
Paulo Oliva (Ed.): Classical Logic and Computation 2014
EPTCS 164, 2014, pp. 48–62, doi:10.4204/EPTCS.164.4

c© Michele Basaldella
This work is licensed under the
Creative Commons Attribution License.

Infinitary Classical Logic:
Recursive Equations and Interactive Semantics

Michele Basaldella∗

Université d’Aix–Marseille, CNRS, I2M, Marseille, France

michele.basaldella@gmail.com

In this paper, we present an interactive semantics for derivations in an infinitary extension of classical
logic. The formulas of our language are possibly infinitary trees labeled by propositional variables
and logical connectives. We show that in our setting every recursive formula equation has a unique
solution. As for derivations, we use an infinitary variant of Tait–calculus to derive sequents.

The interactive semantics for derivations that we introduce in this article is presented as a de-
bate (interaction tree) between a test T (derivation candidate, Proponent) and an environment ¬S
(negation of a sequent, Opponent). We show a completeness theorem for derivations that we call
interactive completeness theorem: the interaction between T (test) and ¬S (environment) does not
produce errors (i.e., Proponent wins) just in case T comes from a syntactical derivation of S.

1 Introduction

In this article, we present an interactive semantics for derivations — i.e., formal proofs — in a proof–
system that we call infinitary classical logic.

Infinitary classical logic. The system we consider is an infinitary extension of Tait–calculus [8], a se-
quent calculus for classical logic which is often used to analyze the proof theory of classical arithmetic
and its fragments. In Tait–calculus, formulas are built from positive and negated propositional variables
by using disjunctions ∨ and conjunctions ∧ of arbitrary (possibly infinite) arity. Negation ¬ is defined by
using a generalized form of De Morgan’s laws. As for derivations, sequents of formulas are derived by
means of rules of inference with a possibly infinite number of premises. In Tait–calculus, formulas and
derivations — when seen as trees — while not necessarily finitarily branching, are well–founded. In this
work, we remove the assumption of well–foundedness, and we let formulas and derivations be infinitary
in a broader sense. What we get is the system that we call infinitary classical logic.

Recursive equations. The main reason for introducing infinitary classical logic is our interest in study-
ing recursive (formula) equations in a classical context. Roughly speaking, by recursive equation we
mean a pair of formulas (v,F), that we write as v REC

= F, where v is an atom and F is a formula which
depends on v, i.e., such that v occurs in F. For instance, v REC

= ¬v∨v is a recursive equation. A solution of
a recursive equation, say v REC

= ¬v∨v, is any formula G which is equal to ¬G∨G. Solutions of recursive
equations are often called recursive types, and they have been studied extensively in the literature (see
e.g., [2, 7] and the references therein). In this area, one usually aims at finding a mathematical space
in which the (interpretations of) equations have a unique solution (or, at least, a canonical one). In this
paper, we define formulas as (possibly infinitary) labeled trees, and we prove existence and uniqueness
of solutions of equations within the “space” of the formulas. As it turns out, if G is the solution of a
recursive equation (i.e., a recursive type), then G is not well–founded. This fact motivates us to consider

∗Supported by the ANR project ANR-2010-BLAN-021301 LOGOI.

http://dx.doi.org/10.4204/EPTCS.164.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


Michele Basaldella 49

infinitary formulas in our broader sense.

Derivations and tests. Since formulas are infinitary, we let derivations be infinitary as well. We obtain
a cut–free sequent calculus in which the solutions of all recursive equations are derivable (in the sense
of Theorem 3.16(2)). As expected, since we deal with ill–founded (i.e., non–well–founded) derivations,
the price to pay for this huge amount of expressivity is that our calculus is inconsistent (in the sense of
Remark 3.17(c)). In spite of this, it is precisely this notion of infinitary derivation that we want to study
in this work. To this aim, we introduce a semantics for derivations, as we now explain.

Traditionally, the proof theory of classical logic is centered around the notion of derivability. In this
paper, we are interested in analyzing the structure of our infinitary derivations. To this aim, we introduce
the notion of test. A test T is a tree labeled by logical rules (no sequents), and the fundamental relation
between tests and derivations can be informally stated as follows: given a sequent S, if it is the case that
by adding sequent information in an appropriate way to T we obtain a derivation of S, then we say that
T comes from a derivation of S. In this article, the syntactical concept that we investigate is “T comes
from a derivation of S” rather than the traditional one “S is derivable.” Also, note that our concept is
stronger than the usual one: if T comes from a derivation of S, then S is obviously derivable!

To grasp the idea behind our concept from another viewpoint, consider the lambda calculus. By
the Curry–Howard correspondence, untyped lambda terms can be seen as “tests” for natural deduction
derivations, and “T comes from a derivation of S” can be read as “the untyped lambda term T has
(simple) type S in the Curry–style type assignment.”

Interactive semantics and completeness. Traditionally, in order to study the concept of derivability,
one introduces a notion of model and eventually shows a completeness theorem: the syntactical notion of
derivability and the semantical notion of validity (as usual, valid means “true in every model”) coincide.
Here, we are interested in proving a completeness theorem as well. But, since we replace the syntactical
concept of derivability with “T comes from a derivation of S”, we need to replace the semantical notion
of validity with something else. So, we now let our interactive semantics enter the stage.

In few words, our interactive semantics is organized as follows: first, we introduce the notion of
environment ¬S (the negation of a sequent S) and then, we make the test T and the environment ¬S
interact. More precisely, we introduce the notion of configuration (a pair of the form (T ,¬S)) and
define a procedure which makes configurations evolve from the initial configuration (T ,¬S) by means
of a transition relation. As a result, we get a tree of configurations that we call an interaction tree. The
procedure which determines the interaction tree is interactive in the sense that it can be seen as a debate
between two players: Proponent (the test T ) and Opponent (the environment ¬S). Opponent wins the
debate if the interaction between T and ¬S produces an error, i.e., a position in the interaction tree
generated from (T ,¬S) which is labeled by an error symbol. Otherwise, Proponent wins the debate.
Our main result is the interactive completeness theorem:

T comes from a derivation of S if and only if
the interaction between T and ¬S
does not produce errors.

(?)

That is, T comes from a derivation of S if and only if Proponent wins the debate.
The motivation for introducing our semantics comes from our interest in extending the completeness

theorem of ludics [5] to logics which are not necessarily polarized fragments of linear logic. The com-
pleteness theorem of [1] (called interactive completeness also there) can be stated, up to terminology and
notation, in our setting as

T comes from a derivation of S if and only if
for no M ∈ ¬S, the interaction between
T and M produces errors.

(??)

The crucial point is, of course, the RHS of (??). Here, S represents a formula of a polarized fragment



50 Infinitary Classical Logic: Recursive Equations and Interactive Semantics

of linear logic, and T and M are designs (proof–like objects similar to our tests). In [1], formulas are
interpreted as sets of designs such that ¬¬S = S, where ¬S is the set of designs given by: M ∈ ¬S just
in case for every P ∈ S, the interaction between P and M does not produce errors (so, the RHS of
(??) means T ∈ ¬¬S = S). In [1], the result of the interaction between T and M is determined by
a procedure of reduction for designs which reflects the procedure of cut–elimination of the underlying
logic. Of course, it would be very nice if we could use the same approach in our setting!

Unfortunately, if one tries to remove the polarities from ludics, then one encounters several technical
problems related to cut–elimination (that we do not discuss here). To the present author, the most con-
venient way to cope with non–polarized logics, is to build a new framework from the very beginning,
keeping the format of the statement (??) as guiding principle, the rest being — in case — sacrificed. The
choice here is purely personal: the present author believes that the significance of ludics is ultimately
justified by the completeness theorem not e.g., by the fact that the interpretation of the logical formulas
is induced by a procedure of reduction for designs. This describes the origin of this work.

Finally, we note that the RHS of (?) is just the RHS of (??) in case ¬S is a singleton (and so, it can
be identified with ¬S itself). Indeed, this is the case for the interactive semantics presented in this paper.

As for future work, we plan to adapt our interactive semantics to analyze derivations in second–order
propositional classical logic.

Outline. This paper is organized as follows. In Section 2 we recall some preliminary notions about
labeled trees. In Section 3 we introduce formulas and recursive formula equations, and we prove the
existence and the uniqueness of solutions of equations. We also define the notion of derivation and
discuss the derivability of some sequents. In Section 4 we present our interactive semantics and prove
the interactive completeness theorem.

2 Preliminaries: Positions and Labeled Trees

In this section, we recall the basic notions of position and labeled tree. We also establish some notation
and terminology that we extensively use in the sequel.

Definition 2.1 (Position, length). Let N be the set of the natural numbers. Let ∞ be any object such that
∞ /∈ N. We call position any function p : N−→ N ∪ {∞} which satisfies the following property:

(P) for some n ∈ N, p(k) ∈ N for all k < n and p(k) = ∞ for all k ≥ n.

Since ∞ /∈N, the natural number n above is unique. We call it the length of the position and denote it by
lg(p). The set of all positions is denoted by N? and we use p,q,r . . . to range over its elements. 4
Notation and Terminology 2.2. Let p, q and r be positions, and let U , V and W be sets of positions.

(1) A position p is also written as 〈p(0), . . . , p(lg(p)−1)〉. In particular, we write 〈〉 for the unique
position of length 0 that we call the empty position.

(2) The concatenation of p and q is the position p?q defined as follows:

p?q(k) DEF
=

{
p(k) if k < lg(p)
q(k− lg(p)) if k ≥ lg(p) , for k ∈ N .

In other words, p?q = 〈p(0), . . . , p(lg(p)−1),q(0), . . . ,q(lg(q)−1)〉. The operation of concatenation
is associative (i.e., (p?q)? r = p? (q? r)) and it has 〈〉 as neutral element (i.e., 〈〉? p = p = p? 〈〉). Note
also that lg(p?q) = lg(p)+ lg(q).

(3) We write p v q if q = p? t for some t ∈ N?, and we say that q is an extension of p and that p is
a restriction of q. If lg(t) ≥ 1 (resp. lg(t) = 1), then we also say that q is a proper (resp. immediate)
extension of p and that p is a proper (resp. immediate) restriction of q, and we write p < q (resp. p <1 q).



Michele Basaldella 51

(4) We write U ?V for the set {p?q
∣∣ p ∈U and q ∈V}. Note that U ? (V ?W ) = (U ?V )?W , and

that U ?
⋃

i∈I Vi =
⋃

i∈I(U ?Vi), for every family {Vi}i∈I of sets of positions. 4
Definition 2.3 (Labeled tree, domain). Let L be a set. Let ∞L be any object such that ∞L /∈ L. A tree
labeled by L is a function T : N? −→ L ∪ {∞L} which satisfies the following properties:

(T1) T (〈〉) ∈ L;

(T2) if T (p) ∈ L and qv p, then T (q) ∈ L.

We call the set {p ∈ N?
∣∣ T (p) ∈ L} the domain of T and we denote it as dom(T ). 4

Let T and U be trees labeled by L. Since T (q) = ∞L for all q /∈ dom(T ), the tree T is completely
determined by the values it takes on its domain. In particular,

T =U if and only if dom(T ) = dom(U) and T (p) =U(p) for all p ∈ dom(T ) .

Notation and Terminology 2.4. Let T and U be trees labeled by L, and let p ∈ dom(T ).
(1) We say that p is a leaf of T if there is no q ∈ dom(T ) such that p < q.
(2) The subtree of T above p is the tree Tp labeled by L defined as follows:

dom(Tp)
DEF
= {q ∈ N?

∣∣ p?q ∈ dom(T )} and Tp(q)
DEF
= T (p?q) , for q ∈ dom(Tp) .

Note that we have T〈〉 = T and (Tp)q = Tp?q, for every p and q in N? such that p?q ∈ dom(T ).
We say that U is a subtree of T if U = Tq, for some q ∈ dom(T ). If lg(q) = 1, then we also say that

U is an immediate subtree of T .
(3) If L is a product, i.e., L = A×B for some sets A and B, then we write TL(p) and TR(p) for the left

and the right component of T (p) respectively (i.e., if T (p) = (a,b), then TL(p) = a and TR(p) = b).
(4) We say that T is ill–founded if there exists a function f : N−→ dom(T ) such that f (n)< f (n+1)

for every n ∈ N. We also say that T is well–founded if it is not ill–founded. 4

3 Infinitary Classical Logic

In this section, we present our infinitary version of classical logic. In Subsection 3.1 we introduce
formulas as possibly infinitary labeled trees, and in Subsection 3.2 we introduce the notion of recursive
formula equation and prove that solutions of equations exist and they are unique. Finally, in Subsection
3.3 we introduce the concept of derivation and observe some basic properties.

3.1 Formulas

We now define the concept of formula and the operation of negation.

Definition 3.1 (Propositional variable). Let + and − be two distinct symbols. Let V
DEF
= {+}×N and

¬V DEF
= {−}×N. We call the elements of V (resp. ¬V ) positive (resp. negated) propositional vari-

ables, and we denote a generic element (+,v) of V (resp. (−,v) of ¬V ) by v (resp. ¬v). 4
Definition 3.2 (Formula). Let ∨ and ∧ be two distinct symbols such that {∨,∧} ∩

(
V ∪¬V

)
= /0. We

call formula any tree T labeled by {∨,∧} ∪ V ∪¬V which satisfies the following property:

(F) for every p ∈ dom(T ), if T (p) ∈ V ∪¬V , then p is a leaf of T .

In the sequel, we use the letters F,G,H, . . . to range over formulas. 4
Notation and Terminology 3.3. Let F be a formula.

(1) Since for every p ∈ dom(F), the subtree Fp is a formula, we say that Fp is a subformula of F and
that Fp occurs in F. If lg(p) = 1 then we also say that Fp is an immediate subformula of F.



52 Infinitary Classical Logic: Recursive Equations and Interactive Semantics

(2) If F(〈〉) ∈ V ∪¬V , then dom(F) = {〈〉} and we say that F is an atom. If F(〈〉) = v ∈ V (resp.
F(〈〉) = ¬v ∈ ¬V ), then we abusively denote F by v (resp. ¬v) and we say that F is a positive (resp.
negated) atom.

(3) If F(〈〉) ∈ {∨,∧}, then we call F a compound formula. The set of natural numbers

I DEF
= {i ∈ N

∣∣ 〈i〉 ∈ dom(F)}
is said to be the arity of F. Let F(〈〉) = ∨ (resp. F(〈〉) = ∧). Since for every i ∈ I the formula F〈i〉
is an immediate subformula of F, we also denote F by ∨IF〈i〉 (resp. ∧IF〈i〉) and we say that F is a
disjunctive (resp. conjunctive) formula. If I = {0, . . . ,n− 1} for some n ∈ N, then we also write
∨[F〈0〉, . . . ,F〈n−1〉] (resp. ∧[F〈0〉, . . . ,F〈n−1〉]) for F. Obviously, if we write something like “let F be
∨[G0, . . . ,Gn−1] . . . ” (resp. ∧[G0, . . . ,Gn−1]), then we mean that F is a disjunctive (resp. conjunctive)
formula of arity {0, . . . ,n−1} and that Gk = F〈k〉, for each k < n. Similarly, we may use the expression
∨[G,H] (resp. ∧[G,H]) to denote the disjunctive (resp. conjunctive) formula F whose arity is {0,1} and
such that F〈0〉 = G and F〈1〉 = H, and so on. Finally, if I = /0 — that is, dom(F) = {〈〉}) — then we write
fff (for false) and ttt (for true) rather than ∨[ ] (resp. ∧[ ]) respectively. 4

Definition 3.4 (Negation). Let F be a formula. The formula ¬F, that we call the negation of F, is defined
as follows: dom(¬F) DEF

= dom(F) and

¬F(p) DEF
=


¬v if F(p) = v

v if F(p) = ¬v
∨ if F(p) = ∧
∧ if F(p) = ∨ , for p ∈ dom(¬F) . 4

We observe that the negation is involutive, i.e., ¬¬F = F, for every formula F. Furthermore,

¬∨I F〈i〉 = ∧I¬F〈i〉 and ¬∧I F〈i〉 = ∨I¬F〈i〉 .

According to Definition 3.2, formulas are allowed to be infinitary: they may have an infinite set I ⊆N
as arity, and they can also be ill–founded. In Tait’s work [8], the situation is rather different: the arity of
a compound formula need not be a subset of N, and only well–founded formulas are considered.

Let us discuss our choices. As for the first difference, we restrict attention to sets of natural numbers
mainly for expository reasons; a pleasant consequence of this choice is that we can define sequents as
formulas (Definition 3.11) rather than finite sets (as in [8]), multi–sets, or sequences of formulas. As for
the second one, we have to consider ill–founded formulas because solutions of recursive equations are
formulas which always have this property (see Theorem 3.9).

We finally observe that the principles of (transfinite) induction and recursion cannot be applied to
ill–founded formulas. In particular, — even though we are in classical world — it is not possible to
give to our formulas a Tarskian definition of truth. Nevertheless, in our setting it is possible to define a
reasonable notion of derivation, as we do in Subsection 3.3.

3.2 Recursive Formula Equations

In this subsection, we define the concepts of recursive equation and solution of an equation. We prove
that every recursive equation has a unique solution. We also give some concrete examples.

Definition 3.5 (Substitution). Let F and G be formulas, and let v be a positive atom. We define the
formula F[G/v] obtained by the substitution of G for v and of ¬G for ¬v in F as follows. Let R DEF

=

{r ∈ dom(F)
∣∣ F(r) ∈ {v,¬v}} and S DEF

= dom(F)\R. We set dom(F[G/v]) DEF
= S ∪

(
R?dom(G)

)
and



Michele Basaldella 53

F[G/v](p) DEF
=


F(p) if p ∈ S
G(q) if p = r ?q and F(r) = v
¬G(q) if p = r ?q and F(r) = ¬v , for p ∈ dom(F[G/v]) . 4

The correctness of the previous definition is justified by the following lemma.

Lemma 3.6. Let R and S be as in Definition 3.5.

(a) For every r ∈ R and every t ∈ N?, if p = r ? t then p /∈ S.

(b) Let V ⊆ N?, and let p ∈ R?V . Suppose that there are r, r′ in R and q, q′ in V such that p = r ?q and
p = r′ ?q′. Then, r = r′ and q = q′.

Proof. (a) If t = 〈〉, then p = r? 〈〉= r ∈ R. If t 6= 〈〉, then p /∈ dom(F), as r is a leaf of F. Hence, p /∈ S.
(b) Since both r and r′ are restrictions of p, we have r v r′ or r′ v r. Since r and r′ are leaves of F,

we conclude r = r′ (and hence q = q′).

The following proposition easily follows from our definition of substitution.

Proposition 3.7. Let F and G be formulas, and let v be a positive atom. Then:

(1) v[G/v] = G and (¬v)[G/v] = ¬G;

(2)
(
∨I F〈i〉

)
[G/v] = ∨I

(
F〈i〉[G/v]

)
and

(
∧I F〈i〉

)
[G/v] = ∧I

(
F〈i〉[G/v]

)
;

(3) F[G/v] = F, if neither v nor ¬v is a subformula of F;

(4) ¬(F[G/v]) = (¬F)[G/v]. �

Definition 3.8 (Recursive formula equation, solution). A recursive formula equation (or recursive
equation, or just equation) is an ordered pair of formulas (v,F), that we write as v REC

= F, such that:

(R1) v is a positive atom;

(R2) F is a compound formula;

(R3) F(p) ∈ {v,¬v}, for some p ∈ dom(F).

A solution of v REC
= F is a formula G such that G = F[G/v]. 4

We now discuss the previous definition. To begin with, note that by (R2), a pair of atoms such as
(v,a) is not a recursive equation. The reason to exclude such pairs is to avoid to consider (v,v) — which
would be a trivial equation, as every formula would be a solution — and (v,¬v) — which would have no
solution at all. Up to now, our choices are perfectly in line with [3, 2]. In our setting, we also impose the
additional condition (R3). The aim of this clause is to exclude pairs of the form (v,F) where neither v nor
¬v actually occurs in F. The reason is that pairs like the one above would be trivial equations as well: by
Proposition 3.7(3), F itself would be the unique solution, as we have F[G/v] = F for every formula G.

We now turn attention to the literature on recursive types. In this topic, the theorem which states
existence and uniqueness of solutions of recursive equations is perhaps the most important result. One
usual way to prove it is to show that the mathematical space (in our case, it would be the set of formulas)
forms a complete metric space with respect to some metric. Then, the result follows by applying Banach’s
fixpoint theorem, by using the fact that the operation of substitution induces a contractive map from the
space to itself [3, 2]. Another traditional way to prove that result requires to introduce in the space
some notion of approximation. One then shows that suitable sequences of “lower” (resp. “upper”)
approximations converge to a “lower” (resp. “upper”) solution of the equation. To prove the result, one
eventually proves that the two solutions coincide (see e.g., [7, 1] and the references therein).

By contrast, in our setting we are able to prove the result in a direct and elementary way; our method
does not require to explicitly introduce any sort of metric or notions of approximation. We do not claim



54 Infinitary Classical Logic: Recursive Equations and Interactive Semantics

that our result is new, as there are several similar results in the literature. However, we believe that our
proof deserves some attention, as it is quite simple and self–contained.

Theorem 3.9 (Existence and uniqueness of solutions). Every recursive equation v REC
= F has a unique

solution G. Furthermore, G is ill–founded.

Proof. Let R and S be as in Definition 3.5. First, we observe that by condition (R2) of Definition 3.8,
〈〉 ∈ S. In particular, 〈〉 /∈ R. Furthermore, by condition (R3), R is non–empty.

We now remark that by definition of substitution, if H is a solution of the equation v REC
= F, then the

set of positions dom(H) has to satisfy dom(H) = S∪ (R ? dom(H)). So, we are interested in studying
those sets of positions X such that X = S∪ (R?X). To this aim, we define

A0
DEF
= S , An+1

DEF
= R?An , A<n

DEF
=
⋃

k<n Ak and A DEF
=
⋃

n∈N An .

The key property, that we show in a moment, is that A is the unique set such that A = S∪ (R ?A). This
fact is known as Arden’s Rule in the literature of formal languages theory (see e.g., [6]).

We now prove this fact in our setting (our proof is adapted from the one given in [6]).

(i) Arden’s Rule: X = S∪ (R?X) if and only if X = A.

Proof of (i). If X = A, then A =
⋃

n∈N An = A0∪
⋃

n>0 An = A0∪ (R?
⋃

n∈N An) = S∪ (R?A).
To show the converse, let X be such that X = S∪(R?X). For each n∈N we define X0

DEF
= X , Xn+1

DEF
=

R?Xn. By induction on n, we show that for every n∈N we have X =A<n∪Xn. If n= 0, then X = /0∪X0 =
X . Let n = m+ 1 and assume A<m ∪Xm = X . We have A<m+1 ∪Xm+1 = A0 ∪ (R ?A<m)∪ (R ?Xm) =
A0 ∪ (R ? (A<m ∪Xm)) = S∪ (R ?X) = X . Now, since 〈〉 /∈ R, for each p ∈ X we have p /∈ Xlg(p)+1, as
lg(q) > lg(p) for every q ∈ Xlg(p)+1. Hence, if p ∈ X = A<lg(p)+1 ∪Xlg(p)+1, then p ∈ A<lg(p)+1 ⊆ A.
Finally, if p ∈ A, then p ∈ An for some n ∈ N. Therefore, p ∈ An ⊆ A<n+1∪Xn+1 = X .

By (i), the domain of any solution of the recursive equation v REC
= F has to be A. However, this fact

does not give us any hint about how to define the values of a solution G (i.e., G(p), for p ∈ A).
To tackle this problem, we now show the following properties.

(ii) (a) For every n ∈ N, each p ∈ An can be factorized in a unique way as
p = rp

0 ? · · ·? rp
n−1 ? sp, where rp

0 , . . . ,r
p
n−1 ∈ R and sp ∈ S.

(b) For every n ∈ N and every m ∈ N, if n 6= m then An and Am are disjoint.

Proof of (ii). (a) By induction on n. If n = 0, then p ∈ A0 = S. By Lemma 3.6(a), for no r ∈ R and t ∈N?

we have p = r ? t. So, we set sp DEF
= p. If n = m+ 1, then p ∈ Am+1 = R ?Am. By Lemma 3.6(b), there

is a unique r ∈ R and a unique q ∈ Am such that p = r ?q. By inductive hypothesis, q can be written as
q = rq

0 ? · · ·? rq
m−1 ? sq. Hence, p can be factorized as p = rp

0 ? · · ·? rp
n−1 ? sp, where rp

0
DEF
= r, rp

k
DEF
= rq

k−1 for
every 1≤ k < n, and sp DEF

= sq.
(b) Suppose, for a contradiction, that for some p ∈ A there are n and m in N such that n < m, p ∈ An

and p∈ Am. Let n be the least natural number for which this fact holds. By Lemma 3.6(a), we have n> 0,
as for no t ∈ N? it is the case that p ∈ A0 = S and p = r ? t ∈ Am. Suppose now that n > 0, p = r ? t ∈ An

and p = r′ ? t ′ ∈ Am. Since p ∈ R ?A, we can apply Lemma 3.6(b) and we obtain r = r′ and t = t ′. But
then, we have t ∈ An−1 and t ∈ Am−1. This contradicts the minimality of n.

By (ii), it follows that each p ∈ A can be uniquely factorized as p = rp
0 ? · · ·? rp

np−1 ? sp, where np is
the unique n ∈ N such that p ∈ An. We are now ready to define G.

Let p ∈ A and let mp ∈ N be the cardinality of { j < np
∣∣ F(rp

j ) = ¬v}. We set dom(G)
DEF
= A and

G(p) DEF
=

{
F(sp) if mp is even
¬F(sp) if mp is odd , for p ∈ dom(G) .



Michele Basaldella 55

We now show that G is a formula and that it is a solution of v REC
= F.

(iii) (1) 〈〉 ∈ dom(G) and if qv p, then q ∈ dom(G).

(2) If G(p) ∈ V ∪¬V , then p is a leaf of G.

(3) G = F[G/v].
Proof of (iii). (1) 〈〉 ∈ S = A0 ⊆ dom(G). If q v p then either q = rp

0 ? · · · ? rp
np−1 ? t and t v sp, or

q = rp
0 ? · · ·? rp

k−1 ? t, for k < np and t < rp
k . In both cases, t ∈ S. Thus, q ∈ Anp ∪Ak ⊆ A = dom(G).

(2) Let G(p) ∈ V ∪¬V . As G(p) ∈ {F(sp),¬F(sp)}, we have G(p) ∈ V ∪¬V just in case F(sp) ∈
V ∪¬V . Since sp is a leaf of F and sp /∈ R, no proper extension of p is in dom(G). So, p is a leaf of G.

(3) By (i), dom(G)=A= S∪(R?A)= S∪(R?dom(G))= dom(F[G/v]). Let p∈ dom(G). If np = 0,
then p= sp ∈ S and G(p) =F(p) =F[G/v](p). Suppose now that np > 0. Let q be rp

1 ? · · ·?rp
np−1?sp. By

definition, sp = sq (see the proof of (ii)(a)). If F(rp
0 ) = v, then mp = mq and G(p) = G(q) = F[G/v](p).

If F(rp
0 ) = ¬v, then mp = mq +1 and G(p) = ¬G(q) = F[G/v](p).

We now prove that G is the unique solution of the recursive equation v REC
= F.

(iv) If H is a formula such that H = F[H/v], then H = G.

Proof of (iv). By (i), dom(H) = A. We now prove that for every n ∈ N, for each p ∈ An we have
H(p) = G(p). We reason by induction on n. If n = 0, then p ∈ S. Hence, H(p) = F[H/v](p) =
F(p) = G(p). Suppose now that n = m+1. Let q be rp

1 ? · · ·? rp
n−1 ? sp ∈ Am. By inductive hypothesis,

H(q) = G(q). If F(rp
0 ) = v, then H(p) = F[H/v](p) = H(q) = G(q) = G(p). If F(rp

0 ) = ¬v, then
H(p) = F[H/v](p) = ¬H(q) = ¬G(q) = G(p).

Finally, we show that G is ill–founded.

(v) There exists a function f : N−→ dom(G) such that f (n) < f (n+1), for every n ∈ N.

Proof of (v). Recall that R is non–empty and that 〈〉 /∈ R. Let r ∈ R. Define r0 DEF
= 〈〉 and rn+1 DEF

= r ? rn,
for each n ∈N. As 〈〉 ∈ S, we have rn = rn ? 〈〉 ∈ An and rn < rn+1, for every n ∈N. So, {rn

∣∣ n ∈N} ⊆
A = dom(G). Thus, the function f given by: f (n) DEF

= rn for every n ∈ N, has the required property.
The proof of Theorem 3.9 is now complete.

Example 3.10. Let us consider the recursive equations

(1) u REC
= ∨[u,u] , (2) w REC

= ∧[w,w] and (3) v REC
= ∨[¬v,v] .

Let U, W and V be the solutions of the equations (1), (2) and (3) respectively. We have dom(U) =

dom(W) = dom(V) = A, where A DEF
= {p ∈ N?

∣∣ p(k) ∈ {0,1}, for all k < lg(p)}. Moreover, for p ∈ A,
we have U(p) = ∨, W(p) = ∧ and

V(p) =

{
∨ if the cardinality of {k

∣∣ p(k) = 0} is even
∧ if the cardinality of {k

∣∣ p(k) = 0} is odd .

In our setting, v REC
= ∨[¬v,v] can be used to represent the equation “X = X → X” which is a well–known

example of equation of mixed variance in the literature of recursive types (see e.g., [7]). 4

3.3 Derivations

In this subsection, we introduce the notions of sequent and derivation. We also show some sequents
which are derivable in our framework. In this work, we define sequents as special disjunctive formulas.
We think that this choice is convenient, as it makes clearer the “duality” between sequents and envi-
ronments (Definition 4.1(2)). Derivations are defined to be trees labeled by sequents and rules. Our



56 Infinitary Classical Logic: Recursive Equations and Interactive Semantics

definition of derivation is actually very similar to that of pre–proof in [4] (very roughly, a pre–proof is a
not necessarily well–founded derivation in a sequent calculus for classical logic with the ω–rule).

Definition 3.11 (Sequent). We call sequent any disjunctive formula F whose arity is {0, . . . ,n−1}, for
some n ∈ N. The set of all sequents is denoted by SEQ. 4
Notation 3.12. Let S = ∨[F0, . . . ,Fn−1] be a sequent. Let G be a formula. We write ∨[F0, . . . ,Fn−1,G],
and sometimes also S∨G, for the sequent T of arity {0, . . . ,n} defined as follows: dom(T) DEF

= dom(S)∪
{〈n〉?q

∣∣ q ∈ dom(G)} and

T(p) DEF
=

{
S(p) if p ∈ dom(S)
G(q) if p = 〈n〉?q , for p ∈ dom(T) .

In particular, if n = 0 then T = fff ∨G = ∨[G] (recall that fff is an abbreviation for ∨[ ]). 4
Definition 3.13 (Rule). A rule is either an axiom rule or a disjunctive rule or a conjunctive rule.

• An axiom rule is an ordered triple
(
v,k, `

)
, where v ∈ V , k ∈ N and ` ∈ N.

• A disjunctive rule is an ordered triple
(
∨,k, i0

)
, where k ∈ N and i0 ∈ N.

• A conjunctive rule is a ordered pair
(
∧,k
)
, where k ∈ N.

The set of all rules is denoted by RULES. 4
Definition 3.14 (Derivation). A derivation is a tree T labeled by SEQ×RULES such that for each
p ∈ dom(T ) one of the following conditions (ax), (∨) and (∧) holds.

(ax) :


(i) T (p) =

(
∨ [F0, . . . ,Fn−1] ,

(
v,k, `

))
;

(ii) k < n, ` < n, Fk = v and F` = ¬v;
(iii) p is a leaf of T .

(∨) :


(i) T (p) =

(
∨ [F0, . . . ,Fn−1] ,

(
∨,k, i0

))
;

(ii) k < n, Fk = ∨IG〈i〉 and i0 ∈ I;
(iii) p? 〈i〉 ∈ dom(T ) if and only if i = i0;
(iv) TL(p? 〈i0〉) = ∨[F0, . . . ,Fn−1,G〈i0〉].

(∧) :


(i) T (p) =

(
∨ [F0, . . . ,Fn−1] ,

(
∧,k
))

;
(ii) k < n and Fk = ∧IG〈i〉;
(iii) p? 〈i〉 ∈ dom(T ) if and only if i ∈ I;
(iv) TL(p? 〈i〉) = ∨[F0, . . . ,Fn−1,G〈i〉], for every i ∈ I.

In the sequel, we use π,ρ,σ , . . . to range over derivations. We say that π is a derivation of S if πL(〈〉) =
S, and we say that S is derivable if there exists a derivation π of it. 4
Remark 3.15. Let π be a derivation. Let πL(〈〉) = ∨[G0, . . . ,Gm−1], and let πL(p) = ∨[F0, . . . ,Fn−1],
for some p ∈ dom(π).

(a) The subformula property. For every k < n, there exists ` < m such that Fk is a subformula of G`.
(b) Leaves. The position p is a leaf of π if and only if p is as in (ax) of Definition 3.14, or p is as in

(∧) of Definition 3.14 and Fk = ttt (recall that ttt is an abbreviation for ∧[ ]).
(c) Rules. The rule πR(p) and the sequent πL(p) completely determine the sequent πL(q), for each

q which immediately extends p in dom(π). In other words, if ρ and σ are two derivations of the same
sequent S, then dom(ρ) = dom(σ) and ρR(p) = σR(p) for all p ∈ dom(ρ) together imply ρ = σ . 4

Using a more traditional notation for derivations in the sequent calculus, conditions (ax), (∨) and (∧)
of Definition 3.14 can be respectively written as follows:

(ax)` Γ , F , ∆ , ¬F , Σ

` Γ , ∨IF〈i〉 , ∆ , F〈i0〉 (∨)` Γ , ∨IF〈i〉 , ∆

` Γ , ∧IF〈i〉 , ∆ , F〈i〉 . . . for all i ∈ I
(∧)` Γ , ∧IF〈i〉 , ∆

where {F,¬F} = {v,¬v} in (ax), i0 ∈ I in (∨), and in (∧) the expression “. . . for all i ∈ I” means that
there is one premise for each i ∈ I . In particular, if I = /0, then there is no premise above the conclusion.



Michele Basaldella 57

The rules of inference displayed above essentially correspond to the normal rules of Tait–calculus
[8]. But in contrast with [8], in our setting ill–founded derivations are permitted. As a consequence, we
have the following results.

Theorem 3.16.
(1) Let S = ∨[F0, . . . ,Fn−1] be a sequent. Suppose that for some k < n either Fk is a disjunctive formula

whose arity is not the empty set, or Fk is a conjunctive formula. Then, S is derivable.

(2) Let v REC
= F be a recursive equation, and let G be its unique solution. Then, the sequent ∨[G] is

derivable.

Proof. (1) Let Fk = ∨IG〈i〉, for some I 6= /0. Let i0 ∈ I. We define a tree T labeled by SEQ×RULES as
follows: dom(T ) DEF

= {p ∈ N?
∣∣ p(k) = i0, for all k < lg(p)} and

T (p) DEF
=

{ (
S ,
(
∨,k, i0

))
if p = 〈〉(

TL(q)∨G〈i0〉 ,
(
∨,k, i0

))
if p = q? 〈i0〉 , for p ∈ dom(T ) .

Suppose now that Fk = ∧IG〈i〉. We analogously define a tree U labeled by SEQ×RULES as follows:
dom(U)

DEF
= {p ∈ N?

∣∣ p(k) ∈ I, for all k < lg(p)} and

U(p) DEF
=

{ (
S ,
(
∧,k
))

if p = 〈〉(
UL(q)∨G〈i〉 ,

(
∧,k
))

if p = q? 〈i〉 , for p ∈ dom(U) .
Since each p ∈ dom(T ) (resp. p ∈ dom(U)) satisfies condition (∨) (resp. (∧)) of Definition 3.14, T
(resp. U) is a derivation of S.

(2) By condition (R2) of Definition 3.8, either F = ∨IF〈i〉 or F = ∧IF〈i〉. Furthermore, by (R3) we
have that I 6= /0, as v or ¬v (or both) must occur in F. For 3 ∈ {∨,∧}, we have, by Proposition 3.7(2),
that G = F[G/v] = (3IF〈i〉)[G/v] = 3I(F〈i〉[G/v]) = 3IG〈i〉. Hence, G is a compound formula whose
arity is I 6= /0. Then, we can apply (1) above to S = ∨[G] and obtain the desired result.

Remark 3.17. Let U, W, and V be the formulas defined in Example 3.10.
(a) By Theorem 3.16(2), for each M ∈ {U,W,V} the sequent ∨[M] is derivable. But, since the

subformulas of M are neither atoms nor equal to ttt, it follows from Remark 3.15(a)(b) that every derivation
of ∨[M] has to be ill–founded.

(b) There are several sequents which are not derivable. For instance, fff , ∨[ fff ],∨[ fff , fff ], . . . . Also, for
each atom a the sequents ∨[a], ∨[a,a], ∨[a,a,a], . . . are not derivable.

(c) Even though fff is not derivable, our system is inconsistent in the sense that there is some formula
F such that both ∨[F] and ∨[¬F] are derivable. For, consider U and W, and note that U = ¬W. By (a)
above, ∨[U] and ∨[W] are derivable.

(d) The cut–rule is not admissible in our system, i.e., it is not true that

(CUT) for every sequent S and every formula F, if S∨F and S∨¬F are derivable, then so is S.

For, let S be fff . By (c) above, both fff ∨U = ∨[U] and and fff ∨¬U = fff ∨W = ∨[W] are derivable. But by
(b) above, fff is not derivable. 4

4 Interactive Semantics

We now present our interactive semantics for derivations in infinitary classical logic.
Let S be a sequent. Recall that in this paper we are not interested in studying the concept of deriv-

ability, i.e., “S is derivable.” Rather, the concept that we want to analyze is “the test T comes from a
derivation of S”, in the sense we now make clear. Before giving the formal definitions, we explain at an



58 Infinitary Classical Logic: Recursive Equations and Interactive Semantics

informal level the three basic notions of our semantics: test, environment and interaction tree.

Tests. In this paper, a test is nothing but a tree T labeled by RULES such that dom(T ) = N?. This
is actually the official definition of test (that we repeat, for convenience, in the next subsection). Tests
have to be thought as “derivation candidates” for a derivation π of a sequent S. More precisely, let the
skeleton of the derivation π of S be the tree T labeled by RULES whose domain is equal to dom(π)
and such that T (p) = πR(p), for all p ∈ dom(π). In other words, the skeleton is just the object obtained
from a derivation by erasing all the sequent information. Then, we say that the test T comes from the
derivation π of S (or that T is a “successful candidate”) if the skeleton of π is “contained” into T (see
Definition 4.4 for the precise definition). In general, it is not always the case that a test contains the
skeleton of some derivation. In this paper, tests have to be understood as untyped objects in the sense
that they are not necessarily related to formulas and sequents: it may be the case that a test comes from
a single derivation, or several derivations, or no derivation at all. The semantics we define gives us a
precise answer to the problem of determining when a test comes from a derivation or not.

Finally, we also point out that the definition of “to come from” is syntactical, as we use the syntacti-
cal notions of derivation and skeleton to define it.

Environments and interaction trees. Technically speaking, an environment is just the negation ¬S
of a sequent S (in particular, it is not a sequent). In our setting, tests and environments interact. To
be more specific, a pair

(
T ,¬S

)
, called configuration, uniquely determines a tree which is labeled by

configurations of the previous kind, or by an error symbol ⇑. We call this tree the interaction tree of(
T ,¬S

)
. The construction of the interaction tree is dynamical in the sense that it can be seen as the

(possibly infinitary) “unfolding” of the transition relation — of a suitable transition system — starting
from

(
T ,¬S

)
. The procedure which determines the interaction tree has also a very simple and natural

game interpretation. Now, recall that the statement of the interactive completeness theorem is:

T comes from a derivation of S if and only if
the interaction between T and ¬S
does not produce errors.

We can now intuitively explain how errors come into play: if for some position p in the domain of the
interaction tree of

(
T ,¬S

)
it is the case that the label is ⇑, then we say that the interaction between the

test T and the environment ¬S produces an error. Observe that the notion of “to produce an error” is
semantical in the sense that we use the interaction tree to determine the eventual presence of errors. In
particular, we make no use of the syntactical notions of derivation and skeleton.

We now develop the technical part of this section. In Subsection 4.1 we give the formal definitions of
test, environment and interaction tree. We also give a game theoretical interpretation of our interaction
trees. In Subsection 4.2 we prove the interactive completeness theorem.

4.1 Interaction trees

Definition 4.1 (Test, environment, configuration).
(1) A test is a tree T labeled by RULES such that dom(T ) =N?. The set of all tests is denoted by TESTS,

and we use T ,U ,W , . . . to denote its elements.

(2) We call environment any formula which is the negation of a sequent. That is, an environment is a
conjunctive formula whose arity is {0, . . . ,m− 1}, for some m ∈ N. The set of all environments is
denoted by ENV.

(3) We define the set CONF of configurations as

CONF DEF
=
(
TESTS × ENV

)
∪ {⇑},



Michele Basaldella 59

where ⇑ (pronounced “error”) is any object such that ⇑ /∈ TESTS×ENV. In the sequel, we use the
letters c,d,e, . . . to denote configurations. 4

Notation 4.2. Let E = ∧[G0, . . . ,Gm−1] be an environment. Let H be a formula. In the sequel, we write
∧[G0, . . . ,Gm−1,H], and when convenient also E∧H, for the environment ¬

(
∨ [¬G0, . . . ,¬Gm−1,¬H]

)
of arity {0, . . . ,m}. Recall that the sequent ∨[¬G0, . . . ,¬Gm−1,¬H] is defined in Notation 3.12. 4

Definition 4.3 (Interaction tree, production of errors). Let c be a configuration. The interaction tree of
c is the tree T labeled by CONF defined as follows.

(C1) 〈〉 ∈ dom(T ), and T (〈〉) DEF
= c.

(C2) Suppose that p ∈ dom(T ) has been defined. We define the immediate extensions of p in dom(T )
and their labels by cases as follows:

(⇑1) If T (p) = ⇑, then p is a leaf of T .

(ax) If T (p) =
(
T , ∧[G0, . . . ,Gm−1]

)
, T (〈〉) =

(
v,k, `

)
, k < m, ` < m, Gk = ¬v and G` = v, then p

is a leaf of T .

(∨) If T (p) =
(
T , ∧[G0, . . . ,Gm−1]

)
, T (〈〉) =

(
∨,k, i0

)
, k < m, Gk = ∧IH〈i〉 and i0 ∈ I, then

p? 〈i〉 ∈ dom(T ) if and only if i = i0, and T (p? 〈i0〉)
DEF
=
(
T〈i0〉 , ∧[G0, . . . ,Gm−1,H〈i0〉]

)
.

(∧) If T (p) =
(
T , ∧[G0, . . . ,Gm−1]

)
, T (〈〉) =

(
∧,k
)
, k <m and Gk =∨IH〈i〉, then p?〈i〉 ∈ dom(T )

if and only if i ∈ I, and T (p? 〈i〉) DEF
=
(
T〈i〉 , ∧[G0, . . . ,Gm−1,H〈i〉]

)
for each i ∈ I.

(⇑2) In all the other cases, p? 〈i〉 ∈ dom(T ) if and only if i = 0 and T (p? 〈0〉) DEF
= ⇑.

We denote the interaction tree of a configuration c as IT(c).
Let T be a test, and let E be an environment. We say that the the interaction between T and E

does not produce errors if

there is no p ∈ dom(IT(
(
T ,E

)
)) such that IT(

(
T ,E

)
)(p) = ⇑ . 4

We now discuss the previous bunch of definitions.

Global view of the interaction tree: interaction and transition systems. The procedure which deter-
mines the interaction tree has to be read as follows. First, we have 〈〉 ∈ dom(IT(c)), by (C1). From 〈〉
and its label, we calculate, by using the clauses in (C2), all the positions of length one in dom(IT(c)).
Now, we do the same thing for each position of length one in dom(IT(c)), and we obtain all the positions
of length two in dom(IT(c)), and so on. This procedure might not stop and produce an ill–founded tree.

We call IT(c) interaction tree because (in the case c 6= ⇑) when a test and an environment are com-
bined into a configuration, they interact. Namely, they evolve into new configurations according to the
clauses given in Definition 4.3. Furthermore, given a configuration c its interaction tree IT(c) is defined
dynamically: at each step one checks which clause of Definition 4.3 holds and then (possibly) proceeds
to the next step. Indeed, one can recognize the computational structure of transition system here: CONF
is the set of states and the transition relation ; is given according to the clauses in (C2). Here, the con-
figuration ⇑ represents a final state. Thus, the interaction tree of c can be seen as the (possibly infinitary)
“unfolding” of the transition relation ; starting from the state c.

Local view of the interaction tree: a game theoretical interpretation. At first view, clauses (C2)(ax),
(C2)(∨) and (C2)(∧) of Definition 4.3 seem to be just the “dual” of conditions (ax), (∨) and (∧) of
Definition 3.14 respectively. This is admittedly true, but notice that in Definition 3.14 we use (ax),
(∨) and (∧) to define the notion of derivation, whereas here we use (C2)(ax), (C2)(∨) and (C2)(∧) to
(possibly) find errors. Furthermore, there is nothing which corresponds to clauses (C2)(⇑1) and (C2)(⇑2)



60 Infinitary Classical Logic: Recursive Equations and Interactive Semantics

in Definition 3.14. On the other hand, these clauses are crucial to the aim of finding errors. Hence, even
though derivations and interaction trees seem to be similar, they have different purposes.

We can now give a very simple and natural game interpretation to the objects introduced so far.
Specifically, the interaction tree can be seen as a debate between two players: P (Proponent) and O
(Opponent). The moves of the game are determined by the clauses given in Definition 4.3. In our game,
P is always in charge of tests, whereas O is always in charge of environments. Given a configuration c,
P (possibly) makes a question and O answers to the question by producing a set of configurations. Then,
for each configuration produced by O, P (possibly) makes a question and O answers to the question by
producing a set of configurations, and so on. The debate starts with a given configuration c different from
⇑. Then, for each configuration d given or produced so far, the two players behave as follows.

(⇑G) If d = ⇑, then P does not make any question and O does not produce any configuration.

Let d =
(
T , ∧[G0, . . . ,Gm−1]

)
. Then, P asks T (〈〉) and O answers as follows.

(axG) If P asks
(
v,k, `

)
, then O checks the formulas Gk and G`. If Gk = ¬v and G` = v, then O does

not produce any configuration. Otherwise, O produces ⇑.

(∨G) If P asks
(
∨,k, i0

)
, then O checks the formula Gk. If Gk = ∧IH〈i〉 and i0 ∈ I, then O produces(

T〈i0〉 , ∧[G0, . . . ,Gm−1,H〈i0〉]
)
. Otherwise, O produces ⇑.

(∧G) If P asks
(
∧,k
)
, then O checks the formula Gk. If Gk = ∨IH〈i〉, then O produces(

T〈i〉 , ∧[G0, . . . ,Gm−1,H〈i〉]
)
, for each i ∈ I. Otherwise, O produces ⇑.

Of course, up to terminology and the rearrangement of clause (⇑2) inside the other clauses, this is just a
more informal reformulation of the clauses given in Definition 4.3. We say that O wins the debate start-
ing from c if at some stage it is able to exhibit an error, i.e., to produce the configuration ⇑. Otherwise,
we say that P wins the debate starting from c. With this game theoretical intuition in mind, the statement
of the interactive completeness theorem can be reformulated as follows: P wins the debate starting from
c = (T ,¬S) just in case T comes from a derivation of S.

Special cuts. A configuration of the form
(
T , ∧[G0, . . . ,Gm−1]

)
can also be understood as a special

cut, i.e., as a cut of the following special form (here we use a more traditional notation)
...π

` F0, . . . ,Fm−1

...zG0

`G0 . . .

...zGm−1

`Gm−1 cut
where we simultaneously cut Fk with Gk for each k < m. Here, the derivation π (in the sense of the
previous section) corresponds to the tests T and, for each formula G of our logic, the derivation zG is
given by: if G is an atom, then ` G has no premises; if G = ∨IF〈i〉 or G = ∧IF〈i〉, then there is one
premise ` F〈i〉 for each i ∈ I (thus, zG is not a derivation in the sense of the previous section, and it is
akin to a derivation of the subformula tree of G). In addition, the formulas Fk and Gk need not be the
negation of each other. Hence, special cuts are not cuts in the ordinary sense, and in particular, special
cuts have nothing to do with the notion of cut discussed in the previous section.

Under this interpretation, an environment ∧[G0, . . . ,Gm−1] can be naturally understood as a conjunc-
tion of formulas, as it represents a sequence ` G0 . . . ` Gm−1 of (unary) traditional sequents. With this
picture in mind, the clauses given in Definition 4.3 transform a special cut into a set of special cuts or
⇑. So, they work as steps of reduction for a procedure of cut–elimination for special cuts. For instance,
in the case of (C2)(∨) we obtain after one step of reduction (here Fk = ∨JL〈i〉 is any disjunctive formula
such that i0 ∈ J)

...π〈i0〉
` F0, . . . ,∨JL〈i〉, . . . ,Fm−1,L〈i0〉

...zG0

`G0 . . .

...zGk

` ∧IH〈i〉 . . .

...zGm−1

`Gm−1

...zH〈i0〉

`H〈i0〉 cut



Michele Basaldella 61

which is again a special cut. The present discussion on special cuts is quite informal, but the point here
is to develop another intuition about the concepts introduced so far.

4.2 Interactive completeness

In this section, we prove the interactive completeness theorem. First, we give the formal definition of “to
come from”, and then we move to the statement and the proof of the theorem.

Definition 4.4 (To come from). Let S be a sequent, and let π be a derivation of S. Let T be a test. We
say that T comes from the derivation π of S if

T (p) = πR(p) , for every p ∈ dom(π) . 4

In other words, T comes from the derivation π of S if T “contains” the skeleton of π , in the sense
of the beginning of this section.

Theorem 4.5 (Interactive completeness). Let S be a sequent, and let T be a test. Then, the following
claims are equivalent.

(1) The test T comes from a derivation of S.

(2) The interaction between T and ¬S does not produce errors.

Proof. (1) implies (2) : Let π be a derivation of S, and assume that T comes from π . Let c be
(
T , ¬S

)
.

To show that the interaction between T and ¬S does not produce errors, we now prove that every p∈N?

satisfies one of the following (mutually exclusive) conditions:

(P1) : p ∈ dom(π), p ∈ dom(IT(c)) and IT(c)(p) =
(
Tp , ¬πL(p)

)
.

(P2) : p /∈ dom(π) and p /∈ dom(IT(c)).

We proceed by induction on the length of p. The position 〈〉 satisfies (P1), as 〈〉 ∈ dom(π), 〈〉 ∈
dom(IT(c)) and IT(c)(〈〉) = c =

(
T , ¬S

)
=
(
T〈〉 , ¬πL(〈〉)

)
. Consider now an arbitrary position p ∈

N?. Assume that p satisfies (P1) or (P2). We show that for each j ∈N, the position p?〈 j〉 satisfies (P1) or
(P2). If p satisfies (P2), then p? 〈 j〉 /∈ dom(π) and p? 〈 j〉 /∈ dom(IT(c)), as π and IT(c) are labeled trees.
Hence, p? 〈 j〉 satisfies (P2). Otherwise, p satisfies (P1). Since p ∈ dom(π), we have T (p) = πR(p), as
T comes from π by assumption. Moreover, since π is a derivation, p satisfies one of conditions (ax),
(∨) and (∧) of Definition 3.14. Let πL(p) be ∨[G0, . . . ,Gn−1], so that ¬πL(p) = ∧[¬G0, . . . ,¬Gn−1]. We
now consider the following subcases.

(i) If T (p) =
(
v,k, `

)
, then p satisfies (ax) of Definition 3.14. Hence, k < n, ` < n, Gk = v, G` = ¬v

and p is a leaf of π . Since ¬Gk = ¬v and ¬G` = v, IT(c)(p) is as in (C2)(ax) of Definition 4.3. Hence,
p is a leaf of IT(c). In particular, p? 〈 j〉 satisfies (P2).

(ii) If T (p) =
(
∨,k, i0

)
, then p satisfies (∨) of Definition 3.14. This means that k < n, Gk = ∨IH〈i〉,

i0 ∈ I, only p ? 〈i0〉 immediately extends p in dom(π), and πL(p ? 〈i0〉) = πL(p)∨H〈i0〉. Since ¬Gk =
∧I¬H〈i〉 and i0 ∈ I, IT(c)(p) is as in (C2)(∨) of Definition 4.3. Hence, only p? 〈i0〉 immediately extends
p ∈ dom(IT(c)) and IT(c)(p? 〈i0〉) =

(
(Tp)〈i0〉 , ¬πL(p)∧¬H〈i0〉

)
=
(
Tp?〈i0〉 , ¬πL(p? 〈i0〉)

)
. So, p? 〈 j〉

satisfies (P1) if j = i0, and p? 〈 j〉 satisfies (P2) otherwise.
(iii) Finally, if T (p) =

(
∧,k
)
, then p satisfies (∧) of Definition 3.14. So, k < n, Gk = ∧IH〈i〉, p? 〈i〉

immediately extends p in dom(π) if and only if i ∈ I, and πL(p? 〈i〉) = πL(p)∨H〈i〉 for each i ∈ I. Since
¬Gk = ∨I¬H〈i〉, IT(c)(p) is as in (C2)(∧) of Definition 4.3. Thus, p ? 〈i〉 immediately extends p in
dom(IT(c)) if and only if i ∈ I and IT(c)(p? 〈i〉) =

(
(Tp)〈i〉 , ¬πL(p)∧¬H〈i〉

)
=
(
Tp?〈i〉 , ¬πL(p? 〈i〉)

)
,

for every i ∈ I. Hence, p? 〈 j〉 satisfies (P1) if j ∈ I, and p? 〈 j〉 satisfies (P2) otherwise.



62 Infinitary Classical Logic: Recursive Equations and Interactive Semantics

This proves that each p ∈ N? satisfies either (P1) or (P2). From this fact, it follows that IT(c)(p) =(
Tp , ¬πL(p)

)
for all p ∈ dom(IT(c)). In particular, there is no p ∈ dom(IT(c)) such that IT(c)(p) = ⇑,

i.e., the interaction between T and ¬S does not produce errors.
(2) implies (1) : Let c be

(
T , ¬S

)
and assume that (2) holds. This means that each position p ∈

dom(IT(c)) is labeled by a member of TESTS×ENV. In such a situation, it immediately follows from
the definition of interaction tree that for each p ∈ dom(IT(c)) we have IT(c)(p) =

(
Tp , E

)
, for some

E ∈ ENV. We define a tree T labeled SEQ×RULES as follows: dom(T ) DEF
= dom(IT(c)) and

T (p) DEF
=
(
¬E , T (p)

)
, for p ∈ dom(T ) with IT(c)(p) =

(
Tp , E

)
.

We now show that T is a derivation. To do this, we need to check that for each p ∈ dom(T ) one of con-
ditions (ax), (∨) and (∧) of Definition 3.14 holds. Let IT(c)(p) =

(
Tp , E

)
and let E be ∧[F0, . . . ,Fm−1],

so that ¬E = ∨[¬F0, . . . ,¬Fm−1]. There are the following cases to consider.
(1) Suppose that T (p) =

(
v,k, `

)
. Since the interaction between T and ¬S does not produce errors,

the configuration IT(c)(p) is as in (C2)(ax) of Definition 4.3. This means that k < m, ` < m, Fk = ¬v,
F` = v and p is a leaf of IT(c). Since ¬Fk = v and ¬F` = ¬v, and since p is a leaf of T , the position p
satisfies (ax) of Definition 3.14.

(2) Suppose that T (p) =
(
∨,k, i0

)
. Since the interaction between T and ¬S does not produce

errors, the situation is as in (C2)(∨) of Definition 4.3. Hence, k < m, Fk = ∧IH〈i〉, i0 ∈ I, only p ? 〈i0〉
immediately extends p in dom(IT(c)), and IT(c)(p? 〈i0〉) =

(
Tp?〈i0〉 , E∧H〈i0〉

)
. Since ¬Fk = ∨I¬H〈i〉,

i0 ∈ I, only p? 〈i0〉 immediately extends p in dom(T ) and TL(p? 〈i0〉) = ¬(E∧H〈i0〉) = ¬E∨¬H〈i0〉, we
conclude that (∨) of Definition 3.14 holds for the position p.

(3) Finally, suppose that T (p) =
(
∧,k
)
. Since the interaction between T and ¬S does not produce

errors, the configuration IT(c)(p) is as in (C2)(∧) of Definition 4.3. Thus, k < m, Fk = ∨IH〈i〉, p ? 〈i〉
immediately extends p in dom(IT(c)) if and only i ∈ I, and IT(c)(p? 〈i〉) =

(
Tp?〈i〉 , E∧H〈i〉

)
for every

i ∈ I. Since ¬Fk = ∧I¬H〈i〉, p ? 〈i〉 immediately extends p in dom(T ) if only if i ∈ I, TL(p ? 〈i〉) =
¬(E∧H〈i〉) = ¬E∨¬H〈i〉 for every i ∈ I, we conclude that the position p satisfies (∧) of Definition 3.14.

Hence, T is a derivation of S. By construction, TR(p) = T (p) for all p ∈ dom(T ). Therefore, the
test T comes from a derivation of S, namely T .

References
[1] M. Basaldella & K. Terui (2010): Infinitary Completeness in Ludics. In: Proceedings of LICS 2010, pp.

294–303, doi:10.1109/LICS.2010.47.
[2] M. Coppo (1998): Recursive Types: the syntactic and semantic approaches. In: Type Theory and its Appli-

cation to Computer Systems, RIMS Lecture Notes 1023, RIMS, Kyoto University, pp. 16–41. Available at
http://hdl.handle.net/2433/61723.

[3] B. Courcelle (1983): Fundamental properties of infinite trees. Theor. Comput. Sci. 25, pp. 95–169,
doi:10.1016/0304-3975(83)90059-2.

[4] J.-Y. Girard (1987): Proof Theory and Logical Complexity: Volume I. Bibliopolis, Napoli.
[5] J.-Y. Girard (2001): Locus Solum: From the rules of logic to the logic of rules. Mathematical Structures in

Computer Science 11(3), pp. 301–506, doi:10.1017/S096012950100336X.
[6] Z. Manna (1974): Mathematical Theory of Computation. McGraw–Hill, New York.
[7] P.-A. Melliès & J. Vouillon (2005): Recursive polymorphic types and parametricity in an operational frame-

work. In: Proceedings of LICS 2005, pp. 82–91, doi:10.1109/LICS.2005.42.
[8] W.W. Tait (1968): Normal derivability in classical logic. In: The Syntax and Semantics of Infinitary Lan-

guages, chapter 12, LNM 72, Springer–Verlag, pp. 204–236, doi:10.1007/BFb0079691.

http://dx.doi.org/10.1109/LICS.2010.47
http://hdl.handle.net/2433/61723
http://dx.doi.org/10.1016/0304-3975(83)90059-2
http://dx.doi.org/10.1017/S096012950100336X
http://dx.doi.org/10.1109/LICS.2005.42
http://dx.doi.org/10.1007/BFb0079691

	1 Introduction
	2 Preliminaries: Positions and Labeled Trees
	3 Infinitary Classical Logic
	3.1 Formulas
	3.2 Recursive Formula Equations
	3.3 Derivations

	4 Interactive Semantics
	4.1 Interaction trees
	4.2 Interactive completeness


