃R

We prove〈〈 Γ ⊢G x : A⊃B,∆ 〉〉x, which we know is enough by readdressing. The derivation is this:
.... IH on π,y

(Λ ⊢Π),A⊢ B

(Λ ⊢Π) ⊢ A⊃B
⊃R

Λ ⊢ A⊃B,Π unnestL

Here,Λ ⊢Π = 〈〈 Γ ⊢G ∆ 〉〉x, which gives us〈〈 Γ ⊢G x : A⊃B,∆ 〉〉x = Λ ⊢A⊃B,Π and〈〈 Γ,y : A⊢G⊕x(x,y)

y : B,∆ 〉〉y = (Λ ⊢Π),A⊢ B. �
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4.3 From N-LBiI to L-LBiI

The translation fromN-LBiI to L-LBiI is intended as an inverse for that of the previous section. On
sequents, it is a true inverse (translating a sequent fromN-LBiI to L-LBiI and back, we arrive at exactly
the same sequent; starting with anL-LBiI sequent, we get an isomorphic label tree with the same root).
On derivations, the isomorphism should hold up to a suitablenotion of equivalence of derivations on
both sides (i.e., in bothN-LBiI andL-LBiI). We will not pursue this here. But we expect that the right
notions of equivalence would be best formulated and the isomorphism established with the help of term
calculi.

We define a translation ofN-LBiI sequents toL-LBiI sequents, by induction on the antecedent
and succedent of the given nested sequent, by the following function, which also takes a labelx as an
additional argument. The root of the nesting structure of the given nested sequent (i.e., its top level) is
sent to labelx in the label tree of the labelled sequent.

J⊢Kx = ⊢〈x〉
J⊢ A,∆Kx = Λ ⊢G x : A,Π

whereΛ ⊢G Π = J⊢ ∆Kx

J⊢ (Γ0 ⊢ ∆0),∆Kx = Λ,Λ0 ⊢G⊕x(x,y)⊕yG0
Π0,Π

whereΛ ⊢G Π = J⊢ ∆Kx andΛ0 ⊢G0 Π0 = JΓ0 ⊢ ∆0Ky

JΓ,A⊢ ∆Kx = Λ,x : A⊢G Π
whereΛ ⊢G Π = JΓ ⊢ ∆Kx

JΓ,(Γ0 ⊢ ∆0) ⊢ ∆Kx = Λ,Λ0 ⊢G0⊕y(y,x)⊕xG Π0,Π
whereΛ ⊢G Π = JΓ ⊢ ∆Kx andΛ0 ⊢G0 Π0 = JΓ0 ⊢ ∆0Ky

Intuitively, any formula in the top-level sequent is labelled byx and remains where it is. Any sequent in
the antecedent resp. succedent of the top-level sequent leads to the creation of a new labely immediately
below resp. abovex. The translated elements of its antecedent resp. succedentare placed in the antecedent
resp. succedent of the sequent in the making.

Note that we have given the mathematical definition by first recursing on the antecedent and then
the succedent. In fact, the order is immaterial, one could just as well start with the antecedent or, in-
deed, remove formulas/nested sequents from the antecedentand succedent in turns, in any order. This
commutativity is used extensively in our translation of derivations.

Theorem 3 If Γ ⊢ ∆ is derivable inN-LBiI, thenJΓ ⊢ ∆Kx is derivable inL-LBiI for any x.

Proof By induction on the given derivation. We look at the following cases.

CasenestR: The given derivation is of the form

.... π
Γ,Γ0 ⊢ ∆0

Γ ⊢ (Γ0 ⊢ ∆0),∆
nestR
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We can produce this derivation of the translated sequent:
.... (IH on π)[y/x]

Λd[y/x],Λ0 ⊢Gd[y/x]⊕yG0
Π0,Πd[y/x]

Λd[y/x],Λ0 ⊢Gd⊕x(x,y)⊕yG0
Π0,Πd[y/x]

nodesplitD

Λd[x,y/x],Λ0 ⊢Gd⊕x(x,y)⊕yG0
Π0,Πd

(weakL)∗

Λd,Λ0 ⊢Gd⊕x(x,y)⊕yG0
Π0,Πd

(monotL)∗

Λd,Λ0 ⊢Gd⊕xGu⊕x(x,y)⊕yG0
Π0,Πd

(nodesplitU/D)∗

Λd,Λu,Λ0 ⊢Gd⊕xGu⊕x(x,y)⊕yG0
Π0,Πd,Πu

(weakL/R)∗

whereΛd ⊢Gd Πd = JΓ ⊢Kx, Λu ⊢Gu Πu = J⊢ ∆Kx andΛ0 ⊢G0 Π0 = JΓ0 ⊢ ∆0Ky, andΛd[x,y/x] stands
for the union ofΛd[y/x] with the context formed by thex-labelled formulas ofΛd. Notice thatx /∈ |Πd|,
which tells us thatΠd[y/x] = Πd. The side condition of the topmost application ofnodesplitDis met
becauseGd ↑ x. Note also that particular cases ofnodesplitU/D allow the addition of new nodes to a
label tree.

CaseunnestL: We are given a derivation in the form
.... π

Γ,(Γ0 ⊢ ∆0) ⊢ ∆
Γ,Γ0 ⊢ ∆0,∆

unnestL

We make the derivation
.... IH on π

Λ,Λ0[y/x] ⊢G0[y/x]⊕y(y,x)⊕xG Π0[y/x],Π
Λ,Λ0 ⊢G0⊕xG Π0,Π

nodemergeD

whereΛ ⊢G Π = JΓ ⊢ ∆Kx andΛ0 ⊢G0 Π0 = JΓ0 ⊢ ∆0Kx.
Case⊃R: The given derivation is of the form

.... π
Γ,A⊢ B

Γ ⊢ A⊃B,∆ ⊃R

We transform it to .... (IH on π)[y/x]
Λd[y/x],y : A⊢Gd[y/x] y : B,Πd[y/x]

Λd[y/x],y : A⊢Gd⊕x(x,y) y : B,Πd[y/x]
nodesplitD

Λd[x,y/x],y : A⊢Gd⊕x(x,y) y : B,Πd
(weakL)∗

Λd,y : A⊢Gd⊕x(x,y) y : B,Πd
(monotL)∗

Λd ⊢Gd x : A⊃B,Πd
⊃R

Λd ⊢Gd⊕xGu x : A⊃B,Πd
(nodesplitU/D)∗

Λd,Λu ⊢Gd⊕xGu x : A⊃B,Πd,Πu
(weakL/R)∗

whereΛd ⊢Gd Πd = JΓ ⊢Kx andΛu ⊢Gu Πu = J⊢ ∆Kx. Notice thatx /∈ |Πd|, with the effect thatΠd[y/x] =
Πd. The side condition on the topmost application ofnodesplitDis satisfied asGd ↑x. �
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4.4 From LBiI into L-LBiI and back

The translation ofLBiI into L-LBiI is not demanding. Essentially, it suffices to annotate the end sequent
with the sole label of a singleton label tree and follow the structure of theLBiI-derivation bottom-up,
introducing new labels at⊃R and�L. But again (like in the translation fromLBiI to N-LBiI), a cut in
LBiI is rendered by a cut inL-LBiI, which is not so perfect, since we should not need cut inL-LBiI
derivations.

When we wrote the translation, we did not think of it like this, but it can be described as composition
of the translations fromLBiI to N-LBiI and fromN-LBiI further on toL-LBiI. SinceLBiI sequents
yield no nesting inN-LBiI, the readdressing that is needed in translating derivations has only to do with
the⊃Rand�L rules.

Given a standard contextΓ, we writex : Γ for the labelled context obtained by labelling all formulas
of Γ with x.

Theorem 4 If Γ ⊢ ∆ is derivable inLBiI, then x: Γ ⊢〈x〉 x : ∆ is derivable inL-LBiI.

Proof By induction on the derivation ofΓ ⊢ ∆ in LBiI. We show one case.
Case⊃R: The given derivation

.... π
Γ,A⊢ B

Γ ⊢ A⊃B,∆ ⊃R

is matched with the derivation

.... IH on π
y : Γ,y : A⊢〈y〉 y : B

y : Γ,y : A⊢(x,y) y : B
nodesplitD

x : Γ,y : Γ,y : A⊢(x,y) y : B weakL

x : Γ,y : A⊢(x,y) y : B
monotL

x : Γ ⊢〈x〉 x : A⊃B
⊃R

x : Γ ⊢〈x〉 x : A⊃B,x : ∆ (weakR)∗

�

The translation fromL-LBiI to LBiI is best found by as a compound translation throughN-LBiI.
We omit the details here, but it is quite instructive. In particular, it gives a kind of explanation of why it
is so difficult to translate labelled derivations into standard derivations in the case ofInt. We learn that
the natural way uses exclusion, and this is not available inInt.

5 Applications of the translations

By analysing the targets of the various translations, one can find some immediate applications. Our
analysis essentially focuses on how much cuts are needed in the translations, thus finding complete
classes of cuts. A direct use of the translations, not explored here, is as a means of mapping proofs found
by known search procedures forBiInt, based on the nested calculus and on the labelled calculus, back
into standard-style sequent calculus.
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Translation from N-LBiI into LBiI

In this translation, the cut rule ofLBiI is used only for the translation of the cut rule ofN-LBiI and of
the unnesting-rules. Let us callunnest cutsthe cuts ofLBiI of one of the following two forms:

Γ,Γ0 ⊢
∧

Γ0 �
∨

∆0,∆0,∆ Γ,Γ0,
∧

Γ0 �
∨

∆0 ⊢ ∆0,∆
Γ,Γ0 ⊢ ∆0,∆

unnestcutL

Γ,Γ0 ⊢
∧

Γ0⊃
∨

∆0,∆0,∆ Γ,Γ0,
∧

Γ0⊃
∨

∆0 ⊢ ∆0,∆
Γ,Γ0 ⊢ ∆,∆0

unnestcutR

Observe that these two special cases of cut are the ones used in the translations of theunnestrules. As
N-LBiI is complete without cut, we have that unnest cuts are complete for LBiI.

Proposition 1 The sequent calculus obtained fromLBiI by restricting to unnest cuts is complete for
BiInt.

Now of course the first premise ofunnestcutLand the second premise ofunnestcutRare derivable,
so a more practical idea would be to remove cuts altogether and instead make the rules

Γ,Γ0,
∧

Γ0 �
∨

∆0 ⊢ ∆0,∆
Γ,Γ0 ⊢ ∆0,∆

unnestL
Γ,Γ0 ⊢

∧
Γ0⊃

∨
∆0,∆0,∆

Γ,Γ0 ⊢ ∆0,∆
unnestR

From N-LBiI to LBiI and back and then there again

The attempt at a direct cut elimination transformation forLBiI fails because of three combinations of
cuts with other rules [9]. They fall into two wider combinations:

Γ ⊢ A,C⊃D,∆
Γ,A,C ⊢ D

Γ,A⊢C⊃D,∆ ⊃R

Γ ⊢C⊃D,∆ cut

C ⊢ D,A,∆
Γ,C�D ⊢ A,∆ �L Γ,C�D,A⊢ ∆

Γ,C�D ⊢ ∆ cut

TheunnestLandunnestRrules give a possibility to permute the cuts up past the⊃Rand�L inferences
in these two configurations.

We show this for the⊃Rcase:

Γ ⊢ ∆,C⊃D,A
Γ ⊢ ∆,C⊃D,A,D

weakR
∧

Γ ⊢
∨
(∆,C⊃D),A,D

(∧L,∨R)∗

Γ,
∧

Γ�
∨
(∆,C⊃D),C ⊢ A,D

�L
Γ,C,A⊢ D

Γ,(
∧

Γ�
∨
(∆,C⊃D)),C,A⊢D

weakL

Γ,(
∧

Γ�
∨
(∆,C⊃D)),C ⊢D

cut

Γ,(
∧

Γ�
∨
(∆,C⊃D)) ⊢C⊃D,∆ ⊃R

Γ ⊢C⊃D,∆ unnestL

The possibility of this permutation may give a transformation replacing the cuts in aLBiI derivation with
unnestLandunnestR, but we have not checked if it is welldefined, i.e., terminates.

Translations between L-LBiI into N-LBiI

In these translations, cuts in the target are only needed fortranslating cuts in the source. Thus, redundancy
of cut in one implies redundancy of cut in the other.
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6 Final remarks

Our translations between standard-style, nested and labelled sequent calculi forBiInt provide a frame-
work for comparison of proof transformations within each ofthese systems. A basic question is to
understand the relationship between ways of performing cut-elimination in the three systems: (i) for the
nested system, Goré et al. [7] have described a cut-elimination procedure; (ii) for the labelled system, one
should be able to adapt Negri’s procedure [10], which applies to a wide range of normal modal logics;
(iii) for the standard-style system, cuts are not fully eliminable, but unnest cuts are a complete and simple
form of cuts.

A tool that should be helpful to perform comparison of cut-elimination processes is term assignment.
We are not aware of term assignment done directly for systemsbased on nested sequents. This kind
of formalisms have been used mostly in connection with proofsearch and modal logics, exploiting the
subformula property [2], but forBiInt, besides the study of shallow inference and nested sequentsof
Goré et al. [7], a study of deep inference and nested sequents (though still with emphasis on proof
search) is also available [12]. As to labelled systems, Reedand Pfenning [16] consider term assignment
in the context of labelled intuitionistic logic. They work with natural deduction and use control operators
letccandthrow to account for the multiple conclusions of the labelled sequent calculus that they proceed
from. A term assignment forBiInt corresponding to Dragalin’s style can be obtained from the well-
studied calculusλ µµ̃ with the typing systemLKµµ̃ of Curien-Herbelin [6]. From these systems, which
are for classical logic (or for classical logic with exclusion [6]), we obtain the⊃,�-fragment ofBiInt by
imposing the usual single formula restriction in the succedent (resp. antecedent) of the rule corresponding
to⊃R (resp.�L), i.e.,

Γ,x : A⊢ v : B|

Γ ⊢ λx.v : A⊃B|∆ ⊃R
|e : B⊢ β : A,∆

Γ|βλ .e : B�A⊢ ∆ �L

The exclusion operation has been given computational meaning by, e.g., Crolard [5] and Ariola et
al. [1]. Crolard considered multiple-conclusion natural deduction systems both for classical logic with
exclusion and forBiInt, the latter being obtained from the former by a mechanism to keep track of
dependencies between hypotheses and conclusions and ensure theBiInt-restrictions, arriving at asafe
λ -calculus, where coroutines (a restricted form of continuations) become first-class objects. Ariola et
al. considered classical logic with exclusion in a natural deduction system close to that of Crolard’s, to
provide a typing system for aλ -calculus with delimited continuations. It would be interesting to revisit
these ideas in connection to the sequent calculi studied in this paper and understand whether the sequent
calculus format (standard or extended) has anything new to offer. As Crolard’s mechanism to keep
track of dependencies resembles our labelled system forBiInt, a specific goal would be to investigate
relationships between the two systems.
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