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We use Gödel’s Dialectica interpretation to analyse Nash-Williams’ elegant but non-constructive
‘minimal bad sequence’ proof of Higman’s Lemma. The result is a concise constructive proof of
the lemma (for arbitrary decidable well-quasi-orders) in which Nash-Williams’ combinatorial idea is
clearly present, along with an explicit program for finding an embedded pair in sequences of words.

1 Introduction

We call a preorder(X,≤X) a well-quasi-order(WQO) if any infinite sequence(xi) has the property
that xi ≤X x j for somei < j. The theory of WQOs contains several results which state that certain
constructions on WQOs inherit well-quasi-orderedness, the most famous being Kruskal’s tree theorem
[11]. A special case of this theorem is Higman’s lemma:

Theorem 1 (Higman, [9]). If (X,≤X) is a WQO, then so is the set(X∗,≤X∗) of words in X under the
embeddability relation≤X∗ , where〈x0, . . . ,xm−1〉 ≤X∗ 〈x′0, . . . ,x

′
n−1〉 iff there is a strictly increasing map

f : [m]→ [n] with xi ≤X x′f i for all i < m.

A short proof of Higman’s lemma (and more generally Kruskal’s theorem) was given by Nash-
Williams [13], using an elegant but non-constructive combinatorial idea known as theminimal bad se-
quenceargument.

Higman’s lemma has attracted a great deal of attention in logic and computer science, and has been a
focal point of research into computational aspects of classical reasoning used in infinitary combinatorics.
The constructive content of Nash-Williams’ minimal bad sequence argument has been widely analysed
(see for instance [5, 19]), and in particular, constructivecontent has been extracted from the proof using
formal methods such theA-translation [12] and inductive definitions [6]. An extensive study of program
extraction for Higman’s lemma has been carried out by Bergerand Seisenberger (see [3, 17]), who
improve the aforementioned techniques and implement them in the MINLOG system.

In this article we give another constructive proof of Higman’s lemma based on the minimal bad
sequence argument. The novelty of our approach is that we usea technique that has not been applied
in this context - Gödel’sDialectica interpretation. The combination of the negative translation and the
Dialectica interpretation forms an extremely powerful andefficient method for extracting programs from
classical proofs - testament to this is its central role in the well-knownproof miningprogram (see [10]).

The formal extraction of computational information from proofs often results in output that is com-
plex, highly syntactic and difficult to understand inmathematicalterms. However, the use of proof
theoretic techniques to analyse the constructive content of classical reasoning is becoming increasingly
relevant in mathematics, therefore we believe that it is important to produce case studies in which these
techniques are applied in a transparent and intuitive manner.
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50 A Constructive Proof of Higman’s Lemma

The goal of this article is not just a new proof of Higman’s lemma, but a case study that sheds
some light on the functional interpretation of proofs in infinitary combinatorics. Our emphasis here
is not on ‘mining’ the proof for quantitative information but to produce a constructive justification of
Higman’s lemma that can actually be read as a mathematical proof, and in which Nash-Williams’ original
combinatorial idea is clearly present. In addition, we givea heuristic account of the operational behaviour
of the resulting program.

1.1 Preliminaries

We formalise Higman’s lemma in the languagePAω of Peano arithmetic in all finite types (see e.g. [1]
for details), although throughout the paper we endeavour toavoidexcessiveformality and make various
syntactic shortcuts to keep things as readable as possible.By extendingPAω with the axiom ofdependent
choice

DC : ∀n,xX∃yX An(x,y) →∀x0∃ fN→X( f (0) = x0∧∀n An( f n, f (n+1)))

over arbitrary typesX, one obtains a theory of analysis capable of formalising a large portion of mathe-
matics, including Nash-Williams’ minimal bad sequence construction.

Notation. We make use of the following conventions and abbreviations.

• 0X denotes a canonical element of typeX.

• Because we will be confronted with a large number of variables, we often use the convention that
when a term of typeX is denotedx, sequences of terms of the same type will often be denoted in
bold typex.

• s∗α represents the concatenation of the finite sequencesand a finite/infinite sequenceα .

• We writes≺ α when the finite sequences is an initial segment of a finite/infinite sequenceα .

• [α ](n) is the initial segment of the infinite sequenceα of sizen.

• We writeaEb when a worda: X∗ is an initial segment ofb i.e. |a| ≤ |b| andai = bi for all i < |a|.
If a is aprefix (|a|< |b|) we writea⊳b.

• Given two sequences of wordsu andv we writeuEn v :≡ ([u](n) = [v](n)∧unEvn) andu⊳n v :≡
([u](n) = [v](n)∧un⊳vn) - the latter simply states thatu is lexicographically less thanv at pointn
with respect to the prefix relation⊳.

1.2 The functional interpretation of proofs in PA
ω +DC

This article assumes familiarity with Gödel’s functionalinterpretation of classical proofs, by which we
mean the Dialectica interpretation combined with the negative translation. We do not have space to give
details of the interpretation - for this the reader is referred to [1]. However, it is useful to recall a few
basic facts.

• The functional interpretation ofΣ2 formulas coincides with the well-knownno-counterexample in-
terpretationof Kreisel, interpretingA≡∃x∀yA0(x,y) as a functionalF that witnesses∀ f∃xA(x, f x).
Intuitively F justifiesA by refuting arbitrary counterexample functionsf attempting to disproveA.

• The functional interpretation interpretsΠ2 formulas∀x∃yB(x,y) directly with a functional f satis-
fying ∀xB(x, f x), due to the fact that it admits Markov’s principle. This means that we can use the
interpretation to extract programs from evenclassicalproofs ofΠ2 theorems.
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It was shown by Gödel thatPAω has a functional interpretation in the systemT of higher-type
primitive recursive functionals. On the other hand, systemT is insufficient to interpret the combination
of classical logic and countable choice. For this, one typically assigns a direct realizer to the negative
translation of choice, usually some form of backward induction such as the well-knownbar recursion
devised by Spector in [18]. In this article dependent choiceis interpreted using the more recentproduct
of selection functionsintroduced in [7].

Definition 2. A selection functionis any functional of typeJRX :≡ (X → R) → X, for arbitrary X, R.
Given an indexed family of selection functionsε : X∗ → JRX together with functionals q: Xω → R and
ϕ : Xω → N, the product of selection functionsEPS is defined by the recursion schema

EPSϕ
s (ε)(q)

Xω

:=

{
0Xω if ϕ(ŝ)< |s|

as∗EPS
ϕ
s∗as(ε)(qas) otherwise

where as= εs(λx . qx(EPS
ϕ
s∗x(ε)(qx))), qx is defined by qx(α) := q(x∗α) andŝ is the canonical extension

of s.

EPS is a variant of bar recursion that makes explicit the idea that bar recursion can be viewed as kind
of backtracking algorithm analogous to the computation of optimal strategies in games ofunbounded
length. We feel it is good practise to choose it over Spector’s original bar recursion because it comes nat-
urally equipped with this game semantics. The idea is to imagine q: Xω → Rspecifying the outcome of
a sequential game with moves of typeX and outcome of typeR, theεs asselection functionsthat specify
a strategy for round|s| given thats has already been played andϕ : Xω → N as a control functional that
indicates when the game has terminated. For further detailson theEPS see [8]. By unwinding Definition
2 one can prove the following key result.

Theorem 3(Main theorem onEPS, cf. [16]). Settingα :=EPS
ϕ
〈〉(ε)(q) and ps := λx .qs∗x(EPS

ϕ
s∗x(ε)(qs∗x))

solves the following system of equations

αn
X
= ε[α ](n)(p[α ](n))

q(α)
R
= p[α ](n)(αn)

(1)

for all n ≤ ϕα .

As originally established by Spector, in order to witness the functional interpretation of dependent
choice it is sufficient to solve the equations (1) givenε , q andϕ . Therefore a consequence of Theorem 3
is thatEPS realizes the functional interpretation of dependent choice. For full details of the interpretation
of choice viaEPS the reader is referred to [16]. In this article however, it isenough to know thatEPS
solves (1) - in our interpretation of the minimal bad sequence construction an instance of these equations
naturally arises and we will solve them directly usingEPS, bypassing the formal interpretation of choice.

The statement thatX∗ is a WQO can be written as aΠ2 sentence. By formalising the classical
proof of Higman’s lemma inPAω +DC, we guarantee in theory that given a realizer for the well-quasi-
orderedness ofX we can extract a direct realizerΓ : (X∗)ω →N in T+EPS that bounds the search for an
embedded pair in an arbitrary sequence of words. We formalise the proof in Sect. 3 and extract a realizer
Γ in Sect. 4.

2 A Classical Proof of Higman’s Lemma

We begin by presenting Nash-Williams’ proof of Higman’s lemma. First we need the following simple
result.
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Lemma 4. In a WQO(X,≤X), any sequence(xi) has an infinite increasing subsequence.

Proof. For general WQOs this is an easy consequence of Ramsey’s theorem.

In the following we call a sequence in a preorderX goodif xi ≤X x j for somei < j. A sequence is
bad if it is not good.X is a WQO if all sequences inX are good.

Proof of Theorem 1 (Nash-Williams, [13]).Suppose for contradiction thatX is a WQO, but there exists
at least one bad sequenceu in (X∗)ω . Then among all bad sequences we pick aminimalbad sequence as
follows:

1. Choosev0 to be an element ofX∗ with the property thatv0 is the first element of some bad sequence
but no prefix ofv0 extends to a bad sequence in this way. Such an element exists by the assumption
that we have at least one bad sequenceu.

2. Given thatv0, . . . ,vn−1 have been selected, choosevn to be an element with the property that
v0, . . . ,vn starts a bad sequence butv0, . . . ,vn−1,y does not extend to a bad sequence for any prefix
y⊳vn.

By dependent choice we can construct an infinite sequence(vi) in this manner. It is easy to see that(vi)
must itself be bad and therefore in particular each wordvi must be non-empty, so we can writevi = ṽi ∗xi

where thexi form an infinite sequence inX.
Now by Lemma 4 the sequence(xi) has an increasing subsequence

xi0 ≤X xi1 ≤X . . . .

Consider the sequence
v0, . . . ,vi0−1, ṽi0, ṽi1, . . . .

This sequence must be bad, else(vi) would be good, but ˜vi0 is a proper initial segment ofvi0, contradicting
the minimality of(vi) at i0. Therefore there cannot exist an initial bad sequenceu in X∗.

3 Formalising the Classical Proof

We now formalise Nash-Williams’ proof inPAω +DC, so that we are ready to apply the functional
interpretation in the next section. Given a preorder(X,≤X) define the predicateθX on Xω ×N by

θX(x, j) :≡ ∀i0 < i1 ≤ j(xi0 �X xi1).

We define the predicateθX∗ on (X∗)ω ×N similarly. We suppress the subscript onθ when it is clear
which type it applies to.

Remark 5. In this article the intuition is that the underlying WQO X consists of elements of type0, and
that the relation≤X is decidable. ThereforeE, ≺, En andθ will all be decidable over both X and X∗.

A sequencex is bad is it satisfies theΠ1 predicate∀ jθ(x, j). The preorderX is a WQO if the closed
Π2 predicateWQO[X] :≡ ∀x∃ j¬θX(x, j) holds, similarlyX∗ is a WQO ifWQO[X∗] :≡ ∀u∃ j¬θX∗(u, j)
holds. Higman’s lemma can then be formally written as

WQO[X]→WQO[X∗].
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In the proof of Higman’s lemma, the hypothesisWQO[X] appears in the form given by Lemma 4, namely
that any sequence inX has an infinite monotone subsequence:

MonSeq[X] :≡ ∀xXω
∃gN→N∀k∀i < j ≤ k(gi < g j∧xgi ≤X xg j). (2)

In our interpretation of Nash-Williams’ proof we do not analyse the computational content of Lemma 4,
rather we directly interpret

MonSeq[X]→WQO[X∗].

There are two reasons for this - the first is that in general thepassage fromWQO[X] to MonSeq[X]
requires Ramsey’s theorem and therefore full dependent choice, so while one could in theory interpret
Lemma 4 using bar recursion or the product of selection functions, in this article we wish to focus on the
main content of Nash-William’s proof, so we omit these details.

The second reason is that in certain interesting cases it is easy to proveMonSeq[X] directly, without
resorting to Ramsey’s theorem. For instance, when the underlying alphabetX is a finite set,MonSeq[X] is
provable inPAω using the infinite pigeonhole principle, and so a realizer for the functional interpretation
of MonSeq[X] can be given in systemT.

3.1 The Minimal Bad Sequence Argument

Our main step in the formalisation of Nash-Williams’ proof is the formalisation of his minimal bad
sequence argument. The main non-trivial principle ofPAω we require is theleast element principle-

LEP : ∃mA(m)→∃m′(A(m′)∧¬A(m′−1)),

where in our version we assume thatA is monotone in the sense that it satisfies(i) i < j → (A(i)→ A( j))
and(ii) ¬A(0).

Lemma 6 (Minimal bad sequence construction). It it provable inPAω +DC that for any sequence of
words u: (X∗)ω , there exists a sequencepu ≡ p0,p1, . . . of sequences of type(X∗)ω and a sequence
fu ≡ f0, f1, . . . of functions of type(X∗)ω → N, which, definingp−1 := u, together satisfy the following
sentences:

∀n([pn−1](n) = [pn](n)); (3)

∀n, j(¬θ(pn
, j)→¬θ(pn−1

, j)); (4)

∀n,q(X
∗)ω

(q⊳n pn →¬θ(q, fnq)). (5)

This formulation of the minimal bad sequence construction is a little more intricate than that given in
Sect. 2, in particular our aim is to highlight the computational aspects of the construction. The intuition
is that the sequencepu is classicallyconstructed in the following manner:

1. Given an initial sequenceu, we choosep0 to be a bad sequence such thatp0
0E u0 but noy⊳ p0

0
extends to a bad sequence. If no prefix ofu0 extends to a bad sequence we setp0 := u.

2. Given that we have constructedpn−1, we choosepn to be a bad extension of[pn−1](n) such that
[pn](n) ∗y does not extend to a bad sequence for anyy⊳pn

n. If no such bad extension exists, we
setpn := pn−1.
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If pu is defined in this way then it clearly satisfies (3), and for each pn we can produce a (classically
constructed) functionfn that witnesses the minimality ofpn in the sense of (5).

We observe that thepn are not necessarily bad (in fact ifX is a WQO they never will be), but the
point is thatpn only fails to be bad in the event thatpn−1 is good, in which case we must havepn = pn−1.
This is the intuition behind (4). Nash-Williams’ proof is based on the fact that ifX is a WQO then by (5)
we can show that there is somen and j such thatθ(pn, j) fails, and then by induction over (4) we must
have¬θ(u, j).

Proof of Lemma 6.Suppose for the moment thatn andw(X∗)ω
are fixed. Define the monotone predicate

A(m) :≡ ∃r(X
∗)ω

∀i|Am|
r
i where

|Am|
r
i :≡ r En w∧ |rn|< m∧ (θ(w, i)→ θ(r, i)).

It is clear thatA(m) is monotone, and that∀i|A|wn|+1|
w
i holds. Therefore byLEP there exists somem′

such that {
∃p∀ j

(
pEn w∧ |pn|< m′∧ (θ(w, j)→ θ(p, j))

)
∧

∀q∃k
(
qEn w∧ |qn|< m′−1→ (θ(w,k)∧¬θ(q,k))

) . (6)

Now, observing that ifpEn w∧|pn|< m′ thenq⊳n p→ qEn w∧|qn|< m′−1 we can prove inPAω that
(6) implies

∃p(∀ j ([w](n) = [p](n)∧ (θ(w, j)→ θ(p, j)))∧∀q∃k(q⊳n p→¬θ(q,k))) . (7)

Skolemizing (7) we have that for arbitraryn, w, there exists a sequencep and function f : (X∗)ω → N
satisfying

∀ j,q([w](n) = [p](n)∧ (θ(w, j)→ θ(p, j))∧ (q⊳n p→¬θ(q, f q))) . (8)

By DC of type(X∗)ω ×((X∗)ω →N) applied to (8) (only dependent on the sequence part of the previous
entry), defining an initial valuep−1 := u there exists an infinite sequence of sequencespu ≡ p0,p1 . . . and
functionsfu ≡ f0, f1 . . . satisfying

∀n, j,q([pn−1](n) = [pn](n)∧
(
θ(pn−1

, j)→ θ(pn
, j)

)
∧ (q⊳n pn →¬θ(q, fnq))). (9)

This completes the proof, as (3), (4) and (5) clearly follow from (9).

In the followingMB[X∗] abbreviates the statement that for allu there existspu andfu satisfying (9).

3.2 Completing the Proof

Notation. Given a non-empty wordx: X∗ we write x= x̃∗ x̄ wherex̃: X∗ and x̄: X. So that these are
well defined for allx, we define〈̃〉 := 〈〉 and 〈̄〉 = 0X. Given a sequence ofp : ((X∗)ω)ω we define the

diagonal sequences̃p : (X∗)ω by p̃i := p̃i
i andp̄ : Xω by p̄i := p̄i

i.

Theorem 7. It is provable inPAω thatMonSeq[X]∧MB[X∗]→WQO[X∗].

Proof. Take an arbitrary sequenceu: (X∗)ω . By MB[X∗] there existspu and fu satisfying (3-5). We
show that one of thepi must be good, which by (4) implies thatu must also be good.

By MonSeq[X] applied top̄ there exists a monotone functiong such thatp̄gi ≤X p̄g j for all i < j.
Define

ψ
(X∗)ω

:= [pg0−1](g0)∗ (p̃gi)i∈N ≡ pg0−1
0 , . . . ,pg0−1

g0−1, p̃g0, p̃g1, . . .
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LEP DC
Lem. 6

MB[X∗]
Thm. 7

MonSeq[X]∧MB[X∗]→WQO[X∗]

MonSeq[X]→WQO[X∗]

Figure 1: Structure of Nash-Williams’ proof.

Now eitherpg0
g0 is empty (and hencepg0 is trivially good) orp̃g0⊳pg0

g0 and thusψ ⊳g0 pg0, which by (5)

implies that¬θ(ψ , fg0ψ) i.e. the sequence

[ψ ](fg0ψ +1)≡ pg0−1
g0 , . . . ,pg0−1

g0−1, p̃g0, p̃g1, . . . , p̃g(fg0ψ−g0)

has one word contained in a later one. But by construction ofg this implies that the sequence

pg0−1
0 , . . . ,pg0−1

g0−1,p
g0
g0,p

g0+1
g0−1, . . . ,p

g(fg0ψ−g0)
g(fg0ψ−g0),p

g(fg0ψ−g0)+1
g(fg0ψ−g0)+1 (∗)

has one element contained in a later one (note thatx̃≤X∗ ỹ→ x≤X∗ y unless|x|= 1 and|y|= 0, which is
why we need to add the extra element at the end of(∗)). But by the nesting property(∗) is just an initial
segment ofpg(fg0ψ−g0)+1, which must therefore be good. This completes the proof.

Combining Theorem 7 with Lemma 6 we see thatMonSeq[X∗] → WQO[X∗] can be formalised in
PAω +DC. The proof as a whole is illustrated in Fig. 1.

3.3 Computational Aspects of Nash-Williams’ Proof

Now that we have formalised Nash-Williams’, we pause for a moment before the full program extraction
to look at the computational hints contained in the classical proof. Assuming a realizerg for MonSeq[X],
given an arbitrary sequence of wordsu: (X∗)ω suppose we constructpu, fu as in Lemma 6 and the
sequenceψ as in the proof of Theorem 7.

By inspecting the proof of Theorem 7, it is not too difficult toshow that there existsi0 < i1 ≤ φ(u)
such thatui0 ≤X∗ ui1, where

φ(u) := g(fg0
u ψ)+1.

To see this, note that we prove that¬θ(pg(fg0ψ−g0)+1,g(fg0ψ − g0)+ 1) and so therefore we also have
¬θ(u,g(fg0ψ −g0)+1) by (4) and hence¬θ(u,φ(u)) sinceg is monotone.

Now φ(u) is clearly anineffectivebound for Higman’s lemma, as it depends on non-constructive
objectsg, pu andfu. However, in order to verify the correctness ofφ(u), we do not need the whole of
these objects. Rather

• g must satisfy (2) up tok= fg0ψ ,

• pu, fu must satisfy (3-5) up ton= φ(u).

Therefore, if we have a procedure that will computeapproximationsto these objects up to a finite
point parametrised by those objects themselves, we can turnφ into an effectivebound for Higman’s
lemma. This is precisely what the functional interpretation does.
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4 A Constructive Proof of Higman’s Lemma

We now build our constructive version of Nash-Williams’ proof. This section follows closely the struc-
ture of Sect. 3. Recall that we assume a realizer for the functional interpretation ofMonSeq[X], namely
a functionalG: Xω → ((NN → N)→ (N→ N)) satisfying (cf. (2))

∀xXω
,ϕNN→N∀i < j ≤ ϕ(Gx

ϕ)(G
x
ϕ < Gx

ϕ j ∧xGx
ϕ i ≤X xGx

ϕ j). (10)

In general, such a realizer could be obtained from a realizerof WQO[X] by implementing a computa-
tional interpretation of Ramsey’s theorem - such as the one given in [15] using the product of selection
functions. However, whenX is finite, G can be given directly using the standard interpretation of the
infinite pigeonhole principle found in e.g. [14].

4.1 Interpreting the Minimal Bad Sequence Argument

The central part of our constructive proof is the following,constructive version of Lemma 6, which is
just a realizer for the functional interpretation ofMB[X∗].

Notation. Recall (Sect. 1.2) that we denote the type of a selection function by JRX :≡ (X → R)→ X.
We use the abbreviationY ≡ (X∗)ω × ((X∗)ω → N) for the type of our choice sequence. Also, in what
follows it will be useful to implicitly write variablesF : A→ B×C as pairs〈FA→B

0 ,FA→C
1 〉 - this slight

abuse of types will make our syntax much more intuitive.

Lemma 8 (Minimal bad sequence construction). For fixed n and w(X
∗)ω

define the decidable formula
|An,w

m |ri by
|An,w

m |ri := r En w∧ |rn|< m∧θ(r, i),

which is slightly simpler than that used in the proof of Lemma61. Define the functionals

εn,w = 〈ε0
n,w,ε1

n,w〉 : JN×(X∗)ωY

by

〈ε0
n,w〈J

Y→N
,QY→(X∗)ω

〉,ε1
n,w〈J,Q〉〉

Y
:= 〈pi , fi〉 (11)

where i≤ |wn| is the greatest integer satisfying¬|An,w
i |

Q(pi , fi )
fi (Q(pi , fi ))

and the finite sequences p0, . . . , p|wn| and
f0, . . . , f|wn| are defined recursively by

f0 := 0(X∗)ω→N

fi := λq.J(q, fi−1)

p|wn| := w

pi−1 := Q(pi , fi).

(12)

Now, given an arbitrary sequence u: (X∗)ω , define the family of selection functionsε̃u : Y∗ → JN×(X∗)ωY
by

ε̃u
〈P,F〉〈J,Q〉 := ε|〈P,F〉|,P|〈P,F〉|−1〈J,Q〉, (13)

1It would have been sufficient, although less direct, to obtain (7) in the proof of Lemma 6 by applyingLEP to this simpler
formula. We opt for this variant now to simplify the subsequent constructions, as either version would result in essentially the
same program.
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where we define the initial value P−1 := u. Now, given counterexample functionalsΩ,Φ : Yω → N and
Ψ : Yω → (X∗)N, the sequences

pu, fu
Yω

:= EPSΩ
〈〉(ε̃

u)(〈Φ,Ψ〉)

satisfy, definingp−1
u := u, the following sentences (cf. (3-5)):

∀n≤ Ωp,f([pn−1](n) = [pn](n)); (14)

∀n≤ Ωp,f(¬θ(pn
,Φp,f)→¬θ(pn−1

,Φp,f)); (15)

∀n≤ Ωp,f(Ψp,f ⊳n pn →¬θ(Ψp,f , fn(Ψp,f))). (16)

These sequencespu, fu computed via the product of selection functions interpret the instance ofDC
used in the minimal bad sequence construction, and witness the no-counterexample interpretation of
MB[X∗]. The functionalΩ determines how large the approximation to the choice sequence is, andΦ, Ψ
in some sense calibrate itsdepth.

Our aim in the next section is to pick suitable counterexample functions such that (16) implies
¬θ(pn,Φp,f) for somen≤ Ωp,f, then by induction over (15) we have

¬θ(pn
,Φp,f)→¬θ(p−1

,Φp,f))≡ ¬θ(u,Φp,f),

and we therefore obtain∃i0 < i1 ≤ Φpu,fu(ui0 ≤X∗ ui1) i.e. a constructive bound foru being good. First
we must prove the lemma.

Proof of Lemma 8.First, we show thatεn,w witnesses the functional (i.e. no-counterexample) interpre-
tation of (8), in the sense that given counterexample functions J,Q: Y → N× (X∗)ω for j,q we have

(suppressing dependencies and writingεb Y
= εb

n,w(〈J,Q〉))

[w](n) = [ε0](n)∧ (θ(w,Jε)→ θ(ε0
,Jε))∧ (Qε ⊳n ε0 →¬θ(Qε ,ε1(Qε))). (17)

The following is a constructive version of the proof of Lemma6. Let 0≤ i ≤ |wn| be the greatest number

such that¬|An,w
i |

Q(pi , fi )
fi(Q(pi , fi))

, so by definition we have〈ε0,ε1〉= 〈pi , fi〉. There are two cases.

Case 1: i= |wn|. Then we have

¬|A|wn||
Qε
ε1(Qε)) ≡ Qε En w∧ |(Qε)n|< |wn| → ¬θ(Qε ,ε1(Qε)).

Therefore, observing thatε0 = p|wn| :=w and(Qε)⊳nε0 → (Qε)Enw∧|(Qε)n|< |wn|, we easily obtain
(17).

Case 2: i< |wn|. By maximality of i, |Ai+1|
Q(pi+1, fi+1)
fi+1(Q(pi+1, fi+1))

must be true. Now looking at the defining

equations (12), we haveQ(pi+1, fi+1) = pi = ε0 and fi+1(Q(pi+1, fi+1)) = fi+1(pi) = J(pi , fi) = Jε ,
therefore the following two formulas are true:

|Ai+1|
ε0

Jε ≡ ε0
En w∧ |(ε0)n| ≤ i ∧θ(ε0

,Jε); (18)

¬|Ai|
Qε
ε1(Qε) ≡ Qε En w∧ |(Qε)n|< i →¬θ(Qε ,ε1(Qε)). (19)

Now by (18) we have[w](n) = [ε0](n)∧ (θ(w,Jε) → θ(ε0,Jε)), and becauseQε ⊳n ε0 → Qε En w∧
|(Qε)n|< i by (19) we obtainQε ⊳n ε0 →¬θ(Qε ,ε1(Qε)). Therefore (17) holds.
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Thus we have shown thatεn,w witnesses (17) for arbitraryn,w,J andQ. Now setting

pu, fu
Yω

:= EPSΩ
〈〉(ε̃

u)(〈Φ,Ψ〉)

Jn(p, f )
N
:= Φ〈[pu](n),[fu](n)〉∗〈p, f 〉(EPS

Ω
〈[pu](n),[fu](n)〉∗〈p, f 〉

(ε̃u)(〈Φ,Ψ〉))

Qn(p, f )
(X∗)ω

:= Ψ〈[pu](n),[fu](n)〉∗〈p, f 〉(EPS
Ω
〈[pu](n),[fu](n)〉∗〈p, f 〉

(ε̃u)(〈Φ,Ψ〉))

(20)

by the main theorem onEPS quoted in Sect. 1.2 we satisfy Spector’s equations

pn
, fn = ε0

n,pn−1(Jn,Qn),ε1
n,pn−1(Jn,Qn)

Jn(pn
, fn),Qn(pn

, fn) = Φp,f ,Ψp,f
(21)

for all n≤ Ωp,f. By settingw := pn−1, J := Jn andQ := Qn in (17) and substituting in (21), we obtain
equations (14-16).

4.2 Constructing a Realizer for Higman’s Lemma

Definition 9. Given a pair of sequencesp : ((X∗)ω)ω and f : ((X∗)ω → N)ω , let Gp,f be a realizer for
MonSeq[X] on the sequence(p̄i) and counterexample function

ϕp,f := λg . fg0([pg0−1](g0)∗ (p̃gi)).

Define the functionalsΩ, Φ andΨ by (suppressing the subscript on G,ϕ)

Ω(p, f) := G(ϕG)+1,

Φ(p, f) := G(ϕG)+1,

Ψ(p, f) := [pG0−1](G0)∗ (p̃Gi).

Finally, defineΓ : (X∗)ω → N by
Γ(u) := Φ(pu, fu),

wherepu, fu := EPSΩ
〈〉(ε̃u)(〈Φ,Ψ〉) with ε̃u defined as in Lemma 8.

The main theorem of this article is the following, constructive analogue of Theorem 7.

Theorem 10(Higman’s lemma, constructive version). Suppose X is a WQO. Then for all sequences of
words u: X∗ over X we have

∃i0 < i1 ≤ Γ(u)(ui0 ≤X∗ ui1)

whereΓ is constructed as in Definition 9.

Proof. Fix u. In what follows,p, f are fixed aspu, fu. We use the abbreviationΩu := Ω(pu, fu), and
similarly for Φu, Ψu, Gu andϕu. We claim that there is somen ≤ Ωu satisfying¬θ(pn,Φu). Then by
induction over (15), we see that¬θ(u,Φu), and the theorem follows from the definition ofθ . It remains
to prove the claim.

First observe that becauseGu is a realizer ofMonSeq[X] for ϕu we have (cf. 10)

∀i < j ≤ ϕu(Gu)(Gui < Gu j ∧ p̄Gui ≤X p̄Gu j). (22)
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ε̃ : LEP EPS : DC
Lem. 8

EPS(ε̃) : MB[X∗]
Thm. 10

MonSeq[X]∧MB[X∗]→WQO[X∗]

λG . λu . ΦG(EPSΩ
〈〉(ε̃)(〈Φ,Ψ〉) : MonSeq[X]→WQO[X∗]

Figure 2: Structure of constructive proof.

Now, G0≤ G(ϕG) so we haveG0< G(ϕG)+1= Ωu, therefore by (16) it follows that

Ψu⊳G0 pG0 →¬θ(Ψu, fG0(Ψu)). (23)

The premise of (23) must hold by construction ofΨu, since[pG0−1](G0)= [pG0](n) by (14) andp̄G0⊳pG0
G0

(unlesspG0
G0 = 〈〉 in which case we trivially have¬θ(pG0,G0+ 1) and hence¬θ(pG0,Φu)). Therefore

we have¬θ(Ψu,ϕG) sincefGu0(Ψu) = ϕuGu by definition, i.e. the finite sequence

[Ψu](ϕG+1)≡ pG0−1
0 ,pG0−1

1 , . . . ,pG0−1
G0−1, p̃G0, . . . , p̃G(ϕG−G0)

has one element contained in a later one (we illustrate the caseϕG≥ G0 - if ϕG< G0 then[pG0−1](G0)
is bad and hence¬θ(pG0−1,Φu)). Now sinceϕG−G0≤ ϕG, by (22) we see that the sequence

pG0−1
0 ,pG0−1

1 , . . . ,pG0−1
G0−1,p

G0
G0,p

G0+1
G0+1, . . . ,p

G(ϕG−G0)
G(ϕG−G0),p

G(ϕG−G0)+1
G(ϕG−G0)+1 (∗)

has one element contained in a later one (we need to add an extra element for the same reason as we do in
the proof of Theorem 7). But becauseG(ϕG−G0)+1≤ G(ϕG)+1= Ωu, by the nesting property (14)
the sequence(∗) is just an initial segment ofpG(ϕG−G0)+1, and hence¬θ(pG(ϕG−G0)+1,G(ϕG−G0)+1)
which implies¬θ(pG(ϕG−G0)+1,Φu). This proves the claim, completing the proof.

An rough map of our constructive proof, with partial realizers shown is given as Fig. 2.

4.3 An Informal Discussion on the Extracted ProgramΓ

We conclude the section with aninformal analysis of our extracted realizer. Often, programs extracted
from classical proofs via proof interpretations can be verydifficult to understand, sometimes taking up
several pages of abstruse higher type syntax or computer code to even state. In contrast, given the logical
complexity of Nash-Williams’ proof our realizer extractedusing the Dialectica interpretation is relatively
concise, and we can even describe its operational behaviourto an extent.

We stress that everything which follows is heuristic and hasnot been properly formalised.Our aim
is merely to illustrate that it is at least feasible to decipher our realizer on a qualitative level!

Our algorithm uses the product of selection functionsEPS to interpret the minimal bad sequence
argument used in Nash-Williams’ proof. As observed in Sect.1.2,EPS - and consequently our extracted
program - comes equipped with a natural game theoretic semantics. For a full account of this the reader
is advised to consult [8, 16]. However, for completeness we state, without further details, the game
theoretic reading of the key constructions in our algorithm.

• The functionalsΦ,Ψ assign to any sequence (i.e. infinite play)p, f anoutcomeof typeN× (X∗)ω .

• The selection functions̃εu - built from the realizer ofLEP - implement a strategy for constructing
anoptimalplaypu, fu, the selection functioñεu

n,pn−1 being responsible for constructing thenth point

pn
u, f

n
u in the sequence given that we have already computed the previous valuepn−1

u .
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• The selection functions make a decision based on the functionalsJn,Qn defined in (20) which (in
loose game theoretic terms) describe the optimal outcome ofeach potential choice at pointn.

• The functionalΩ acts as a control, determining the ‘relevant part’ of an infinite playp, f thereby
telling EPS when it has computed a sufficiently long sequence.

In terms of Nash-Williams proof, the sequencepu, fu strategically constructed byEPS constitutes an
‘attempt’ at producing a minimal bad sequence fromu (given byp, with accompanying functionalsfn

witnessing minimality at pointn). We defineΦ, Ψ and Ω so that the construction can be essentially
reversed to obtain a bound foru.

So what can we say about this optimal sequencepu, fu? We prove in Theorem 10 that there is some
element of the approximationpn

u such that¬θ(pn
u,Φu) holds. It is not too difficult to see, by (21), that

¬θ(pn
u,Φu) can only hold ifεn,pn−1

u
picks the default valuepn

u = pn−1
u . Similarly we havepn−1

u = pn−2
u

and so on, soEPS just returns the initial valueu at each step.
So how does the program justify selectingu at pointn, given that it has already chosenu at n−1?

We see that the selection functionεn,u always sets〈pn
u, f

n
u〉 = 〈u, f|un|〉 (where thefi are defined as in

(12)), unless the outcomeQn(u, f|un|) = Ψu is lexicographically less thanu at pointn, in which case it
must check thatθ(Ψu, f|un|(Ψu)) is false. Butf|un|(Ψu) = Jn(Ψu, f|un|−1) by (12) which checks the final
outcome ofEPS given the sequence

(u, f0
u), . . . ,(u, f

n−1
n ),(Ψu, f|un|−1) (∗)

Now in the computation ofEPS the functionalsΩ, Φ, Ψ only ever look at the firsti values ofpi−1.
Therefore we propose that because[Ψu](n) = [u](n) (and|un|−1= |(Ψu)n|) we can identify(∗) with the
outcome ofEPS given the sequence

(Ψu, f0
Ψu
), . . . ,(Ψu, fn−1

Ψu
),(Ψu, f|(Ψu)n|) (24)

which by our previous argument can be viewed as the outcome ofrunning our algorithm with initial
valueΨu instead ofu. In other words we make the identificationJn(Ψu, f|un|−1)∼ ΦΨu = Γ(Ψu), which
explains why we must have¬θ(Ψu,Jn(Ψu, f|un|−1)).

We claim that the algorithmΓ obtained viaEPS has characteristics of anopen recursionprocedure
(see e.g. [2]), computingΓ(u) by internally computing values ofΓ(v) for v lexicographically less than
u. If we takepu to be the constant sequence with valueu, then our bound foru is given byΓ(u) :=
Φ(pu, fu) = G(ϕG)+ 1 where nowG is a witness forMonSeq[X] on ū and counterexample function
λg . fg0([u](g0)∗(ũgi)). But by our previous argument we can identifyfg0([u](g0)∗(ũgi))with Γ([u](g0)∗
(ũgi)). Thus it seems thatΓ is closely related to a functionalΓ̃ defined, via open recursion, bỹΓ(u) :=
G(ϕG)+1 whereG is a witness forMonSeq[X] on the counterexample function

ϕ := λg . Γ̃([u](g0)∗ (ũgi)).

Of course, none of this precise - the identifications above are made very informally - and in particular
we anticipate that the way our algorithm treats empty words would be more complex than a straightfor-
ward open recursion procedure. However, our purpose here ismerely to provide via a casual argument
some insight into howΓ works.

It would be interesting to analyse the behaviour of our extracted algorithm in depth, to give a precise
explanation of the way in which it computes bounds on bad sequences and compare this algorithm to
those extracted using other methods. We leave this as an openproblem.
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5 Final Comments

We have used Gödel’s functional interpretation to producea constructive version of Nash-Williams’
minimal bad sequence proof of Higman’s lemma. Our proof is relatively short and concise, and the
combinatorial idea behind Nash-William’s proof can be clearly seen in ours. Moreover, we can start to
make sense of the operational behaviour of the extracted algorithm, at least on an informal level. We
hope that this case study provides some insight into programextraction in infinitary combinatorics using
the functional interpretation.

An obvious direction of future work is to better understand our realizer and give a more satisfactory
description than that given in the previous section! One could potentially refine our realizer so that it is
more intuitive and efficient, or alternatively construct a new realizer that directly interprets the functional
interpretation of the minimal bad sequence argument and compare how it behaves to the one given here.
It would also be instructive to formalise our program extraction in a theorem prover, and actually run the
algorithmΓ on some concrete WQOs to analyse its behaviour.

We close with the remark that the ideas in this article could be extended to solve the functional in-
terpretation of thegeneralminimal bad sequence construction, and thereby extract programs from more
complex proofs that use this construction, such as Kruskal’s theorem. While our focus in this article
was on the qualitative aspects of program extraction, it is natural to ask whether one could obtain useful
quantitativeinformation from the analysis of proofs in this area of combinatorics. Bounds for Higman’s
lemma on a finite alphabet have already been produced using more direct methods e.g. [4], but it would
be interesting to see if any useful constructive information could be extracted in the general case or for
related theorems, through the formal analysis of proofs.

Acknowledgements. This work was supported by an EPSRC Doctoral Training Grant.The author
thanks Paulo Oliva for suggesting this project and for reading an earlier draft of this article, and the
anonymous referees for corrections and several useful comments.
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