
Herman Geuvers, Ugo de’Liguoro (Eds): CL&C’12
EPTCS 97, 2012, pp. 19–33, doi:10.4204/EPTCS.97.2

c© Robbert Krebbers
This work is licensed under the
Creative Commons Attribution License.

A call-by-value λ -calculus with lists and control

Robbert Krebbers
Radboud University Nijmegen

mail@robbertkrebbers.nl

Calculi with control operators have been studied to reason about control in programming languages
and to interpret the computational content of classical proofs. To make these calculi into a real
programming language, one should also include data types.

As a step into that direction, this paper defines a simply typed call-by-valueλ -calculus with the
control operatorscatch andthrow, a data type of lists, and an operator for primitive recursion (à
la Gödel’sT). We prove that our system satisfies subject reduction, progress, confluence for untyped
terms, and strong normalization for well-typed terms.

1 Introduction

The extension of simply typedλ -calculus with control operators and the observation that these operators
can be typed using rules of classical logic is originally dueto Griffin [Gri90] and has lead to a lot
of research by varying the control operators, the underlying calculus or the computation rules, or by
studying concrete examples of the computational content ofclassical proofs. Little of this research has
considered the problem of how to incorporate primitive datatypes in direct style. If one wants to use
these calculi as a real functional programming language with control, this is a gap that needs filling.

This paper contributes towards the development of aλ -calculus with both data types and control
operators that allows program extraction from classical proofs. In such a calculus one can write specifi-
cations of programs, which can be proven using (a restrictedform of) classical logic. Program extraction
would then allow to extract a program from such a proof where the classical reasoning steps are extracted
to control operators. This approach yields programs-with-control that arecorrect by constructionbecause
they are extracted from a proof of the specification. However, in order for these extracted programs to be
useful in practice, data types in direct style should be supported.

As a step into that direction, we introduceλ ::catch, a simply typed call-by-valueλ -calculus with
the control operatorscatch andthrow, a list and unit data type, and an operator for primitive recursion
(à la Gödel’sT). We consider lists because those are among the most commonly used data types in
functional programming. Expressively, lists make our system as least as strong as Gödel’sT because
natural numbers can be encoded as lists over the unit type. Weprove the conventional meta theoretical
properties – subject reduction, progress, confluence, and strong normalization – so that it may be used as
a sound basis for a calculus that allows program extraction from classical proofs.

Our system is based on Herbelin’s IQCMP-calculus withcatch andthrow that he uses to give a
computational interpretation of Markov’s principle [Her10]. Most importantly, we adopt his restriction
of the control operatorcatch to →-free types. This restriction enables the system to satisfyprogress
without losing other meta theoretical properties. The progress property states that ift is a well-typed
closed term, thent is either a value or there is a termt ′ such thatt reduces tot ′. From a programmer’s
point of view this is an important property as together with confluence it ensuresunique representation
of data. For example, for the natural numbers, unique representation of data means that for each natural
number there is (up to conversion) a unique closed term of thetype of natural numbers. To show how

http://dx.doi.org/10.4204/EPTCS.97.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

20 A call-by-value lambda-calculus with lists and control

the system can be used in programming, we give a simple example in 2.11, where we define a function
that multiplies the values of a list and throws an exception as soon as it encounters the value 0.

Proving confluence or strong normalization for systems withcontrol generally requires complex ex-
tensions of standard proof methods, see for example [Par97,Py98, BHF01, Nak03, GKM12, RS94]. For
λ ::catch this is less the case. We give relatively short proofs of subject reduction, progress, confluence
for untyped terms, and strong normalization for well-typedterms.

1.1 Related work

Incorporating data types into aλ -calculus with control has not received much attention. We briefly
summarize the research done in this direction and compare itwith our work.

Parigot [Par92] has described a variant of hisλ µ-calculus with second-order types. His system
is very powerful, because all the well-known second-order representable data types are included in it.
But as observed in [Par92, Par93], it does not ensure unique representation of data. This defect can be
remedied by adding additional reduction rules, however, this results in a loss of confluence. Another
approach is to use output operators to extract data, but thisintroduces an additional indirection.

Rehof and Sørensen have described an extension of theirλ∆-calculus with basic constants and func-
tions [RS94]. Unfortunately their extension is quite limited. In particular, an operator for primitive
recursion, which takes terms rather than basic constants asits arguments, cannot be defined.

Barthe and Uustalu [BU02] have considered CPS-translations for inductive and coinductive types. In
particular, they describe a system with a primitive for iteration over the natural numbers, and the control
operator∆. They prove preservation of typing and reduction under a CPS-translation, but do not consider
other meta theoretical properties of this system.

Crolard and Polonowski [CP11] have considered a version of Gödel’sT with products andcall/cc.
However, as their semantics is presented by CPS-translations instead of a direct specification via a cal-
culus, their work is not directly related to ours.

Geuvers, Krebbers and McKinna [GKM12] have defined an extension of Parigot’sλ µ-calculus with
a data type of natural numbers and an operator for primitive recursion. They prove that their system
satisfies subject reduction, unique representation of the naturals, confluence and strong normalization.
Also, they define a CPS-translation into Gödel’sT to show that adding control operators does not extend
the expressive power. Unfortunately, their system is call-by-name with call-by-value evaluation for data
types, making it less suitable to model control in most programming languages. Due to their decision to
useλ µ , their proofs involve many complex extensions of standard proof techniques, and expose a lot of
non-trivial interaction between control and data types.

Several extensions ofλ -calculus with the control operatorscatch andthrow have been studied in
the literature. We discuss those that are most relevant to our work. Crolard [Cro99] has considered a call-
by-name variant of such a calculus, for which he defines a correspondence with Parigot’sλ µ-calculus.
He uses this correspondence to prove confluence, subject reduction and strong normalization, but does
not consider data types in direct style.

Herbelin [Her10] has defined IQCMP, a calculus withcatch andthrow to give a computational
interpretation of Markov’s principle. His calculus is call-by-value and supports product, sum, existential,
and universally quantified types. An essential feature of his calculus is the restriction ofcatch to ∀-→-
free types. This restriction enables him to prove progress,which is an important property for his main
result, a proof of the disjunction and existence property.

Since Herbelin’s IQCMP-calculus has a convenient meta theory, we use it as the starting point for our
work. But instead of considering product, sum, existential, and universally quantified types, we consider

Robbert Krebbers 21

a data type of lists in direct style. Whereas Herbelin does not consider confluence, and does not give a
direct proof of strong normalization, we will give direct proofs of these properties for our system.

1.2 Outline

In Section 2, we define the typing rules, and the basic reduction rules, whose compatible closure defines
computation inλ ::catch. We give two example programs showing interaction between data types and
control. Section 2 moreover contains proofs of subject reduction and progress. Section 3 contains a
direct proof of confluence for untyped terms based on an analysis of complete developments. Section 4
contains a direct proof of strong normalization using the reducibility method. We close with conclusions
and indications for further work in Section 5.

2 The system

Definition 2.1. Thetypes, termsandvaluesof λ ::catch are defined as

σ ,τ ,ρ ::= ⊤ | [τ] | σ → τ
t, r,s ::= x | () | nil | (::) | lrec | λx.r | ts | catch α . t | throw α t

v,w,vr ,vs ::= x | () | nil | (::) | (::) v | (::) v w | lrec | lrec vr | lrec vr vs | λx.r

where x, y, and z range overvariables, andα , β andγ range overcontinuation variables.

The constructλx.r bindsx in r, andcatch α . t bindsα in t. The precedence ofλ andcatch is
lower than application, so instead ofcatch α .(tr) we writecatch α . tr. We let FV(t) denote the set of
free variables oft, and FCV(t) the set of free continuation variables oft. As usual, we useBarendregt’s
variable convention[Bar84]. That is, given a term, we may assume that bound variables are distinct from
free variables and that all bound variables are distinct. The operation of capture avoiding substitution
t[x := r] of r for x in t is defined in the usual way.

The constructsnil and(::) are the constructors of the list data type. We treat these constructors, and
the operatorlrec for primitive recursion over lists, as unary constants so wecan use them in partially
applied position. Also, this treatment results in a more uniform definition of the reduction rules. We
often useHaskell-style notation. In particular, we writet :: r to denote(::) t r, andλ . t to denoteλx.t
with x /∈ FV(t). Furthermore, we write[t1, . . . , tn] to denotet1 :: . . . :: tn :: nil.

Following Herbelin [Her10] we restrictcatch to →-free types. Without this restriction, progress
(Theorem 2.15) would fail. Let us consider the termcatch α .λx.throw α (λy.y). Without this re-
striction, this term would have had type⊤ → ⊤, whereas it would not reduce to a value. In fact, even
(catch α .λx.throw α (λy.y)) () : ⊤ would not reduce. The reduction rules forcatch andthrow are
very similar to [Her10], but quite different from those by Crolard [Cro99]. In particular, Crolard includes
reduction rules to move thecatch whereas Herbelin’s system and ours merely allow athrow to move
towards the correspondingcatch. This is due to the restriction to→-free types.

Definition 2.2. We letφ andψ range over→-free types.

Definition 2.3. Let Γ be a map from variables to types, and let∆ be a map from continuation variables
to →-free types. The derivation rules for the typing judgmentΓ;∆ ⊢ t : ρ are as shown below.

x : ρ ∈ Γ
Γ;∆ ⊢ x : ρ Γ;∆ ⊢ () : ⊤ Γ;∆ ⊢ nil : [σ] Γ;∆ ⊢ (::) : σ → [σ]→ [σ]

22 A call-by-value lambda-calculus with lists and control

Γ;∆ ⊢ lrec : ρ → (σ → [σ]→ ρ → ρ)→ [σ]→ ρ

Γ,x : σ ;∆ ⊢ t : τ
Γ;∆ ⊢ λx.t : σ → τ

Γ;∆ ⊢ t : σ → τ Γ;∆ ⊢ s : σ
Γ;∆ ⊢ ts : τ

Γ;∆,α : ψ ⊢ t : ψ
Γ;∆ ⊢ catch α . t : ψ

Γ;∆ ⊢ t : ψ α : ψ ∈ ∆
Γ;∆ ⊢ throw α t : τ

Lemma 2.4. Given a value v with;∆ ⊢ v : ρ , then:

1. If ρ =⊤, then v is of the shape().

2. If ρ = [σ], then v is of the shape[w1, . . . ,wn].

3. If ρ = σ → τ , then v is of the shape(::), (::)w, lrec, lrecvr , lrecvr vs or λx.r.

Proof. This result is proven by induction on the structure ofv. The casev≡ x is impossible becausev is
closed for free variables. The other cases are easy.

Definition 2.5. Thecontextsof λ ::catch are defined as:

E ::=�t | v� | throw α �

Given a context E and a term s, thesubstitution ofs for the hole inE, notation E[s], is defined in the
usual way.

Definition 2.6. Reduction t→ t ′ is defined as the compatible closure of:

(λx.t) v→ t[x := v] (βv)

E[throw α t]→ throw α t (t)

catch α .throw α t → catch α . t (c1)

catch α .throw β v→ throw β v if α /∈ {β}∪FCV(v) (c2)

catch α .v→ v if α /∈ FCV(v) (c3)

lrec vr vs nil→ vr (nil)

lrec vr vs (vh :: vt)→ vs vh vt (lrec vr vs vt) (::)

As usual,։ denotes the reflexive/transitive closure and= denotes the reflexive/symmetric/transitive
closure.

Notice that because we treat partially applied(::) andlrec constructs as values, we get reductions
like throw α r :: t ≡ (::) (throw α r) t → (throw α r) t → throw α r for free without the need for
additional contexts for(::) andlrec.

Fact 2.7. If Γ;∆ ⊢ v : ψ , thenFCV(v) = /0

Proof. By induction on the structure of the valuev. Sinceψ is →-free, we only have to consider the
casesv≡ x, v≡ (), v≡ nil andv≡ vl :: vr , for which the result trivially holds.

The reduction rules (c2) and (c3) require thatα /∈ FCV(v). This side condition can be omitted for
well-typed terms by the previous fact. However, since we consider the problem of confluence for untyped
terms (Section 3), we do need this additional restriction.

Robbert Krebbers 23

Definition 2.8. We define a type for the natural numbersN := [⊤], with the following operations on it.

0 := nil

S := (::) ()

nrec := λxrxs.lrec xr (λ .xs)

We let n:= Sn0 denote the representation of a natural number.

Fact 2.9. The operations onN satisfy the expected conversions.

nrec vr vs 0։ vr

nrec vr vs (Sv) = vs v (nrec vr vs v)

Colson and Fredholm [CF98] have shown that in Gödel’sT with call-by-value reduction, it takes
at least a number of steps that is linear with respect to the input for a non-trivial algorithm to reduce
to a value. In particular, it is impossible to compute the predecessor in constant time. Intuitively it is
easy to see why, consider the reductionnrec vr vs (Sv) → vs v (nrec vr vs v). Due to the restriction of
β -reduction to values, the recursive call,nrec vr vs v has to be reduced to a value before the whole term
is able to reduce to a value. Inλ ::catch we can use the control mechanism to do better.

Example 2.10. We define the predecessor functionpred : N→ N as follows.

pred := λn.catch α .nrec 0 (λx.throw α x) n

Computing the predecessor is possible in a constant number of steps.

pred n+1։ catch α .nrec 0 (λx.throw α x) (Sn)

։ catch α .(λx.throw α x) n (lrec 0 (λ x.throw α x) n)

։ catch α .(throw α n) (lrec 0 (λ x.throw α x) n)

։ catch α .throw α n։ n

Example 2.11. We define aλ ::catch-program F : [N] → N that computes the product of the elements
of a list. The interest of this program is that it uses the control mechanism to stop multiplying once the
value 0 is encountered.

F := λ l .catch α .lrec 1 H l

H := λx .nrec (throw α 0) (λy h.Sy∗h) x

Here, addition(+) and multiplication(∗) are defined as follows.

(+) := λnm.nrec m(λ y.Sy) n

(∗) := λnm.nrec 0 (λ y.m+y) n

We show a computation of F[4,0,9].

F [4,0,9]։ catch α .lrec 1 H [4,0,9]

։ catch α .nrec (throw α 0) (λy h.Sy∗h) 4 (lrec 1 H [0,9])

։ catch α .(λh.4∗h) (lrec 1 H [0,9])

։ catch α .(λh.4∗h) (throw α 0)

։ catch α .throw α 0։ 0

24 A call-by-value lambda-calculus with lists and control

Lemma 2.12. If Γ;∆ ⊢ r : σ andΓ,x : σ ;∆ ⊢ t : ρ , thenΓ;∆ ⊢ t[x := r] : ρ .

Theorem 2.13(Subject reduction). If Γ;∆ ⊢ t : ρ and t→ t ′, thenΓ;∆ ⊢ t ′ : ρ .

Proof. We have to show that each reduction rule preserves typing. Weuse Lemma 2.12 for (βv).

Lemma 2.14. Given a normal form t with;∆ ⊢ t : ρ , then either t is a value, or t≡ throw β v for some
value v and continuation variableβ .

Proof. This result is proven by induction on the derivation of ;∆ ⊢ t : ρ .

1. Let ;∆ ⊢ x : ρ with x : ρ ∈ /0. This is impossible becausex : ρ /∈ /0.

2. In the case of(), nil, (::), lrec andλx.r the result is immediate.

3. Let ;∆ ⊢ ts : τ with ;∆ ⊢ t : σ → τ and ;∆ ⊢ s : σ . By the induction hypothesis we know that the
termsr ands are either a value or athrow. Sincets is in normal form, it is impossible that either
of them is athrow. Therefore, we may assume that both are values. Now, sincet has typeσ → τ ,
we can use Lemma 2.4 to analyze the possible shapes oft.

(a) Let t ≡ lrecvr vs. By the typing rules we obtain thats has type[ρ] for someρ . So, by
Lemma 2.4 we have thats is a list. However,ts is in normal form, so this is impossible.

(b) Let t ≡ λx.r. This case is impossible becauses is a value andts is in normal form.
(c) In all other cases, the termts is a value.

4. Let ;∆ ⊢ catch α . t : ψ with ;∆,α : ψ ⊢ t : ψ . By the induction hypothesis we know thatt is a
value or athrow. If t is a value, Fact 2.7 gives us thatα /∈ FCV(t). This is impossible since
catch α . t is in normal form. Similarly, it is also impossible thatt is athrow.

5. Let ;∆ ⊢ throw α t : σ with ;∆ ⊢ t : ψ andα : ψ ∈ ∆. By the induction hypothesis we know thatt is
a value or athrow. If t is a value, we are done. Furthermore,t cannot be athrow sincethrow α t
is in normal form.

Theorem 2.15(Progress). If ; ⊢ t : ρ , then t is either a value, or there is a term t′ with t → t ′.

Proof. This result follows immediately from Lemma 2.14.

3 Confluence

To prove confluence for untyped terms ofλ ::catch, we use the notion ofparallel reduction, as intro-
duced by Tait and Martin-Löf [Bar84]. A parallel reductionrelation⇒ allows to contract a number of
redexes in a term simultaneously so as to make it being preserved under substitution. If one proves that
the parallel reduction⇒ satisfies:

• Thediamond property: if t1 ⇒ t2 andt1 ⇒ t3, then there exists at4 such thatt2 ⇒ t4 andt3 ⇒ t4.

• t1 ⇒ t2 impliest1 ։ t2 andt1 ։ t2 impliest1 ⇒∗ t2.

then one obtains confluence of→.
Following Takahashi [Tak95], we further streamline the proof by defining thecomplete development

of a termt, notationt⋄, which is obtained by contracting all redexes int. Now to prove the diamond
property of⇒, it suffices to prove thatt1 ⇒ t2 impliest2 ⇒ t⋄1.

For Parigot’sλ µ-calculus, it is well known that the naive parallel reduction is not preserved under
substitution [BHF01]. Instead, a complex parallel reduction that moves subterms located very deeply in

Robbert Krebbers 25

a term towards the outside is needed [BHF01, Nak03, GKM12]. For λ ::catch we experience another
issue. Consider the following rule.

If t ⇒ t ′, thenE[throw α t]⇒ throw α t ′

If we takethrow α1 (throw α2 (. . .throw αn () . . .)) (with n ≥ 5), then we could perform a reduction
that contracts all even numberedthrows, and also a reduction that contracts all odd numberedthrows.
Since these two reducts do not converge in a single parallel reduction step, such a parallel reduction
would not be confluent. To repair this issue we use a similar fixas in [BHF01, Nak03, GKM12]: we
allow athrow to jump over acompound context.

Definition 3.1. Compound contextsare defined as:

~E ::=� | ~Et | v~E | throw α ~E

Given a compound context~E and a term s, thesubstitution ofs for the hole in~E, notation~E[s], is defined
in the usual way.

Definition 3.2. Parallel reductiont ⇒ t ′ is inductively defined as:

1. x⇒ x, ()⇒ (), nil⇒ nil, (::)⇒ (::), andnrec⇒ nrec.

2. If t ⇒ t ′ and r⇒ r ′, then tr⇒ t ′r ′ .

3. If t ⇒ t ′, thenλx.t ⇒ λx.t ′.

4. If t ⇒ t ′, thencatch α . t ⇒ catch α . t ′.

5. If t ⇒ t ′ and v⇒ r, then(λx.t)v⇒ t ′[x := r].

6. If t ⇒ t ′, then~E[throw α t]⇒ throw α t ′.

7. If t ⇒ t ′, thencatch α .throw α t ⇒ catch α . t ′.

8. If v⇒ t andα /∈ {β}∪FCV(v), thencatch α .throw β v⇒ throw β t.

9. If v⇒ t andα /∈ FV(v), thencatch α .v⇒ t.

10. If vr ⇒ r, thenlrec vr vs nil⇒ r.

11. If vr ⇒ r, vs ⇒ s, vh ⇒ h and vt ⇒ t, thenlrec vr vs (vh :: vt)⇒ s h t(lrec r s t).

Lemma 3.3. Parallel reduction satisfies the following properties.

1. It is reflexive, i.e. t⇒ t.

2. The term v[x := w] is a value.

3. If v⇒ t, then t is a value.

4. If t ⇒ t ′, thenFV(t ′)⊆ FV(t) andFCV(t ′)⊆ FCV(t).

5. If t ⇒ t ′ and v⇒ r, then t[x := v]⇒ t ′[x := r].

Lemma 3.4. Parallel reduction enjoys the intended behavior. That is:

1. If t → t ′, then t⇒ t ′.

2. If t ⇒ t ′, then t։ t ′.

Proof. The first property is proven by induction on the derivation oft → t ′ using that parallel reduction is
reflexive and satisfies the substitution property (Lemma 3.3). The second property is proven by induction
on the derivation oft ⇒ t ′ using an obvious substitution lemma for։.

26 A call-by-value lambda-calculus with lists and control

Definition 3.5. Thecomplete developmentt⋄ is defined as:

((λx.t)v)⋄ := t⋄[x := v⋄]

(~E[throw α t])⋄ := throw α t⋄ if t 6≡ throw γ s

(catch α .throw α t)⋄ := catch α . t⋄

(catch α .throw β v)⋄ := throw β v⋄ if α /∈ {β}∪FCV(v)

(catch α .v)⋄ := v⋄ if α /∈ FCV(v)

(lrec vr vs nil)
⋄ := v⋄r

(lrec vr vs (vh :: vt))
⋄ := v⋄s v⋄h v⋄t (lrec v⋄r v⋄s v⋄t)

For variables,(), nil, (::) andnrec, the complete development is defined as the identity, and it propa-
gates through the other cases that we have omitted.

We lift the parallel reduction⇒ to compound contexts with the intended behavior that if~E ⇒ ~F and
q⇒ q′, then~E[throw α q]⇒ ~F[throw α q′].

Definition 3.6. Parallel reduction~E ⇒ ~F on compound contexts is inductively defined as:

1. �⇒�

2. throw α �⇒�

3. If ~E ⇒ ~F and t⇒ t ′, then~Et ⇒ ~Ft ′.

4. If ~E ⇒ ~F and v⇒ t, then v~E ⇒ t~F.

5. If ~E ⇒ ~F, thenthrow α ~E ⇒ throw α ~F.

6. If ~E ⇒ ~F, thenthrow β (throw α ~E)⇒ throw α ~F.

Remark that if we have that~E[throw α q]⇒ r, thenr is not necessarily of the shape~F [throw α q′]
with ~E ⇒ ~F andq⇒ q′ becauseq could be athrow.

Lemma 3.7. If ~E[throw α q1] ⇒ r and q1 6≡ throw γ s, then there exists a q2 and ~F such that r≡
~F[throw α q2] with ~E ⇒ ~F and q1 ⇒ q2.

Lemma 3.8. If t1 ⇒ t2, then t2 ⇒ t⋄1.

Proof. By induction on the derivation oft1 ⇒ t2. We consider some interesting cases.

1. Lett1 r1 ⇒ t2 r2 with t1 ⇒ t2 andr1 ⇒ r2. We distinguish the following cases:

(a) Lett1 ≡ λx.s1 andr1 a value. By distinguishing reductions we havet2 ≡ λx.s2 with s1 ⇒ s2.
Now, t2 ⇒ t⋄1 ands2 ⇒ s⋄1 by the induction hypothesis. Furthermore, we have thatr2 is a
value by Lemma 3.3. Therefore,t2 r2 ≡ (λx.s2) r2 ⇒ s⋄1[x := r⋄1]≡ (t1 r1)

⋄ by Lemma 3.3.

(b) Let t1 ≡ nrec vr vs andr1 ≡ nil. By distinguishing reductions we havet2 ≡ nrec r s and
r2 ≡ nil with vr ⇒ r and vs ⇒ s. Now, r ⇒ v⋄r by the induction hypothesis. Therefore,
t2 r2 ≡ nrec r s nil⇒ v⋄r ≡ (nrec vr vs nil)

⋄ ≡ (t1 r1)
⋄.

(c) Let t1 ≡ nrec vr vs andr1 ≡ vh :: vt . This case is similar to the previous one.
(d) Let t1 ≡ ~E[throw β q1] with q1 6≡ throw γ s. By Lemma 3.7, we havet2 ≡ ~F [throw α q2]

with ~E ⇒ ~F andq1 ⇒ q2. Now we haveq2 ⇒ q⋄1 by the induction hypothesis. Therefore,
t2 r2 ≡ ~F[throw α q2] r1 ⇒ throw α q⋄1 ≡ (t1 r1)

⋄.
(e) Letr1 ≡ ~E[throw β q1] with q1 6≡ throw γ sandt1 a value. This proof of this case is similar

to the previous one.

Robbert Krebbers 27

(f) For the remaining cases we havet2 ⇒ t⋄1 andr2 ⇒ r⋄1 by the induction hypothesis. Therefore,
t2 r2 ⇒ t⋄1 r⋄1 ≡ (t1 r1)

⋄.

2. Letcatch α . t1 ⇒ catch α . t2 with t1 ⇒ t2. We distinguish the following cases:

(a) Let t1 ≡ throw α q1 with q1 6≡ throw γ s. By distinguishing reductions we obtain that
t2 ≡ throw α q2 with q1 ⇒ q2. Now we haveq2 ⇒ q⋄1 by the induction hypothesis. There-
fore,catch α . t2 ≡ catch α .throw α q2 ⇒ catch α .q⋄1 ≡ (catch α . t1)⋄.

(b) Let t1 ≡ throw α (~E[throw β q1]) with q1 6≡ throw γ s. We havet2 ≡ ~F [throw β q2] with
throw α ~E ⇒ ~F andq1 ⇒ q2 by Lemma 3.7. Also,q2 ⇒ q⋄1 by the induction hypothesis.
Therefore,catch α . t1 ≡ catch α .~F[throw β q2]⇒ catch α .q⋄1 ≡ (catch α . t1)⋄.

(c) Let t1 ≡ throw β v1 with α /∈ {β}∪FV(v1). By distinguishing reductions we obtain that
t2 ≡ throw β v2 with v1 ⇒ v2. Now, v2 ⇒ v⋄1 by the induction hypothesis, andα /∈ FCV(v2)
by Lemma 3.3. So,catch α . t2 ≡ catch α .throw β v2 ⇒ throw β v⋄1 ≡ (catch α . t1)⋄.

(d) Let t1 be a value withα /∈ FCV(t1). We havet2 ⇒ t⋄1 by the induction hypothesis. Also,t2 is
a value andα /∈ FCV(t2) by Lemma 3.3. Therefore,catch α . t2 ⇒ t⋄1 ≡ (catch α . t1)⋄.

(e) For the remaining cases we havet2 ⇒ t⋄1 by the induction hypothesis. As a result we have
catch α . t2 ⇒ catch α . t⋄1 ≡ (catch α . t1)⋄.

3. Let~E[throw α t1]⇒ throw α t2 with t1 ⇒ t2. We distinguish the following cases:

(a) Lett1 ≡ ~E[throw β q1] with q1 6≡ throw γ s. This case is similar to 1d.

(b) For the remaining cases we havet2 ⇒ t⋄1 by the induction hypothesis. As a result we have
throw α t2 ⇒ throw α t⋄1 ≡ (~E[throw α t1])⋄.

4. Letcatchα .throw α t1 ⇒ catchα . t2 with t1 ⇒ t2. We havet2 ⇒ t⋄1 by the induction hypothesis.
As a result we havecatch α . t2 ⇒ catch α . t⋄1 ≡ (catch α .throw α t1)⋄.

5. Letcatch α .throw β v1 ⇒ throw β t2 with v1 ⇒ t2, α /∈ {β}∪FV(v1). We havet2 ⇒ v⋄1 by the
induction hypothesis. Furthermore,t2 is a value by Lemma 3.3. As a result we havethrow β t2 ⇒
throw β v⋄1 ≡ (catch α .throw β v1)

⋄.

6. Letcatch α .v1 ⇒ t2 with v1 ⇒ t2 andα /∈ FV(v1). We havet2 ⇒ v⋄1 by the induction hypothesis
andt2 is a value by Lemma 3.3. Therefore,t2 ⇒ v⋄1 ≡ (catch α .v1)

⋄.

Corollary 3.9. If t1 ⇒ t2 and t1 ⇒ t3, then there exists a t4 such that t2 ⇒ t4 and t3 ⇒ t4.

Proof. Taket4 := t⋄1. Now we havet2 ⇒ t⋄1 andt3 ⇒ t⋄1 by Lemma 3.8.

Theorem 3.10(Confluence). If t1 ։ t2 and t1 ։ t3, then there exists a t4 such that t2 ։ t4 and t3 ։ t4.

Proof. By Corollary 3.9 and a simple diagram chase (as in [Bar84]), we obtain confluence of⇒. Now,
confluence of→ is immediate by Lemma 3.4.

4 Strong normalization

In this section we prove that reduction inλ ::catch is strongly normalizing. We use the reducibility
method, which is originally due to Tait [Tai67]. By this method, instead of proving that a termt of type
ρ is strongly normalizing, one provest ∈ [[ρ]], where[[σ → τ]] := {t | ∀s∈ [[σ]] . ts∈ [[τ]]}.

Although Tait’s method does work for the call-by-nameλ µ-calculus [Par97], David and Nour [DN05]
have shown that it does not extend to its symmetric variant. They proved that the property, ifr ∈ SN and

28 A call-by-value lambda-calculus with lists and control

t[x := r] ∈ [[σ]], then(λx.t) r ∈ [[σ]], no longer holds due to the reductiont (µα .c)→ µα .c[α := α(t�)].
However, the similar reductiont (throw α r)→ throw α r in our calculus consumest without perform-
ing any (structural) substitution inr. So, forλ ::catch this problem does not exist.

It may be possible to prove strong normalization by use of a strictly reduction preserving translation
into another system that is already known to be strongly normalizing. For example, one may try to
use the obvious translation into the second-order call-by-valueλ µ-calculus where the data type of lists
can be defined as[τ] := ∀X . X → (τ → X → X)→ X. However, this translation does not preserve the
reduction(::). We are unaware of other systems that are both known to be strongly normalizing, and
allow a straightforward strictly reduction preserving translation.

Definition 4.1. The set ofstrongly normalizing terms, SN, contains the terms t for which the length of
each reduction sequence starting at t is bounded. We use the notationν(t) to denote this bound.

Due to the addition of lists toλ ::catch, the interpretation becomes a bit more involved than for the
case ofλ→. Intuitively, we want our interpretation to ensure that each element of the listt ∈ [[[σ]]] is
contained in[[σ]].

Definition 4.2. Given a set of terms S, the set of termsLS is inductively defined by the following rule.

∀v w . if t ։ v :: w then v∈ S and w∈ LS

t ∈ LS

Notice that the above definition ensures thatnil ∈ LS becausenil cannot reduce tov :: w.

Definition 4.3. The interpretation[[ρ]] of a typeρ is defined as:

[[⊤]] := SN

[[[σ]]] := SN∩L[[σ]]

[[σ → τ]] := {t | ∀s∈ [[σ]] . ts∈ [[τ]]}

Lemma 4.5 and 4.8 establish an important property:[[ψ]] = SN for →-free typesψ . Since thecatch
operator is restricted to→-free types, this means thatcatch α . r ∈ SN impliescatch α . r ∈ [[ψ]]. This
property is the key result to prove thatr ∈ [[ψ]] impliescatch α . r ∈ [[ψ]] (Lemma 4.15).

The propertyr ∈ [[σ]] impliescatch α . r ∈ [[σ]] does not hold for all typesσ . For example, consider
t ≡ (catch α .throw α ω)ω with ω = λx.xx. By Corollary 4.10 we havethrow α ω ∈ [[⊤→⊤]] and
using the above result we would have hadt ∈ SN. This is impossible becauset ։ ωω → ωω → . . .

Definition 4.4. We define thesizeof t, notationℓ(t), as the number of symbols in t. For t∈ SN, we define
ℓn(t) as the size of the normal form of t.

Lemma 4.5. If ψ is→-free, thenSN⊆ [[ψ]].

Proof. We have to show that for eacht ∈ SN, we havet ∈ [[ψ]]. We proceed by well-founded induction
on ℓn(t) and a case distinction on the structure ofψ . The only interesting case is (list), where we have to
show thatt ∈ L[[ψ]]. So, lett ։ v :: w for valuesv andw. We havev∈ SN ⊆ [[ψ]] andw∈ [[[ψ]]] by the
induction hypothesis asℓn(v)< ℓn(t) andℓn(w)< ℓn(t). Hence,t ∈ L[[ψ]] as required.

Lemma 4.6. If t ∈ [[σ]] and t։ t ′, then t′ ∈ [[σ]].

Proof. We prove this result by structural induction onσ .

(unit) Let t ∈ [[⊤]] = SN andt ։ t ′. By definition ofSN we havet ′ ∈ SN.

Robbert Krebbers 29

(list) Let t ∈ [[[σ]]] = SN∩L[[σ]] andt ։ t ′. As we havet ′ ∈ SN by definition ofSN, it remains to prove
that t ′ ∈ L[[σ]]. So, lett ′ ։ v :: w for valuesv andw. Now we havet ։ t ′ ։ v :: w. Therefore,
v∈ [[σ]] andw∈ L[[σ]] by the assumption thatt ∈ L[[σ]].

(→) Let t ∈ [[σ → τ]] andt ։ t ′. Since we have to prove thatt ′ ∈ [[σ → τ]], let r ∈ [[σ]]. By assumption
we havetr ∈ [[τ]]. Furthermore we havetr ։ t ′r becauset ։ t ′. Therefore,t ′r ∈ [[τ]] by the
induction hypothesis.

Definition 4.7. We let~t and~u denote a sequence of terms. The set
−→
SN contains all sequences of strongly

normalizing terms.

Lemma 4.8. We have the following results:

1. [[σ]]⊆ SN.

2. If~u∈
−→
SN then x~u∈ [[σ]].

Proof. The results are proven simultaneously by structural induction onσ .

(unit) Both results are immediate.

(list) Property (1).[[[σ]]] = SN∩L[[σ]] ⊆ SN.

Property (2). Let~u∈
−→
SN. We have to show thatx~u∈ [[[σ]]] = SN∩L[[σ]]. Since it is immediate that

x~u∈ SN, it remains to show thatx~u∈L[[σ]]. However, as reductionsx~u։ v :: w are impossible, we
are done.

(→) Property (1). Lett ∈ [[σ → τ]]. We havex∈ [[σ]] by the induction hypothesis of property (2), and
thereforetx∈ [[τ]]. By the induction hypothesis of property (1) we have[[τ]]⊆ SN, sot ∈ SN.

Property (2). Let~u∈
−→
SN. We have to show thatx~u ∈ [[σ → τ]], so letr ∈ [[σ]]. By the induction

hypothesis of property (1) we haver ∈ SN, and thereforex~ur ∈ [[τ]] by the induction hypothesis of
property (2). Therefore,x~u∈ [[σ → τ]] as required.

Lemma 4.9. If r ∈ SN and~u∈
−→
SN, then(throw α r)~u∈ SN.

Proof. We prove this result by induction on the length of~u.

1. We prove that we havethrow α r ∈ SN by induction onν(r). We proceed by distinguishing the
reductionsthrow α r → q and show that we haveq∈ SN for each such aq.

(a) Letthrow α (throw β t)→ throw β t. The result holds by assumption.

(b) Letthrow α r → throw α r ′ with r → r ′. The result follows from the induction hypothesis.

2. We prove that we have(throw α r) t~u∈ SN by induction onν(t)+ν((throw α r)~u). It is easy to
verify thatq∈ SN for all reductions(throw α r) t~u→ q.

Corollary 4.10. If r ∈ SN and~u∈
−→
SN, then(throw α r)~u∈ [[σ]].

Proof. We prove this result by structural induction onσ .

(unit) This case is a direct consequence of Lemma 4.9.

(list) We have to show that(throw α r)~u ∈ [[[σ]]] = SN∩L[[σ]]. As we have(throw α r)~u ∈ SN by
Lemma 4.9, it remains to show that(throw α r)~u ∈ L[[σ]]. So, let(throw α r)~u ։ v :: w for
valuesv andw. By distinguishing reductions we see that this reduction isimpossible.

(→) This case follows directly from the induction hypothesis and Lemma 4.8.

30 A call-by-value lambda-calculus with lists and control

It would be convenient if we could provet ∈ [[σ]] by showing that for all reductionst → t ′ we have
t ′ ∈ [[σ]]. Unfortunately, this result does not hold in general. For example, whereas the termω :: nil is
in normal form, we do not haveω :: nil ∈ [[[()→ ()]]]. Similarly to Girardet al. [GTL89], we restrict
ourselves to the termst that areneutral.

Definition 4.11. A term isneutralif it is not of the shapeλx.r, nrec vr vs, or v :: w.

Lemma 4.12. If t is neutral, and for all terms t′ with t → t ′ we have t′ ∈ [[σ]], then t∈ [[σ]].

Proof. The results is proven by structural induction onσ .

(unit) The result is immediate.

(list) Let t be a neutral term such that for all termst ′ with t → t ′ we havet ′ ∈ [[[σ]]]. We have to prove
thatt ∈ [[[σ]]] = SN∩L[[σ]]. By Lemma 4.8 we have[[[σ]]]⊆ SN, and thereforet ∈ SN ast ′ ∈ SN for
eacht ′ with t → t ′ by assumption. It remains to show thatt ∈ L[[σ]], so lett ։ v :: w for valuesv
andw. Sincet is neutral, there should be a termt ′ such thatt → t ′ ։ v :: w. For such a termt ′ we
havet ′ ∈ [[[σ]]] by assumption, hencev∈ [[σ]] andw∈ L[[σ]]. Therefore,t ∈ L[[σ]] as required.

(→) Let t be a neutral term such that for all termst ′ with t → t ′ we havet ′ ∈ [[σ → τ]]. We have to prove
thatt ∈ [[σ → τ]], so letr ∈ [[σ]]. By the induction hypothesis it is sufficient to show that iftr → q
thenq∈ [[τ]]. By Lemma 4.8 we haver ∈ SN, so we proceed by induction onν(r). We distinguish
the following reductions.

(a) Let tr → t ′r with t → t ′. Now we havet ′ ∈ [[σ → τ]] by assumption. Hence,t ′r ∈ [[τ]] by
definition, so we are done.

(b) Let tr → tr ′ with r → r ′. The result follows from the induction hypothesis.

(c) Let (throw α s) r → throw α s. By Lemma 4.8 we have[[σ → τ]] ⊆ SN, and therefore
throw α s∈ SN ast ′ ∈ SN for eacht ′ with throw α s→ t ′ by assumption. As a consequence
we havethrow α s∈ [[τ]] by Corollary 4.10.

(d) Letv(throwα s)→ throwα s. By assumption we havethrowα s∈ [[σ]], sothrowα s∈ SN

by Lemma 4.8. Hence,throw α s∈ [[τ]] by Corollary 4.10.

No other reductions are possible becauset is neutral (so, in particular it cannot be of the shape
λx.s or nrec vr vs).

Lemma 4.13. If r ∈ SN and t[x := r] ∈ [[σ]], then(λx.t) r ∈ [[σ]].

Proof. We prove this result by well-founded induction onν(t)+ν(r). By Lemma 4.12 it is sufficient to
show that for eachq with (λx.t) r → q we haveq∈ [[σ]]. We consider some interesting reductions.

1. Let(λx.t)v→ t[x := v]. The result holds by assumption.

2. Let(λx.t)(throw β r)→ throw β r. In this case we havethrow β r ∈ [[σ]] by Corollary 4.10.

Lemma 4.14. If t ∈ [[σ]] and s∈ [[[σ]]], then t:: s∈ [[[σ]]].

Proof. First we have to prove thatt :: s∈ SN. That means, for eachq with t :: s→ q we haveq∈ SN. We
prove this result by induction onν(t)+ν(s). We consider the following reductions.

1. Letthrow α r :: s→ (throw α r) s. Since we havethrowα r ∈ [[σ]] ands∈ [[[σ]]] by assumption,
we obtain thatr,s∈ SN by Lemma 4.8. Therefore,(throw α r) s∈ SN by Lemma 4.9.

2. Letv :: throw α r → throw α r. Since we havethrow α r ∈ [[[σ]]] by assumption, we obtain that
throw α r ∈ SN by Lemma 4.8.

Robbert Krebbers 31

Secondly, we have to prove thatt :: s∈ L[[σ]]. So, lett :: s։ v :: w for valuesv andw. By distinguishing
reductions we obtain thatt ։ v ands։ w. Therefore, we havev∈ [[σ]] andw∈ L[[σ]] by Lemma 4.6.
Hence,t :: s∈ L[[σ]] as required.

Lemma 4.15. If ψ is→-free and r∈ [[ψ]], thencatch α . r ∈ [[ψ]].

Proof. By Lemma 4.5 it is sufficient to prove thatcatchα . r ∈ SN. We prove this result by well-founded
induction on the lexicographic order onν(r) andℓ(r). Let q with catch α . r → q. It remains to prove
prove thatq∈ SN. We consider the following interesting reductions.

1. Letcatch α .throw α r → catch α . r. The result follows from the induction hypothesis as we
haveν(r)≤ ν(throw α r) andℓ(r)< ℓ(throw β r).

2. Letcatch α .throw β v→ throw β v. The result holds by Lemma 4.8.

3. Letcatch α .v→ v. The result holds by Lemma 4.8.

Lemma 4.16. If r ∈ [[ρ]], s∈ [[σ → [σ]→ [σ]]], and t∈ [[[σ]]], thenlrec r s t ∈ [[ρ]].

Proof. We prove this result by well-founded induction onν(r)+ ν(s)+ ν(t)+ ℓn(t). By Lemma 4.12
it is sufficient to show that for eachq with lrec r s t → q we haveq∈ [[ρ]]. We consider the following
interesting reductions.

1. Letlrec vr vs nil→ vr . The result holds by assumption.

2. Let lrec vr vs (vh :: vt) → vs vh vt (lrec vr vs vt). By the definition ofvh :: vt ∈ [[[σ]]] we obtain
thatvh ∈ [[σ]] andvt ∈ [[[σ]]]. Therefore, we havelrec vr vs vt ∈ [[ρ]] by the induction hypothesis
asℓn(vt)≤ ℓn(vh :: vt). Now, the result follows from the assumption.

3. Letlrec (throw α r) s t→ (throw α r) s t. By assumption and Lemma 4.8 we haver,s, t ∈ SN,
hence(throw α r) s t∈ [[ρ]] by Corollary 4.10.

Corollary 4.17. If x1 : ρ1, . . . ,xn : ρn;∆ ⊢ t : τ and ri ∈ [[ρi]] for all 1≤ i ≤ n, then

t[x1 := r1, . . . ,xn := rn] ∈ [[τ]].

Proof. We prove this result by induction on the derivation ofΓ;∆ ⊢ t : τ . All cases follow immediately
from the results proven in this section.

Theorem 4.18(Strong normalization). If Γ;∆ ⊢ t : ρ , then t∈ SN.

Proof. We havexi ∈ [[ρi]] for eachxi : ρi ∈ Γ by Lemma 4.8. Therefore,t ∈ [[ρ]] by Corollary 4.17 and
hencet ∈ SN by Lemma 4.8.

5 Conclusions

In this paper we have definedλ ::catch and proven that it satisfies the usual meta theoretical properties:
subject reduction, progress, confluence, and strong normalization. These proofs require minor extensions
of well-known proof methods. This section concludes with some remarks on possible extensions.

An obvious extension is to add more simple data types, like products, sums, finitely branching trees,
etc. We expect our proofs to extend easily to these data types. However, adding more complex data
types presents some challenges. For example, consider the typetree of unlabeled trees with infinitary

32 A call-by-value lambda-calculus with lists and control

branching nodes, with the constructorsleaf : tree andnode : (N→ tree)→ tree. A naive extension
of the→-free restriction would not forbidcatch α .node (λx.throw α leaf) which does not reduce to
a value. It would be interesting to modify the→-free restriction to avoid this.

Instead of using a Gödel’sT style recursor, it would be interesting to consider a systemwith a pattern
match and fixpoint construct. First of all, this approach is more convenient as Gödel’sT style recursors
only allows recursion on direct subterms. Secondly, this approach would avoid the need for tricks as in
Example 2.10 to improve efficiency.

Another useful extension is to add second-order types à la SystemF. Doing this in a naive way results
in either a loss of subject reduction (if we define type variables to be→-free) or makes usingcatch and
throw for the second-order fragment impossible (if we define type variables not to be→-free).

Instead of using the statically bound control operatorscatch andthrow, it would be interesting to
consider their dynamically bound variants. In a dynamically boundcatch andthrow mechanism, that
is for example used in the programming languageCommon Lisp, substitution is not capture avoiding for
continuation variables. We do not see problems to use such a mechanism instead.

The further reaching goal of this paper is to define aλ -calculus with data types and control operators
that allows program extraction from proofs constructed using classical reasoning. In such a calculus one
can write specifications of programs, which can be proven using (a restricted form of) classical logic.
Program extraction would then allow to extract a program from such a proof where the classical reasoning
steps are extracted to control operators. Herbelin’s IQCMP-calculus [Her10] could be interesting as it
includes first-order constructs.

This goal is particularly useful for obtaining provably correct algorithms where the use of control
operators would really pay off (for example if a lot of backtracking is performed). See [CGU00] for
applications to classical search algorithms. The work of Makarov [Mak06] may also be useful here, as it
gives ways to optimize program extraction to make it feasible for practical programming.

Acknowledgments. I am grateful to Herman Geuvers and James McKinna for many fruitful discus-
sions, and to the anonymous referees for providing several helpful suggestions. I thank Freek Wiedijk
for feedback on a draft version of this paper. This work is financed by the Netherlands Organisation for
Scientific Research (NWO).

References

[Bar84] H. P. Barendregt.The lambda calculus: its syntax and semantics, volume 103 ofStudies in Logic and
the Foundations of Mathematics. North-Holland, 1984.

[BHF01] K. Baba, S. Hirokawa, and K. Fujita. Parallel Reduction in Type Freeλµ -calculus.ENTCS, 42:52–66,
2001. doi:10.1016/S1571-0661(04)80878-8.

[BU02] G. Barthe and T. Uustalu. CPS Translating Inductive and Coinductive Types. InPEPM, pages 131–142.
ACM, 2002. doi:10.1145/509799.503043.

[CF98] L. Colson and D. Fredholm. System T, call-by-value and the minimum problem.Theoretical Computer
Science, 206(1-2):301 – 315, 1998. doi:10.1016/S0304-3975(98)00011-5.

[CGU00] J. L. Caldwell, I. P. Gent, and J. Underwood. Search Algorithms in Type Theory.Theoretical Computer
Science, 232(1-2):55–90, 2000. doi:10.1016/S0304-3975(99)00170-X.

[CP11] T. Crolard and E. Polonowski. A program logic for higher-order procedural variables and non-local
jumps, 2011. Technical report TR-LACL-2011-4.http://arxiv.org/abs/1112.1554.

http://dx.doi.org/10.1016/S1571-0661(04)80878-8
http://dx.doi.org/10.1145/509799.503043
http://dx.doi.org/10.1016/S0304-3975(98)00011-5
http://dx.doi.org/10.1016/S0304-3975(99)00170-X
http://arxiv.org/abs/1112.1554

Robbert Krebbers 33

[Cro99] T. Crolard. A confluent lambda-calculus with a catch/throw mechanism.Journal of Functional Pro-
gramming, 9(6):625–647, 1999.

[DN05] R. David and K. Nour. Why the usual candidates of reducibility do not work for the symmetricλµ -
calculus.ENTCS, 140:101–111, 2005. doi:10.1016/j.entcs.2005.06.020.

[GKM12] H. Geuvers, R. Krebbers, and J. McKinna. Theλ µT-calculus. Annals of Pure and Applied Logic,
2012. doi:10.1016/j.apal.2012.05.005.

[Gri90] T. G. Griffin. A Formulae-as-Types Notion of Control. In POPL, pages 47–58. ACM, 1990.
doi:10.1145/96709.96714.

[GTL89] J. Y. Girard, P. Taylor, and Y. Lafont.Proofs and Types. Cambridge University Press, 1989.

[Her10] H. Herbelin. An Intuitionistic Logic that Proves Markov’s Principle. InLICS, pages 50–56. IEEE
Computer Society, 2010. doi:10.1109/LICS.2010.49.

[Mak06] Y. Makarov. Practical program extraction from classical proofs. InMFPS, volume 155 ofENTCS,
pages 521 – 542, 2006. doi:10.1016/j.entcs.2005.11.071.

[Nak03] K. Nakazawa. Confluency and Strong Normalizabilityof Call-by-Valueλµ -calculus.Theoretical Com-
puter Science, 290(1):429–463, 2003. doi: 10.1016/S0304-3975(01)00380-2.

[Par92] M. Parigot. λµ-calculus: An Algorithmic Interpretation of Classical Natural Deduction. InLPAR,
volume 624 ofLNCS, pages 190–201, 1992. doi:10.1007/BFb0013061.

[Par93] M. Parigot. Classical Proofs as Programs. InKurt Gödel Colloquium, volume 713 ofLNCS, pages
263–276, 1993. doi:10.1007/BFb0022575.

[Par97] M. Parigot. Proofs of Strong Normalisation for Second Order Classical Natural Deduction.Journal of
Symbolic Logic, 62(4):1461–1479, 1997. doi:10.2307/2275652.

[Py98] W. Py.Confluence enλ -calcul. PhD thesis, Université de Savoie, 1998.

[RS94] J. Rehof and M. H. Sørensen. Theλ∆-calculus. InTACS, volume 789 ofLNCS, pages 516–542, 1994.
doi:10.1007/3-540-57887-0113.

[Tai67] W. W. Tait. Intensional Interpretations of Functionals of Finite Type I. Journal of Symbolic Logic,
32(2):198–212, 1967. doi:10.2307/2271658.

[Tak95] M. Takahashi. Parallel Reductions inλ -Calculus. Information and Computation, 118(1):120–127,
1995. doi:10.1006/inco.1995.1057.

http://dx.doi.org/10.1016/j.entcs.2005.06.020
http://dx.doi.org/10.1016/j.apal.2012.05.005
http://dx.doi.org/10.1145/96709.96714
http://dx.doi.org/10.1109/LICS.2010.49
http://dx.doi.org/10.1016/j.entcs.2005.11.071
http://dx.doi.org/ 10.1016/S0304-3975(01)00380-2
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1007/BFb0022575
http://dx.doi.org/10.2307/2275652
http://dx.doi.org/10.1007/3-540-57887-0_113
http://dx.doi.org/10.2307/2271658
http://dx.doi.org/10.1006/inco.1995.1057

	1 Introduction
	1.1 Related work
	1.2 Outline

	2 The system
	3 Confluence
	4 Strong normalization
	5 Conclusions

