
Paulo Oliva (Ed.): Classical Logic and Computation 2014
EPTCS 164, 2014, pp. 1–17, doi:10.4204/EPTCS.164.1

A type system for Continuation Calculus

Herman Geuvers
Radboud University Nijmegen, Technical University Eindhoven, the Netherlands

Wouter Geraedts
Radboud University Nijmegen, the Netherlands

Bram Geron
School of Computer Science, University of Birmingham, UK

Judith van Stegeren
Radboud University Nijmegen, the Netherlands

Continuation Calculus (CC), introduced by Geron and Geuvers [2], is a simple foundational model
for functional computation. It is closely related to lambdacalculus and term rewriting, but it has
no variable binding and no pattern matching. It is Turing complete and evaluation is deterministic.
Notions like “call-by-value” and “call-by-name” computation are available by choosing appropriate
function definitions: e.g. there is a call-by-value and a call-by-name addition function.

In the present paper we extend CC with types, to be able to define data types in a canonical way,
and functions over these data types, defined by iteration. Data type definitions follow the so-called
“Scott encoding” of data, as opposed to the more familiar “Church encoding”.

The iteration scheme comes in two flavors: a call-by-value and a call-by-name iteration scheme.
The call-by-value variant is a double negation variant of call-by-name iteration. The double negation
translation allows to move between call-by-name and call-by-value.

1 Introduction

Continuation calculus (or CC) [2] is a crossover between term rewriting systems andλ -calculus. Rather
than focusing on expressions, continuation calculus treats continuations as its fundamental object. This
is accomplished by restricting evaluation to strictly top-level, discarding the need for evaluation inside
contexts. This also fixes an evaluation order, so the representation of a program in CC depends on
whether call-by-value or call-by-name is desired. Furthermore, CC “separates code from data” by placing
the former in a staticprogram, which is sourced for reductions on a term. Variables are absent from terms,
and no substitution happens inside terms.

Despite the obvious differences between CC andλ -calculus with continuations (orλC), there seems to be
a strong correspondence. For instance, it has been suggested [3] that programs in either can be simulated
in the other up to (non)termination, in an untyped setting. Progress so far suggests that continuation
calculus might become a useful alternative characterization of λC, and theorems in one system could
apply without much effort to the other.

The purpose of this paper is to strengthen the correspondence between CC andλ -calculus, by introducing
a type system for CC and by showing how data types and functions over data can be defined in CC.
The type system rejects some undesired terms and the types emphasize the difference between call-by-
name and call-by-value. Also, the types pave the way for proving properties of the programs. The
types themselves do not enforce termination in general, because the system is ‘open’: programs are

http://dx.doi.org/10.4204/EPTCS.164.1

2 A type system for Continuation Calculus

understood to be only parts of a larger whole, and names with no rule in a certain program are names
whose “behavior” is left unspecified. However, if the programs are defined using only iteration and
non-circular program rules, all terms are terminating. This we show in a separate paper.

1.1 Informal definition of CC

Terms in CC are of the shapen.t1.t2.tk, wheren is a name andti is again a term. The ‘dot’ denotes
binary application, which is left-associative. In CC, terms can be evaluated by applyingprogram rules
which are of the shape

n.x1.x2.xp −→ u,(∗)

whereu is a term over variablesx1 . . .xp. However, this rule can only be applied on the ‘top level’:

• reduction is not a congruence;

• rule (∗) can only be applied to the termn.t1.t2.tk in casek= p,

• then this term evaluates tou[t1/x1, . . . , tp/xp].

CC has no pattern matching or variable binding, but it is Turing complete and a translation to and from
the untypedλ -calculus can be defined that preserves and reflects termination, see [3].

In continuation calculus, the natural numbers are represented by the namesZero and Succ and the
following two program-rules:

Zero.c1.c2 −→ c1

Succ.x.c1.c2 −→ c2.x

SoZero represents 0,Succ.Zero represents 1,Succ.(Succ.Zero) represents 2 etcetera. This representa-
tion of data follows the so-called Scott encoding, which is known from the untyped lambda calculus by
definingZero := λxy.x, Succ:= λn.λxy.yn (e.g. see [1,5]). The Scott numerals have “case-distinction”
built in (distinguishing between 0 andn+1), which can be used to mimic pattern matching. The more
familiar Church numerals have iteration built in. For Scottnumerals, iteration has to be added, or it can
be obtained from the fixed-point combinator in the case of untyped lambda calculus. For CC the situation
is similar: we have to add iteration ourselves.

As an example, we define addition in two ways: in call-by-value (CBV) and in call-by-name (CBN) style
([2]).

Example 1.1
AddCBV.n.m.c −→ n.(c.m).(AddCBV ′.m.c)
AddCBV ′.m.c.n′ −→ AddCBV.n′.(Succ.m).c

AddCBN.n.m.c1.c2 −→ n.(m.c1.c2).(AddCBN′.m.c2)
AddCBN′.m.c2.n′ −→ c2.(AddCBN.n′.m)

For AddCBV we find thatAddCBV .(Succn.Zero).(Succm.Zero).c evaluates to c.(Succn+m.Zero): the
result of the addition function is computed completely and passed as argument to the continuation c.
For AddCBN, only a first step in the computation is carried out and then the result is passed to the
appropriate continuation c1 or c2.

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 3

Continuation calculus as it occurs in [2] is untyped. In the present work we present a typing system for
continuation calculus. The typing system gives the user some guarantee about the meaning and well-
formedness of well-typed terms. We also develop a general procedure for defining algebraic data-types
as types in CC and for transforming functions defined over these data types into valid typed terms in CC.
In a separate paper we prove termination of all well-formed iterative CC programs [4].

2 Formal definition of CC

For the detailed formal definition, we refer to [2]. Here we give a short recap of CC. Thetermsare either
a name, or the combinationt.u of two termst andu; N is any infinite set ofnames. So, the terms do
not contain variables. (One could add them, but it’s not necessary.) Names act as labels for functions
and constructors in CC.Namesin CC start with an uppercase letter and are printed inbold. The dot is
left-associative, so we write(((n.t1).t2).tk) asn.t1.tk.

Theheadof a term is its ‘leftmost’ name: head(n.t1.t2.tk) = n. Thelengthof a term is the number of
dots towards the head: length(n.t1.t2.tk) = k.

To define programs we assume any infinite setV of variables. A program is a set ofrules, each of the
following shape

n.x1.x2.xk −→ u

where thexi are distinct variables andu is a term over the variables x1, . . . ,xk, sou is a term that may
use, apart from names, also the variablesx1, . . . ,xk. We say that the ruledefinesthe namen. Within
a program, a name may occur at most once as the head of a rule. IfP is a program, thedomain of P,
dom(P) is the set of names that is defined inP.

Let a programP be given. A term can beevaluated in Pby applying one of the rules ofP to the whole
term as follows. SupposeP contains the rulen.x1.x2.xk −→ u, then

n.t1.t2.tk −→P u[t1/x1, . . . , tk/xk]

where the latter denotes the substitution oft1, . . . , tk for x1, . . . ,xk. We usually omit the subscriptP and
just write−→, asP will be clear from the context.

It should be noted that one does not evaluate ‘under the application’. To make this explicit we introduce
some more terminology. A namen hasarity k in P if P contains a rule of the form

n.x1.x2.xk −→ u

Similarly, a termt has anarity in P if arity(head(t))≥ length(t) and we define

arity(t) := arity(head(t))− length(t)

A term t is defined in Pif head(t) ∈ dom(P). Otherwiset is undefined in P. A defined term is either
complete, if arity(t) = 0, or incompleteif arity(t)> 0, or invalid if it has no arity.

We write A −→ B for “B is a reduct ofA” and A −։ B for “A reduces in zero or more steps toB”.
Because every name is defined at most once in the set of programrules, every program is a deterministic
rewriting system.

4 A type system for Continuation Calculus

A term M is said to beterminating(or strongly normalizing) inP if there exists a reductN such thatN
can no longer be rewritten using the rules fromP. ThenN can be undefined, incomplete, or invalid. We
write

M ↓P if M can not be rewritten using the rules ofP
M

։

P if ∃N(M −։ N∧N ↓P)

Note that M

։

P impliesM −։ N ↓P, asM −։ N can mean thatM rewrites toN in zero steps.

The simplest notion of equality between terms in CC is the transitive, symmetric, reflexive closure of
−→, which we denote by=P. SoM1 =P M2 in case there is anN such thatM1 −։P N andM2 −։P N.
This is an interesting equivalence relation, however, it ismuch too fine, as we show in the following
example. (See also [2].)

Example 2.1 For the call-by-name addition of Example1.1, we find that

AddCBN.(Succ.Zero).Zero.c1.c2 −։ AddCBN′.Zero.c2.Zero −։ c2.(AddCBN.Zero.Zero)

If we also computeSucc.Zero.c1.c2, we obtain c2.Zero, which is not the same term, so we don’t have
AddCBN.(Succ.Zero).Zero.c1.c2 =P Succ.Zero.c1.c2.
If we also allow computing ‘under the function c2’, the terms are still not equal:AddCBN.Zero.Zero
does not reduce toZero. However, when supplied with two continuations, d1 and d2, they are equal:
AddCBN.Zero.Zero.d1.d2 −։ d1 andZero.d1.d2 −։ d1.

In the example we see two termsM andN which are ‘equal for all practical purposes’, but we don’t
haveM =P N. We say that two termsM andN areobservationally equivalentunder programP, notation
M ≈P N, if for all extension programsP′ ⊇ P and all terms X

X.M

։

P′ ⇐⇒ X.N

։

P′

We recall some properties about≈P from [2]. Proofs can be found in [2].

Lemma 2.2 The relation≈P is a congruence, that is, if M1 ≈P M2 and N1 ≈P N2 , then M1.N1 ≈P M2.N2.

Lemma 2.3 Let M,N be terms of arity k. If M.c1.ck =P N.c1.ck for fresh names c1, . . . ,ck, then
M ≈P N.

Corollary 2.4 If M =P N and arity(M) = arity(N) = 0, then M≈P N.

It is not in general the case thatM =P N impliesM ≈P N. The reason is that reduction of a term need not
respect the arity, giving rise to undesired situations, as can be seen in the following example (also taken
from [2]). Our typing system will prevent these situations to occur.

Example 2.5 Consider the following program rules

Id .x −→ x

Omega.x −→ x.x

ThenId .Omega−→ Omega, which is an incomplete term. If we append another term toId .Omega, it
becomes invalid:Id .Omega.M has no arity. On the other hand,Omega.Omega−→ Omega.Omega,
so this term is non-terminating. Hence,Id .Omega−→ Omega, but Id .Omega 6≈P Omega.

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 5

The type system will prevent situations as in Example 2.5, bymaking the program rule forOmeganot
‘well-typed’ (and thereby not allowed). Also note thatId .Omega 6≈P Omega is only possible because
arity(Id .Omega) 6= arity(Omega). The type system will make sure that, ifM −→ N, thenN also has
arity 0.

3 Types for Continuation Calculus

Definition 3.1 We definetypesof CC as follows.

Type:=⊥ | Var | (Type→ Type) | µVar.Type.

where, inµX.Φ, we requireΦ to be of the shape

σ1 → . . .→ σn →⊥ (with n≥ 0),

with eachσ i of the shape
τ i

1 → . . .→ τ i
ai
→⊥ (with ai ≥ 0),

where eachτ i
j is either X or does not contain X.

As usual, we leave out the parentheses around functions types, soA→ B→C always meansA→ (B→
C).

As a consequence of the above definition, if we have a typeµX.Φ(X), thenX occurspositivelyin Φ. We
could have been more liberal, by allowingall typesµX.Φ(X) whereX occurs positively inΦ(X), but
that is unnecessary to interpret first order data-types.

The intention of the recursive typeµX.Φ(X) is that it denotes the typeσ for which σ = Φ(σ). To give
theµ-types their semantics, we introduce type equalities.

Definition 3.2 We defineequality between types, σ = τ , as the least equivalence relation that can be
derived using the following rules.

(µ-conv)
µX.τ = τ [µX.τ/X]

σ = τ υ = ρ
(f -conv)

σ → υ = τ → ρ
For a program rulen.x1.xn −→ u with x1 : τ1, . . . ,xk : τk, we will definen to have the following type:
n : τ1 → . . .→ τk →⊥. So⊥ will be used as the type of complete CC-terms. This is very much in line
with the approach taken by Miquel [7].

CC-types will be printed inbold. For example, the type representing natural numbersN will be printed
asNat. Abstract types (i.e. for anyσ ∈ Type) are printed asσ , τ , A, B, etc.

Example 3.3 The types in CC of some well-known algebraic data-types

Bool := ⊥→⊥→⊥
Nat := µT.⊥→ (T →⊥)→⊥
ListA := µT.⊥→ (A→ T →⊥)→⊥
BinTreeA := µT.⊥→ (A→ T → T →⊥)→⊥

6 A type system for Continuation Calculus

Convention 3.4 We make use of the convention in logic to define¬A as A→⊥ to introduce¬σ as an
abbreviation for the typeσ →⊥. Similarly,¬¬σ denotes(σ →⊥)→⊥.

Definition 3.5 A program signatureΣ is a finite setN ×Type

Σ = n1 : σ1, . . . ,np : σp (with all ni distinct)

A typing contextΓ is a finite setV ×Type:

Γ = x1 : σ1, . . . ,xn : σn (with all xi distinct)

The signature gives the types of the names; it is constructedspecifically for a programP. The context is
just a “temporary” set of variables; contexts will be used todefine program rules.

We are interested in two kinds of judgment:

1. Σ⊢P, aprogram judgment, to express that, given a program signatureΣ, P is a well-typed program.
SoP will consist of program rules.

2. Γ ⊢Σ M : A, a typing judgment, to express thatM – a term with free variables inΓ – has typeA,
given program signatureΣ and typing contextΓ.

Definition 3.6 The derivation rules to derivetyping judgmentsare the following

(Var)
x : σ ∈ Γ

Γ ⊢Σ x : σ
(Name)

n : σ ∈ Σ

Γ ⊢Σ n : σ

(Appl) Γ ⊢Σ M : σ → τ Γ ⊢Σ N : σ

Γ ⊢Σ M.N : τ
(=-conv) Γ ⊢Σ M : σ σ = τ

Γ ⊢Σ M : τ
Definition 3.7 The derivation rules to deriveprogram judgmentsare the following

(Nil) Σ ⊢ /0

(Cons)
Σ ⊢ P x1 : A1, . . . ,xk : Ak ⊢Σ q : ⊥ n : A1 → . . .→ Ak →⊥ ∈ Σ

if n not defined in P
Σ ⊢ P∪{n.x1.xk −→ q}

We say thatprogramP is well-typed inΣ in caseΣ ⊢ P. Usually,Σ will be clear and we just say that
P is well-typed. Similarly, we say that the program rule n.x1.xk −→ q is well-typed inP in case
P∪{n.x1.xk −→ q} is well-typed.

The second and third premise in the (Cons) rule say that the types ofn.x1.xk andq should be both⊥.
This guarantees that we can only rewrite terms of type⊥.

Example 3.8 1. Recall the termZero with rule Zero.c1.c2 −→ c1. We easily verify that this rule is
well-typed if we letZero : ⊥→ (Nat →⊥)→⊥, i.e.Zero : Nat.

2. Similarly, recall the rule forSucc: Succ.x.c1.c2 −→ c2.x. It is well-typed if we letSucc: Nat →
⊥→ (Nat →⊥)→⊥, i.e.Succ: Nat → Nat.

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 7

3. Recalling the definition ofAddCBV in Example 1.1, we see thatAddCBV takes arguments of
typeNat, Nat and Nat → ⊥ to produce a term of type⊥. So the rule is well-typed if we take
AddCBV : Nat → Nat →¬¬Nat. (NB.AddCBV ′ : Nat → (¬Nat)→ Nat →⊥.)

4. For the definition ofAddCBN in Example 2.1, we see thatAddCBN : Nat → Nat → Nat.

5. To type the rule forOmegain Example 2.5, we needOmega: σ →⊥ with σ = σ →⊥. But there
is no typeσ for whichσ = σ →⊥, so the rule forOmegais not well-typed.

We have the following properties.

Lemma 3.9 1. [Substitution] If n: τ ∈ Σ, ⊢Σ t : σ and⊢Σ q : τ , then⊢Σ t[q/n] : σ .

2. [Subject reduction] If⊢Σ t : σ , and t−→ p, thenσ =⊥ and⊢Σ p : ⊥.

Proof 1. By induction on the derivation of⊢Σ t : σ .

2. Using the first property. Ift −→ p by the rulen.x1.xk −→ q, then t = n.t1.tk and p =
q[t1/x1, . . . , tk/xk].

We havex1 : A1, . . . ,xk : Ak ⊢Σ q : ⊥ andx1 : A1, . . . ,xk : Ak ⊢Σ n.x1.xk : ⊥, so by substitution
(where we now substitute terms for variables, but the argument is the same) we havet : ⊥ and
p : ⊥. �

We have the following Corollary of the above and of Corollary2.4.

Corollary 3.10 If M and N are well-typed terms of type⊥ and M=P N, then M≈P N.

3.1 Data types in CC

We have seen the definitions of the types of booleans, naturalnumbers and lists in Example 3.3. Here we
give a general way of defining constructors and first order algebraic data types in CC. (That is, for now
we don’t allow higher order types in the constructor types.)

Definition 3.11 A first order data typewill be written as

data− type D with constructors
CD

1 : D1
1 → . . .→ D1

a1
→ D

. . .
CD

n : Dn
1 → . . .→ Dn

an
→ D

where each of the Dij is either D or a type expression that does not contain D. If D isclear from the
context, we will omit it as a superscript and writeCi instead ofCD

i .

This defines an algebraic data-typeD with n constructors with namesC1, . . . ,Cn. Each constructorCi

has arityai , which can also be 0, and then the constructor is a constant.

Convention 3.12 To simplify notation later, we abbreviate the list of argument types of a constructor,
writing D1 for D1

1 . . .D
1
a1

etc, in a style similar to uncurrying.

For every constructor we will introduce a name in CC and a rulethat defines it. This program rule acts
as a destructor ofD. If a term of typeD has constructorConsD

i as its head, all the arguments of that
constructort i

1, . . . , t
i
ai

will be returned to the corresponding continuationci.

8 A type system for Continuation Calculus

Example 3.13 Consider the algebraic data type of lists over a type A,ListA: In Example 3.3, we have
defined this data-type in CCµT.⊥→ (A→ T →⊥)→⊥. The constructors for lists are added to CC by
introducing the following program rules to our program, where Nil : ⊥ andCons : A→ ListA →⊥.

Nil.c1.c2 −→ c1

Cons.x1.x2.c1.c2 −→ c2.x1.x2

We now give the general definition of first order data-type in CC.

Definition 3.14 Given a first order data type D as in Definition 3.11 with n constructors, where, for
1≤ i ≤ n, Ci : Di

1 → . . .Di
ai
→ D, we define the following type D in CC.

D := µX.(D1[X/D]→⊥)→ . . .→ (Dn[X/D]→⊥)→⊥.

For i ∈ [1. . .n], we add the following constructorConsD
i to the signatureΣ.

ConsD
i : Di → D.

Finally, we add for each i (1≤ i ≤ n) the following program rule that acts as a destructor for D.

ConsD
i .x

i
1.x

i
ai
.c1.cn −→ ci .x

i
1.x

i
ai

So, in CC we always have arity(ConsD
i) = ai + n. Example 3.13 conforms with this definition. The

constructors are well-typed in CC because we have the equation

D = (D1 →⊥)→ . . .→ (Dn →⊥)→⊥.

Notation 3.15 Let D be a data type andD its representation as a type in Continuation Calculus. If d: D
(so d is a data type element of D), we denote by〈d〉 : D the encoding of d as a term in CC. (So〈d〉 is
defined in the canonical way using the constructors of Definition 3.14.)

Convention 3.16 Unless otherwise specified, Di
j is the type of the jth argument of the ith constructor of

data type D. In the case ofListA: D2
1 = A, D2

2 = ListA.

We often give the typing of terms via a derivation rule.

x1 : Di
1 . . . xai : Di

ai
c1 : D1 →⊥ . . . cn : Dn →⊥

ConsD
i .x1.xai .c1.cn : ⊥

3.2 Iteration schemes

In this section we give iteration schemes for continuation calculus that provides general mechanisms
for defining functions by recursion. An iteration scheme defines recursive functions in a general way,
ensuring well-definedness and termination for these functions. In CC we have a call-by-name and a
call-by-value variant of the iteration scheme.

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 9

The simplest and most well-know form of iteration is overN: Given b : B, f : B → B, the function
It (b, f) : N→ B defined by iteration from b and f, is given by

It (b, f)(n) =

{

b if n= 0
f (It (b, f)(m)) if n= m+1

An iterator It D for a general data-typeD (following the general scheme for first order data-types in
Definition 3.11) to some typeB has the following type:

f1 : D1[B/D]→ B . . . fn : Dn[B/D]→ B

It D f1 . . . fn : D → B

with
It D f1 . . . fn(Ci v1 . . .vai) = fi V1 . . .Vai ,

whereVj = It D f1 . . . fn v j if v j : D andVj = v j otherwise.

This is not yet the correct type for an iteration scheme in CC.We do not yet have any continuations as
parameters. We will provide separate CBN and CBV iteration schemes below.

3.3 Call-by-name iterators

For a call-by-name iterator for a data-typeD, we also have to consider the return data-typeB. CBV
calculates the entire return value, but for CBN it is enough to return the proper continuations with the
proper parameters after calculating only one step in the recursion. So the CBN-iterator also passes around
the continuations to the resulting values. If result typeB hasmconstructors, then the iteratorItCBN D→B

also needsm continuations as arguments. This differs from a call-by-value iterator, where we only have
one continuation.

Let in the following,D be a data-type withn constructors (CD
1 , . . . ,C

D
n) andB a data-type withm con-

structors.

Definition 3.17 We define thecall-by-name iterator for typeD to typeB as follows. We first give the
types of the new names. We abbreviate f1 . . . fn to ~f , c1 . . .cm to~c and x1 . . .xai to~x.

f1 : D1[B/D]→ B. . . fn : Dn[B/D]→ B c1 : B1 →⊥ . . .cm : Bm →⊥ x : D

ItCBN D→B.~f .x.~c : ⊥

f1 : D1[B/D]→ B. . . fn : Dn[B/D]→ B c1 : B1 →⊥ . . .cm : Bm →⊥ x1 : Di
1 . . .x

i
ai

: Di
ai

ItCBN i
D→B.~f .~c.x1 . . .xai : ⊥

The program rules are

ItCBN D→B.~f .x.~c−→ x.(ItCBN 1
D→B.~f .~c).(ItCBN n

D→B.~f .~c),

and for i∈ [1. . .n]:
ItCBN i

D→B.~f .~c.~x−→ fi .b(x1).b(xai).~c

with b(x) =

{

ItCBN D→B.~f .x if x : D
x otherwise

10 A type system for Continuation Calculus

In Section 4, we give in Example 4.1 the call-by-name iterator for ListA to Nat. The following can easily
be checked. (See Definition 3.7 for the formal definition of well-typed rules.)

Lemma 3.18 The rules given in Definition 3.17 are well-typed.

3.4 Call-by-value iterators

Call-by-value iterators differ from their call-by-name cousins in the sense that the result of the computa-
tion is ‘normalized’ or fully evaluated at the end of the computation.

Definition 3.19 We define thecall-by-value iterator for a typeD to B as follows. (We abbreviate f1 . . . fn
to ~f .)

f1 : D1[B/D]→¬¬B. . . fn : Dn[B/D]→¬¬B c : ¬B d : D

ItCBV D→B~f cd : ⊥

and for i∈ [1,n] and j∈ [1,ai], under the same typing hypotheses for~f and c:

x j : Di
j . . .xai : Di

ai
r1 : Di

1[B/D] . . . r j−1 : Di
j1[B/D]

ItCBV i, j
D→B.

~f .c.x j . . .xai .r1 . . . r j−1 : ⊥

The program rules are

ItCBV D→B.~f .c.x −→ x.(ItCBV 1,1
D→B.

~f .c).(ItCBV n,1
D→B.

~f .c)

and for i∈ [1,n] and j∈ [1,ai]:

ItCBV i, j
D→B.

~f .c.x j . . .xai .r1 . . . r j−1 −→ LHS

LHS=

{

ItCBV D→B.~f .(ItCBV i, j+1
D→B.

~f .c.x j+1 . . .xai .r1 . . . r j−1).x j if x j : D
ItCBV i, j+1

D→B.
~f .c.x j+1 . . .xai .r1 . . . r j−1.x j otherwise

ItCBV i,ai+1
D→B .

~f .c.r1 . . . rai −→ fi .r1 . . . rai .c

The technical subtlety in the call-by-value reduction rulelies in the fact that, in case data-typeD has a
constructor with more than one recursive sub-term (e.g. in the case of binary trees, where we have ‘join’,
taking two sub-trees), we have to evaluateall recursive sub-terms. The reduction rule makes sure that we
do that and reduce to a complete value before calling the function. The following lemma helps in better
understanding the termsItCBV i, j

D→B.
~f .c. in Definition 3.19.

Lemma 3.20 For j ∈ [1. . .ai], given xj : Di
j . . .xai : Di

ai
and r1 : Di

1[B/D] . . . r j−1 : Di
j1[B/D], the reduct

of ItCBV i, j
D→B.

~f .c.x j . . .xai .r1 . . . r j−1 is of type⊥.

Proof For j = ai , the result is immediate, for otherj, the result follows from the result forj +1, making
a case distinction betweenDi

j [B/D] = Di
j or Di

j [B/D] = B. �

The following now easily follows.

Lemma 3.21 The rules given in Definition 3.19 are well-typed.

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 11

Example 3.22 For the iterator fromNat to Nat, this amounts to the following

ItCBV Nat→Nat. f1. f2.c.x−→ x.(ItCBV Zero,1
Nat→Nat. f1. f2.c).(ItCBV Succ,1

Nat→Nat. f1. f2.c)

ItCBV Zero,1
Nat→Nat. f1. f2.c−→ f1.c

ItCBV Succ,1
Nat→Nat. f1. f2.c.x1 −→ ItCBV Nat→Nat. f1. f2.(ItCBV Succ,2

Nat→Nat. f1. f2.c).x1

ItCBV Succ,2
Nat→Nat. f1. f2.c.r1 −→ f2.r1.c

This can be compressed a bit if we replaceItCBV Zero,1
Nat→Nat. f1. f2.c by f1.c.

Another simplification that we can do is to replace some auxiliary names that are introduced in the itera-
tion scheme by aλ -term. For example we can replaceItCBV Succ,2

Nat→Nat by the new ‘name’(λ f1, f2,c, r1 7→
f2.r1.c). The convention for such a name is that

(λ f1, f2,c, r1 7→ f2.r1.c). f1. f2.c.r1 −→ f2.r1.c.

So, the arity of the new name is the number of arguments of theλ and its program rule is given by the
body. Now the rules forItCBV Nat→Nat simplify to

ItCBV Nat→Nat. f1. f2.c.x−→ x.(f1.c).(ItCBV Succ,1
Nat→Nat. f1. f2.c)

ItCBV Succ,1
Nat→Nat. f1. f2.c.x1 −→ ItCBV Nat→Nat. f1. f2.((λ f1, f2,c, r1 7→ f2.r1.c). f1. f2.c).x1

In Section 4, we show more examples, notably in Example 4.2 wegive the call-by-value iterator forListA

and we show how to program the ‘length’ function with it.

3.5 Rules for programming with data types in CC

Starting from the constructors for first order data types andthe call-by-name and call-by-value iterators
we can program new functions from existing ones. However, due to the fact that we are in CC and not
in λ -calculus, we need some additional ‘glue’ to make flexible use of the iteration scheme to define
functions.

Example 3.23 GivenItCBV Nat→Nat we can defineAddCBV as follows.

AddCBV .m.n.c := ItCBV Nat→Nat.(F1.m).F2.c.n

where F1 and F2 are defined by

F1.x.c −→ c.x

F2.x.c −→ c.(Succ.x)

So, we need2 auxiliary functions to defineAddCBV in terms ofItCBV Nat→Nat. In terms of Example
3.23, we need the names(λx,c 7→ c.x), which is F1 and(λx,c 7→ c.(Succ.x)), which is F2.

The example shows that, to really profit from the expressivity of the iteration schemes, we must allow
the addition of ‘simple’ functions. These are functions that have a non-circular definition.

12 A type system for Continuation Calculus

Definition 3.24 A non-circularprogram rule is a rule of the form

n.x1. . . .xk −→ q,

where the names occurring in q are restricted to the constructors (Definition 3.14) and the iterators
(CBN, Definition 3.17 and CBV, Definition 3.19).

We defineP as the set of program rules that contains constructors for all data types (Definition 3.14),
iterators for all data types (CBN, Definition 3.17 and CBV, 3.19) and arbitrarily many non-circular rules.

So,P is an “open set”: it contains constructors and iterators forall (infinitely many) data-types that we
can define, and it includes arbitrarily many “non-circular rules” that can be added when desired. This is
needed toreally define functions using the iteration schemes.

3.6 Translating between call-by-name and call-by-value

We can mediate between the call-by-name and the call-by-value representations of data by defining a
function StoreNat : Nat →¬¬Nat and a functionUnstoreNat : ¬¬Nat → Nat. Recall from Notation
3.15 that〈n〉 is defined asSuccn.Zero. The functionStoreNat acts as astorage operatorin the sense of
Krivine [6] in the sense that fort : Nat with t ≈ 〈n〉 andc : Nat →⊥,

StoreNat.t.c−։ c.〈n〉 .

So,StoreNatfirst evaluates the argumentt of typeNat completely before passing it on to the continuation
c. The termStoreNat.t.c can be defined asAddCBV.t.Zero.c, but we can also define it directly by

StoreNat.n.r −→ n.(r.Zero).(StoreNatA.r)

StoreNatA.r.m −→ StoreNat.m.(StoreNatB.r)

StoreNatB.r.m′ −→ r.(Succ.m′)

It is easy to verify thatStoreNat : Nat →¬¬Nat. (Note thatStoreNatA,StoreNatB : ¬Nat →¬Nat.)

In the reverse direction, we haveUnstoreNat : ¬¬Nat → Nat, defined by, givenf : ¬¬Nat,

UnstoreNat. f .z.s −→ f .(UseNat.z.s)

UseNat.z.s.n −→ n.z.s

ThenUnstoreNat : ¬¬Nat → Nat. (Note thatUseNat: ⊥→¬Nat →¬Nat.)

Lemma 3.25 For all t : Nat and n∈ N with t ≈ 〈n〉, StoreNat.t.c−։ c.〈n〉.
For all n ∈ N, UnstoreNat.(StoreNat.〈n〉)≈ 〈n〉.

Proof For the first, we note that, ift ≈ 〈n〉, then: (i) in casen = 0, t.z.s −։ z; (ii) in case n =
m+ 1, t.z.s−։ s.q for someq with q ≈ 〈m〉. Then we prove the following by induction onn and p:
StoreNat.〈n〉 .(StoreNatBp.r) −։ r.(Succn+p.Zero).

For the second, we proveUnstoreNat.(StoreNat.〈n〉).z.s=P 〈n〉 .z.s, which is sufficient by Corollary
3.10. We compute:

UnstoreNat.(StoreNat.〈n〉).z.s −։ StoreNat.〈n〉 .(UseNat.z.s)

−։ UseNat.z.s.〈n〉

−։ 〈n〉 .z.s

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 13

Thus,UnstoreNat.(StoreNat.〈n〉).z.s=P 〈n〉 .z.s which was what we had to prove.�

The mapStoreNat can be seen as adding a double negation, whereasUnstoreNat can be seen as a
classical double negation law,UnstoreNat : ¬¬Nat → Nat. Note that the fact that¬¬Nat → Nat is
inhabited is not a surprise, becauseNat is a negative type (ending in→⊥). The precise connection with
classical logic remains to be studied.

The storage and ‘unstorage’ operators can most likely also be defined for other data types.

More interesting to study further is the fact that we can combine call-by-name and call-by-value func-
tions. We detail this for natural numbers.

Example 3.26 If we have f1 : Nat and f2 : Nat → Nat, c1 : ⊥, c2 : Nat →⊥ and n: Nat, then

ItCBN Nat→Nat. f1. f2.n.c1.c2 : ⊥

gives a call-by-name iteration. However, one can also first define f̂1 : ¬¬Nat, f̂2 : Nat → ¬¬Nat and

(̂c1,c2) : Nat →⊥ by

f̂1.c −→ c. f1
f̂2.n.c −→ c.(f2.n)

(̂c1,c2).n −→ n.c1.c2

Then, for n: Nat, we have

ItCBV Nat→Nat. f̂1. f̂2.(̂c1,c2).n : ⊥

which gives call-by-value iteration. So, using this transformation (from f1 to f̂1 etc.) one can use the
call-by-name functions to compute call-by-value.

4 Examples of iterators and programs

Example 4.1 This is the call-by-name iterator forListA to Nat:

ItCBN List A→Nat. f1. f2.x.c1.c2 −→

x.(ItCBN Nil
List A→Nat. f1. f2.c1.c2).(ItCBN Cons

ListA→Nat. f1. f2.c1.c2)

ItCBNNil
List A→Nat. f1. f2.c1.c2 −→ f1.c1.c2

ItCBN Cons
List A→Nat. f1. f2.c1.c2.x1.x2 −→ f2.x1.(ItCBN ListA→Nat. f1. f2.x2).c1.c2

Example 4.2 The scheme of Definition 3.19 yields the following call-by-value iterator forListA to B:

ItCBV List A→B. f1. f2.c.x −→ x.(ItCBV Nil,1
List A→B. f1. f2.c).(ItCBV Cons,1

List A→B. f1. f2.c)

ItCBV Nil,1
List A→B. f1. f2.c −→ f1.c

ItCBV Cons,1
List A→B. f1. f2.c.x1.x2 −→ ItCBV Cons,2

List A→B. f1. f2.c.x2.x1

ItCBV Cons,2
List A→B. f1. f2.c.x2.r1 −→ ItCBV List A→B. f1. f2.(ItCBV Cons,3

List A→B. f1. f2.c.r1).x2

ItCBV Cons,3
List A→B. f1. f2.c.r1.r2 −→ f2.r1.r2.c

14 A type system for Continuation Calculus

We note that the number of program rules we need is highly dependent on the arity of the constructors
Nil andCons. SinceNil has no parameters, one rule is enough to define the operation on Nil. Cons on
the other hand has two parameters. Because of this we get three program rules: one for evaluating each
parameter of the constructor and one general rule that redirects every parameter to the corresponding
program rule.

We now show the use of the iterators by providing the implementation of the functionLength. We use
the iterators forListA from Example 4.1 and Example 4.2.

LengthCBN.x.c1.c2 −→ ItCBN List A→Nat.LengthCBN1.LengthCBN2.x.c1.c2

LengthCBN1.c1.c2 −→ Zero.c1.c2

LengthCBN2.x.n.c1.c2 −→ Succ.n.c1.c2

LengthCBV.x.c −→ ItCBV List A→Nat.LengthCBV1.LengthCBV2.c.x
LengthCBV1.c −→ c.Zero
LengthCBV2.x.n.c −→ c.(Succ.n)

We prove forN that the two iterator schemes (CBN and CBV) indeed compute the desired results. We
expect that this proof can easily be extended to prove the semantics of our iteration schemes for any
first-order algebraic data-type. We leave this for future work.

We assumeD to be a data type which has a representation in Continuation Calculus,D, with a repre-
sentation such that〈d〉 : D, for d : D. We now define what it means that a function over a data-type is
represented in CC.

Definition 4.3 We say that f1 :¬¬D CBV-representsd : D and f2 : D→¬¬D CBV-representsF : D→D,
if for all c : D →⊥ and n∈ N we have

f1.c−։ c.〈d〉 (1)

f2.〈n〉 .c−։ c.〈F(n)〉 (2)

The following Theorem states the semantic correctness ofItCBV Nat→D in CC. The proof can be found
in Section 6 of the Appendix.

Theorem 4.4 If f1 CBV-represents d: D and f2 CBV-represents F: D → D, then ItCBV Nat→D. f1. f2
CBV-representsIt (d,F), that is: for all c : D →⊥ and all n∈ N we have

ItCBV Nat→D. f1. f2.c.〈n〉 −։ c.〈(It (d,F))(n)〉

Definition 4.5 If D has m constructors, we say that f1 : D CBN-representsd : D and f2 : D → D CBN-
representsF : D → D, if for all ci : Di and n∈N we have (writing~c= c1 . . .cm):

f1.~c≈ 〈d〉 .~c (1)

f2.〈n〉 .~c≈ 〈F(n)〉 .~c (2)

The following Theorem states the semantic correctness ofItCBN Nat→D in CC. The proof can be found
in Section 6 of the Appendix.

Theorem 4.6 If D has m constructors, f1 CBN-representsd : D and f2 CBN-representsF : D → D, then
ItCBN Nat→D. f1. f2 CBN-representsIt (d,F). That is, for all ci : Di and all n∈ N:

ItCBN Nat→D. f1. f2.〈n〉 .~c ≈ 〈(It (d,F))(n)〉 .~c

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 15

5 Future Work and Conclusions

As future work, we want to better understand the relation with classical logic, which we have suggested
in Section 4. Here we have also defined storage (and unstorage) operators, which we would like to define
in general for all data types. The possibility to combine call-by-value and call-by-name in a flexible
way, which is directed by the types, is an interesting feature, which warrants further study. The fact that
computation is completely deterministic and that the function definition of f itself determines whetherf
is cbv or cbn, makes this combining of cbv and cbn very perspicuous.

The continuations in this paper are limited, and do not include delimited continuations. (More examples
using continuations can be found in [2].) It would be interesting to see if delimited continuations can be
added.

In a forthcoming paper [4] we prove the termination of all CC terms written using the program rules of
P. This is done by translating CC with these rules to a typedλ -calculus with (cbv and cbn) iterators. We
wish to further study the precise translations and connections between CC and (typed)λ -calculus.

References

[1] M. Abadi, L. Cardelli & G. Plotkin (1993):Types for the Scott Numerals.http://lucacardelli.name/
Papers/Notes/scott2.pdf.

[2] B. Geron & H. Geuvers (2013):Continuation calculus. In: Proceedings of COS 2013, EPTCS127, pp. 66–85,
doi:10.4204/EPTCS.127.5.

[3] Bram Geron (2013):Continuation Calculus, master’s thesis. http://alexandria.tue.nl/extra1/

afstversl/wsk-i/geron2013.pdf.

[4] Herman Geuvers (2014):A typedλ -calculus with CBN and CBV iterators. To appear.

[5] J.M. Jansen (2013):Programming in theλ -Calculus: From Church to Scott and Back. In: The Beauty of Func-
tional Code, Lecture Notes in Computer Science8106, pp. 168–180, doi:10.1007/978-3-642-38143-0.

[6] Jean-Louis Krivine (1994):Classical Logic, Storage Operators and Second-Order lambda-Calculus. Ann.
Pure Appl. Logic68(1), pp. 53–78, doi:10.1016/0168-0072(94)90047-7.

[7] A. Miquel (2009): Classical realizability with forcing and the axiom of countable choice. http://perso.

ens-lyon.fr/alexandre.miquel/habilitation/forcing.pdf.

6 Appendix

Proof of Theorem 4.4

Proof We recall the definition ofItCBV Nat→BB:

ItCBV Nat→B. f1. f2.c.x−→ x.(ItCBV Zero,1
Nat→B. f1. f2.c).(ItCBV Succ,1

Nat→B. f1. f2.c) (3a)

ItCBV Zero,1
Nat→B. f1. f2.c−→ f1.c (3b)

ItCBV Succ,1
Nat→B. f1. f2.c.x1 −→ ItCBV Nat→B. f1. f2.(ItCBV Succ,2

Nat→B. f1. f2.c).x1 (3c)

ItCBV Succ,2
Nat→B. f1. f2.c.r1 −→ f2.r1.c (3d)

http://lucacardelli.name/Papers/Notes/scott2.pdf
http://lucacardelli.name/Papers/Notes/scott2.pdf
http://dx.doi.org/10.4204/EPTCS.127.5
 http://alexandria.tue.nl/extra1/afstversl/wsk-i/geron2013.pdf
 http://alexandria.tue.nl/extra1/afstversl/wsk-i/geron2013.pdf
http://dx.doi.org/10.1007/978-3-642-38143-0
http://dx.doi.org/10.1016/0168-0072(94)90047-7
http://perso.ens-lyon.fr/alexandre.miquel/habilitation/forcing.pdf
http://perso.ens-lyon.fr/alexandre.miquel/habilitation/forcing.pdf

16 A type system for Continuation Calculus

By induction onn we prove that for alln, P(n) holds, with

P(n) := ItCBV Nat→B. f1. f2.c.〈n〉 −։ c.〈(It (x,F))(n)〉

P(0) holds, because:

ItCBV Nat→B. f1. f2.c.〈0〉
(3a)
−−→ 〈0〉 .(ItCBV Zero,1

Nat→B. f1. f2.c).(ItCBV Succ,1
Nat→B. f1. f2.c)

= Zero.(ItCBV Zero,1
Nat→B. f1. f2.c).(ItCBV Succ,1

Nat→B. f1. f2.c)
Zero
−−→ ItCBV Zero,1

Nat→B. f1. f2.c
(3b)
−−→ f1.c
(1)
−։ c.〈x〉
= c.〈(It (x,F))(0)〉

AssumeP(n) holds.

P(n+1) holds, because:

ItCBV Nat→B. f1. f2.c.〈n+1〉
(3a)
−−→ 〈n+1〉 .(ItCBV Zero,1

Nat→B. f1. f2.c).(ItCBV Succ,1
Nat→B. f1. f2.c)

= Succ.〈n〉 .(ItCBV Zero,1
Nat→B. f1. f2.c).(ItCBV Succ,1

Nat→B. f1. f2.c)
Succ
−−→ ItCBV Succ,1

Nat→B. f1. f2.c.〈n〉
(3c)
−−→ ItCBV Nat→B. f1. f2.(ItCBV Succ,2

Nat→B. f1. f2.c).〈n〉
P(n)
−−։ ItCBV Succ,2

Nat→B. f1. f2.c.〈(It (x,F))(n)〉
(3d)
−−→ f2.〈(It (x,F))(n)〉 .c
(2)
−։ c.〈F((It (x,F))(n))〉
= c.〈F(Fn(x))〉
= c.

〈

Fn+1(x)
〉

= c.〈(It (x,F))(n+1)〉

Proof of Theorem 4.6

Proof We recall the definition ofItCBN Nat→B:

ItCBN Nat→B. f1. f2.x.~c−→ x.(ItCBN Zero
Nat→B. f1. f2.~c).(ItCBN Succ

Nat→B. f1. f2.~c) (3a)

ItCBN Zero
Nat→B. f1. f2.c−→ f1.~c (3b)

ItCBN Succ
Nat→B. f1. f2.c.x1 −→ f2.(ItCBN Nat→B. f1. f2.x1).~c (3c)

By induction onn we prove that for alln, P(n) holds, with

P(n) := ItCBN Nat→B. f1. f2.〈n〉 .~c≈ 〈(It (x,F))(n)〉 .~c

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 17

P(0) holds, because:

ItCBN Nat→B. f1. f2.〈0〉 .~c
(3a)
−−→ 〈0〉 .(ItCBN Zero

Nat→B. f1. f2.~c).(ItCBN Succ
Nat→B. f1. f2.~c)

= Zero.(ItCBN Zero
Nat→B. f1. f2.~c).(ItCBN Succ

Nat→B. f1. f2.~c)
Zero
−−→ ItCBN Zero

Nat→B. f1. f2.~c
(3b)
−−→ f1.~c
(1)
−։ 〈x〉 .~c
= 〈(It (x,F))(0)〉 .~c

AssumeP(n) holds.

P(n+1) holds, because:

ItCBN Nat→B. f1. f2.〈n+1〉 .~c
(3a)
−−→ 〈n+1〉 .(ItCBN Zero

Nat→B. f1. f2.~c).(ItCBN Succ
Nat→B. f1. f2.~c)

= Succ.〈n〉 .(ItCBN Zero
Nat→B. f1. f2.~c).(ItCBN Succ

Nat→B. f1. f2.~c)
Succ
−−→ ItCBN Succ

Nat→B. f1. f2.~c.〈n〉
(3c)
−−→ f2.(ItCBN Nat→B. f1. f2.〈n〉).~c

P(n),[2.3]
≈ f2.〈(It (x,F))(n)〉 .~c
(2)
≈ 〈F((It (x,F))(n))〉 .~c
= 〈F(Fn(x))〉 .~c
=

〈

Fn+1(x)
〉

.~c
= 〈(It (x,F))(n+1)〉 .~c

In the proof, we say thatf2.(ItCBN Nat→B. f1. f2.〈n〉).~c ≈ f2.〈(It (x,F))(n)〉 .~c. This may may not be
immediately obvious, as the sub-termItCBN Nat→B. f1. f2.〈n〉 is incomplete. However, it is an immediate
consequence of Lemma 2.3: IfM,N are terms of arityk, andM.t1.tk =p N.t1.tk for all~t, then
M ≈ N.

	1 Introduction
	1.1 Informal definition of CC

	2 Formal definition of CC
	3 Types for Continuation Calculus
	3.1 Data types in CC
	3.2 Iteration schemes
	3.3 Call-by-name iterators
	3.4 Call-by-value iterators
	3.5 Rules for programming with data types in CC
	3.6 Translating between call-by-name and call-by-value

	4 Examples of iterators and programs
	5 Future Work and Conclusions
	6 Appendix

