
U. Kohlenbach, S. van Bakel, S. Berardi (Eds.): CL&C’16
EPTCS 213, 2016, pp. 11–23, doi:10.4204/EPTCS.213.2

This work is licensed under the
Creative Commons Attribution License.

Denotational Semantics of the Simplified Lambda-Mu
Calculus and a New Deduction System of Classical Type

Theory

Ken Akiba
Department of Philosophy

Virginia Commonwealth University
Richmond, VA 23284-2025, USA

kakiba@vcu.edu

Classical (or Boolean) type theory is the type theory that allows the type inference (σ → �)→ �⇒ σ

(the type counterpart of double-negation elimination), where σ is any type and � is absurdity type.
This paper first presents a denotational semantics for a simplified version of Parigot’s lambda-mu
calculus, a premier example of classical type theory. In this semantics the domain of each type is
divided into infinitely many ranks and contains not only the usual members of the type at rank 0 but
also their negative, conjunctive, and disjunctive shadows in the higher ranks, which form an infinitely
nested Boolean structure. Absurdity type � is identified as the type of truth values. The paper then
presents a new deduction system of classical type theory, a sequent calculus called the classical
type system (CTS), which involves the standard logical operators such as negation, conjunction, and
disjunction and thus reflects the discussed semantic structure in a more straightforward fashion.

1 Introduction

Classical (or Boolean) type theory is the type theory that allows the type inference (σ → �)→ �⇒ σ ,
where σ is any type and � is absurdity type. It is so called because this inference rule is the type
counterpart of the double-negation elimination rule (where ¬σ = σ → �), the signature inference rule of
classical logic in contrast to minimal or intuitionistic logic, which is the usual logic of type inferences.
The most well known and influential deduction system of classical type theory to date is M. Parigot’s
[6] λ µ-calculus. Section 2 of this paper presents a simplified version of the simply-typed λ µ-calculus,
and Section 3 gives a denotational semantics to this calculus. In this semantics the domain of each type
is divided into infinitely many ranks and contains not only the usual members of the type at rank 0 but
also their negative, conjunctive, and disjunctive shadows in the higher ranks, which form an infinitely
nested Boolean structure. Absurdity type � is identified as the type of truth values (in contrast to the
intuitionistic case, in which it is identified as the empty type). Section 4 then presents a new deduction
system of classical type theory, a sequent calculus called the classical type system (CTS), which involves
the standard logical operators such as negation, conjunction, and disjunction and thus reflects the semantic
structure given to the simplified λ µ-calculus in a more straightforward fashion.

To build an infinitely nested Boolean structure in type σ , we start with the usual members of the
type at rank 0; we then add to the domain the Boolean operators −1

σ (complement), ⊓1
σ (infimum), and

⊔1
σ (supremum) at rank 1, creating the negative, conjunctive, and disjunctive objects (shadows); we then

add another set of Boolean operators −2
σ ,⊓2

σ , and ⊔2
σ , creating the further negative, conjunctive, and

disjunctive shadows, and so on, ad infinitum. Absurdity type � (= the type of truth values) has the same
structure, except that it has only two members, 0 (or Falsity) and 1 (or Truth), at rank 0. We shall exploit

http://dx.doi.org/10.4204/EPTCS.213.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

12 Denotational Semantics of Lambda-Mu Calculus

the fact that, thanks to the binary nature of �, for any type σ , type (σ → �)→ �, rank n, is isomorphic to
type σ , rank n+1.

2 The simplified simply-typed λ µ-calculus

This section describes the simplified version of the simply-typed λ µ-calculus (Sλ µ), to which a seman-
tics will be given in the next section. This version is simplified from Parigot’s original simply-typed
λ µ-calculus, dropping the original distinction between λ - and µ-variables. Also, Parigot’s original
formalization of the calculus, especially his formalization of its inference rules, is a little difficult to
follow; so we employ a formalization more familiar to many. Henceforth the qualification ‘simply-typed’
will be omitted for the sake of simplicity. We first present the calculus as a Gentzen-type sequent calculus,
making clear why it should be considered a calculus of classical type theory; but we then proceed to turn
it into a Hilbert-type axiomatic system of equality, to which a semantics can be more easily given.

2.1 Language

• Types. As usual, there are two kinds of types – basic (or atomic) types, denoted as σ below, and
function types. The types are defined thus:

τ ∶∶= σ ∣ τ → τ ∣ �

Greek lower-case alphabets and → are used to name types with the exception of �. � is called
absurdity type. Throughout this paper, σ → � is abbreviated as ¬σ .

• Variables. The last part of Roman lower-case alphabets, x, y, z, ..., are used for variables. The
variables not bound by λ or µ are free variables (FV).

• Terms. For clarity’s sake, we stipulate that all terms are subscripted with their types. The following
is the definition of a term Pσ (of type σ):

Pσ ∶∶= xσ ∣ (Pσ→τPσ)τ
∣ (λxσ .Pτ)σ→τ

∣ (µx¬σ .P�)σ

Here the same Greek alphabets in the same item are the same types. The first and middle parts of
Roman upper-case alphabets, A, B, C, ..., P, Q, R, ..., are used to name terms.

2.2 Deduction system

The original idea. The simplified λ µ-calculus, presented here as a sequent calculus, has the following
four inference rules – axiom, λ -application and -abstraction, and µ-abstraction:

Ax
Γ, xσ ⇒ xσ

Γ⇒ Pσ→τ Γ⇒Qσ
λAp

Γ⇒ (Pσ→τQσ)τ

Γ, xσ ⇒ Pτ
λAb

Γ⇒ (λxσ .Pτ)σ→τ

Γ, x¬σ ⇒ P�
µAb

Γ⇒ (µx¬σ .P�)σ

Ken Akiba 13

Here Γ is a set of typed variables (as opposed to a sequent, thus obviating the structural rules).
λ -application and -abstraction are included in the standard λ -calculus, whereas µ-abstraction is

not. The former offer as the type inference rules ‘if ⇒ σ → τ and ⇒ σ then ⇒ τ’ and ‘if σ ⇒ τ then
⇒ σ → τ’, i.e., the elimination and introduction rules for conditional. µAb offers as the type inference
rule double-negation elimination ‘if ¬σ ⇒ � then⇒ σ ’, the signature inference rule in classical logic.

This simplified version does not include another inference rule, µ-application, included in Parigot’s
original version:

Γ, a¬σ ⇒ Pσ
µAp

Γ, a¬σ ⇒ ([a]¬σ Pσ)�
where a is a variable of a different kind, a µ-variable, and [⋅] is a certain new operation applicable
only to µ-variables. µAp offers as a type inference rule ‘if ¬σ ⇒ σ then ¬σ ⇒ �’, which is correct in
classical logic but is a redundant rule and does not have a counterpart in classical natural deduction. In
these respects, it is a little difficult to see that the Curry-Howard correspondence (see, e.g., Sørensen
and Urzyczyn [10]) holds for Parigot’s original λ µ-calculus (though it does hold in a certain sense).
In contrast, the Curry-Howard correspondence clearly holds for the simplified version. The simplified
version is attractive in this respect. It is actually more similar to the calculi presented in, e.g., Rehof and
Sørensen [8] and Baba et al. [2] than Parigot’s original λ µ-calculus in that it contains only one kind (the
usual kind) of variables.

We have presented above the simplified λ µ-calculus as a sequent calculus; however, we shall not use
it in that form in what follows. We shall instead consider its axiomatic version, the theory of βηµ-equality,
which consists of the following inference rules and notion of deducibility:

• Inference rules.

1. ⇒ Pσ = Pσ ;

2. Pσ =Qσ ⇒Qσ = Pσ ;

3. Pσ =Qσ ,Qσ = Rσ ⇒ Pσ = Rσ ;

4. Pσ→τ =Qσ→τ ⇒ (Pσ→τAσ)τ
= (Qσ→τAσ)τ

;

5. Aσ = Bσ ⇒ (Pσ→τAσ)τ
= (Pσ→τBσ)τ

;

6. Pτ =Qτ ⇒ (λxσ .Pτ)σ→τ
= (λxσ .Qτ)σ→τ

;

7. P� =Q�⇒ (µx¬σ .P�)σ
= (µx¬σ .Q�)σ

;

8. ⇒ ((λxσ .Pτ)σ→τ
Qσ)τ

= Pτ[xσ ∶=Qσ] (β -quality);

9. ⇒ (λxσ(Pσ→τxσ)τ
)

σ→τ
= Pσ→τ if xσ ∉ FV(Pσ→τ) (η-equality);

10. ⇒ (Q¬σ(µx¬σ .P�)σ
)
�
= P�[x¬σ ∶=Q¬σ] (βµ -equality);

11. ⇒ (µx¬σ(x¬σ Pσ)�)σ
= Pσ if x¬σ ∉ FV(Pσ) (ηµ -equality);

12. ⇒ ((µx¬(σ→τ).P�)σ→τ
Qσ)

τ
= (µy¬τ .P�[(x¬(σ→τ)Rσ→τ)

�
∶=∗(y¬τ(Rσ→τQσ)τ

)
�
])

τ
(µ-equality),

where P�[(x¬(σ→τ)Rσ→τ)
�
∶=∗(y¬τ(Rσ→τQσ)τ

)
�
] is obtained from P� by replacing induc-

tively each subterm of the form (x¬(σ→τ)Rσ→τ)
�

in P� with (y¬τ(Rσ→τQσ)τ
)
�
.

14 Denotational Semantics of Lambda-Mu Calculus

• Deducibility. Γ ⊢Sλ µ N, where Γ is a set of equations and N is an equation, if and only if N is
derivable from Γ with the above inference rules.

This formalization is in fact closer to – a simplified simply-typed version of – Parigot’s [6] untyped (or
‘pure’) λ µ-calculus. Among the above rules, those except 7, 10, 11, and 12 consist of the usual λ -theory
of βη-equality. From the viewpoint of Curry-Howard correspondence, just as β - and η-equality are
seen as the normalization procedures for minimal and intuitionistic logics, µ-equality can be seen as the
additional normalization procedure for classical logic: the application of the double-negation rule to the
conditional σ → τ is reduced to the application of the rule to its component τ (see, e.g., Prawitz [7], pp.
39–40; Troelstra and Schwichtenberg [11], p. 183). βµ - and ηµ -equality represent the double-negation
versions of the normalization procedures represented by β - and η-equality. These rules are based on the
symmetry between (λx¬σ .P�)¬¬σ and (µx¬σ .P�)σ with respect to the terms of type ¬σ .

3 Denotational semantics of the simplified λ µ-calculus

A modelM of the simplified λ µ-calculus is determined by its domain D and interpretation [[⋅]]M, i.e.,
M = ⟨D, [[⋅]]M⟩.

3.1 Domains

The entire domain D of a model is the sum of all domains Dσ of all types σ . For any type σ , its domain
Dσ is divided into infinitely many ranks, indicated by superscripts. The domain of any rank of any type
is a superset of the domains of the lower ranks of the same type, and the domain of rank n, where n is a
non-limit ordinal, forms a Boolean algebra. The rank 0 domain of each type should be considered the
usual domain of the type for the simply-typed λ -calculus; such a domain is infinitely expanded for the
simplified λ µ-calculus. We call the resulting structure an infinitely nested Boolean structure or an infinite
Boolean expansion of the rank 0 domain. A more specific description of the domains will follow. In the
rest of this paper, an object a ∈ Dn

σ , is indicated as an
σ . Note that any object of some rank of some type

also belongs to any domain of a higher rank of the same type; so an
σ may belong not to rank n but to a

lower rank. Generally (pn
σ→τan

σ)n
τ is the value, of type τ , rank ≤ n, of the function pn

σ→τ applied to the
argument an

σ . In contrast, the superscripts attached to the Boolean operators such as −, ⊓, and ⊔ indicate
the types the operators properly belong to.

• D0
�
= {0,1}.

• Dn
�

(where n is a non-limit ordinal) = the smallest superset of Dn−1
�

closed under the Boolean
operations −n

�
(complement), ⊓n

�
(infimum), and ⊔n

�
(supremum) (the two-member cases of which

are ⊓n
�

and ⊔n
�
).

• D0
σ = the set of (usual) individuals of type σ (so D0

σ→τ is the set of functions from D0
σ to D0

τ).

• Dn
σ (where n is a non-limit ordinal) = the smallest superset of Dn−1

σ closed under the Boolean
operations −n

σ , ⊓n
σ , ⊔n

σ , ⊓n
σ , and ⊔n

σ that satisfy the following conditions: for any type τ and any

Ken Akiba 15

objects an
σ ,b

n
σ , pn

σ→τ ,q
n
σ→τ , and rn−1

σ→τ ,

(rn−1
σ→τ(−n

σ an
σ)n

σ)n
τ = (−n

τ(rn−1
σ→τan

σ)n
τ)n

τ ;
(rn−1

σ→τ(an
σ ⊓n

σ bn
σ)n

σ)n
τ = ((rn−1

σ→τan
σ)n

τ ⊓n
τ (rn−1

σ→τbn
σ)n

τ)n
τ ;

(rn−1
σ→τ(an

σ ⊔n
σ bn

σ)n
σ)n

τ = ((rn−1
σ→τan

σ)n
τ ⊔n

τ (rn−1
σ→τbn

σ)n
τ)n

τ ;
(rn−1

σ→τ(⊓
a

n
σ an

σ)n
σ)n

τ = (⊓
a

n
τ(rn−1

σ→τan
σ)n

τ)n
τ ;

(rn−1
σ→τ(⊔

a

n
σ an

σ)n
σ)n

τ = (⊔
a

n
τ(rn−1

σ→τan
σ)n

τ)n
τ ;

((−n
σ→τ pn

σ→τ)n
σ→τan

σ)n
τ = (−n

τ(pn
σ→τan

σ)n
τ)n

τ ;
((pn

σ→τ ⊓n
σ→τ qn

σ→τ)n
σ→τan

σ)n
τ = ((pn

σ→τan
σ)n

τ ⊓n
τ (qn

σ→τan
σ)n

τ)n
τ ;

((pn
σ→τ ⊔n

σ→τ qn
σ→τ)n

σ→τan
σ)n

τ = ((pn
σ→τan

σ)n
τ ⊔n

τ (qn
σ→τan

σ)n
τ)n

τ ;
((⊓

p

n
σ→τ pn

σ→τ)n
σ→τan

σ)n
τ = (⊓

p

n
τ(pn

σ→τan
σ)n

τ)n
τ ;

((⊔
p

n
σ→τ pn

σ→τ)n
σ→τan

σ)n
τ = (⊔

p

n
τ(pn

σ→τan
σ)n

τ)n
τ .

These will be called the expansion conditions for σ .

• Dl
σ = ⋃

n<l
Dn

σ (where l is an infinite limit ordinal).

• Dσ =⋃
m

Dm
σ (where m is any ordinal).

• D =⋃
σ

Dσ (where σ is any type).

We call the members of Dn
σ , where n > 0, shadows of the members of D0

σ , which we call individuals.
(−n

σ an
σ)n

σ may also be called the negative shadow of an
σ , (an

σ ⊓n
σ bn

σ)n
σ and (an

σ ⊔n
σ bn

σ)n
σ the conjunctive

and disjuncitive shadows of an
σ and bn

σ , (⊓
a

n
σ an

σ)n
σ and (⊔

a

n
σ an

σ)n
σ the conjunctive and disjunctive shadows

of the set of an
σ s. Shadows are pseudo-objects whose logical behavior is determined by the individuals

and the operators contained.
Intuitively, the expansion conditions state that −n

σ ,⊓n
σ ,⊔n

σ ,⊓n
σ , and⊔n

σ in (−n
σ an

σ)n
σ ,(an

σ ⊓n
σ bn

σ)n
σ ,(an

σ ⊔n
σ

bn
σ)n

σ ,(⊓n
σ an

σ)n
σ , and (⊔n

σ an
σ)n

σ distribute over objects rn−1
σ→τ for any τ , but that if σ is the function type

of form φ →ψ , then they will distribute also over objects bn
φ

. This is consistent because even if bn
φ

here
contains one of the Boolean operators, it won’t distribute over the original objects above because they
are of rank n and not n−1. In any (pm

σ→τan
σ), where pσ→τ and aσ , both containing Boolean operators,

are properly of type m and n respectively, one side distributes over the other side regardless, but which
distributes over which depends on the superscripts (of the operators) m and n: if m ≥ n, then pm

σ→τ

distributes over an
σ ; if m < n, the other way around.

Note, furthermore, that when the operators are distributed (or squeezed out), their types change (from
σ or σ → τ to τ in the above schemas), but their ranks do not. And the ranks (plus whether the relevant
items are in the left (or functor) side or the right (or argument) side of the application when their ranks
are identical) are what determines how the operators are distributed, not the structure of the relevant
expressions. For instance, compare:

• ([(p0
σ→¬τ ⊓1

σ→¬τ q0
σ→¬τ)1

σ→¬τ(−1
σ a0

σ)1
σ]1

¬τ[r0
τ ⊔2

τ s0
τ]2

τ)2
�
=

([(−1
�
((p0

σ→¬τa0
σ)0

¬τr0
τ)0
�
)1
�
⊓1
�

(−1
�
((q0

σ→¬τa0
σ)0

¬τr0
τ)0
�
)1
�
]1
�
⊔2
�

[(−1
�
((p0

σ→¬τa0
σ)0

¬τs0
τ)0
�
)1
�
⊓1
�

(−1
�
((q0

σ→¬τa0
σ)0

¬τs0
τ)0
�
)1
�
]1
�
)2
�
.

16 Denotational Semantics of Lambda-Mu Calculus

• ([p0
¬τ ⊓1

¬τ q0
¬τ]1

¬τ[(−1
σ→τa0

σ→τ)1
σ→τ(r0

σ ⊔2
σ s0

σ)2
σ]2

τ)2
�
=

([(−1
�
(p0

¬τ(a0
σ→τr0

σ)0
τ)0
�
)1
�

⊓1
�

(−1
�
(q0

¬τ(a0
σ→τr0

σ)0
τ)0
�
)1
�
]1
�

⊔2
�

[(−1
�
(p0

¬τ(a0
σ→τs0

σ)0
τ)0
�
)1
�

⊓1
�

(−1
�
(q0

¬τ(a0
σ→τs0

σ)0
τ)0
�
)1
�
]1
�
)2
�
.

• ([p0
¬τ ⊓2

¬τ q0
¬τ]1

¬τ[(−1
σ→τa0

σ→τ)1
σ→τ(r0

σ ⊔2
σ s0

σ)2
σ]2

τ)2
�
=

([(−1
�
(p0

¬τ(a0
σ→τr0

σ)0
τ)0
�
)1
�

⊔2
�

(−1
�
(p0

¬τ(a0
σ→τs0

σ)0
τ)0
�
)1
�
]2
�

⊓2
�

[(−1
�
(q0

¬τ(a0
σ→τr0

σ)0
τ)0
�
)1
�

⊔2
�

(−1
�
(q0

¬τ(a0
σ→τs0

σ)0
τ)0
�
)1
�
]2
�
)2
�
.

The main structures are marked by the brackets [⋅] here. On the one hand, the structures of the first two
original expressions are different, but the structures of the resulting expressions, in which all the operators
are squeezed out, are identical because the ranks of the operators involved are identical. The different
structures of the original expressions are retained in the atomic structures of the resulting expressions. On
the other hand, the structures of the last two original expressions are identical, but the structures of the
resulting expressions are different (⊓ and ⊔ reversed) because the ranks of the original ⊓ are different (1
versus 2). (That’s the only difference between the last two original expressions.) The entire structures of
the resulting expressions are determined not by the structures of the original expressions but by the ranks
of the operators. To summarize this formally,

Definition 0

• An expression of a member of the domain D is atomic:

A0
σ ∶∶= a0

σ ∣ (A0
σ→τA0

σ)0
τ

where a0
σ is a (proper) name of a member.

• An expression is molecular:

Mk
σ ∶∶= A0

σ ∣ (Mm
σ→τMn

σ)
max(m,n)
τ ∣ (−k

σ Mm
σ)k

σ ∣ (Mm
σ ⊓k

σ Mn
σ)k

σ ∣ (Mm
σ ⊔k

σ Mn
σ)k

σ ∣ (⊓k
σ A0

σ)k
σ ∣ (⊔k

σ A0
σ)k

σ

where m,n ≤ k ≠ 0.

• An expression is canonical:

Ck
σ ∶∶= A0

σ ∣ (−k
σCm

σ)k
σ ∣ (Cm

σ ⊓k
σ Cn

σ)k
σ ∣ (Cm

σ ⊔k
σ Cn

σ)k
σ ∣ (⊓k

σ A0
σ)k

σ ∣ (⊔k
σ A0

σ)k
σ

where m,n ≤ k ≠ 0.

Then

Proposition 1 Every molecular expression of a member of the domain D has an equivalent (i.e., co-
denotational) canonical expression.

More informally: In the reduction of a molecular expression into a canonical expression, the distri-
bution of the operators is determined purely by their ranks; the structure of the molecular expression is
retained in the structures of the atomic cores of the canonical expression.

Another implication of the expansion conditions worth singling out is the case in which τ = �:

Lemma 2 For any type σ and any objects an
σ ,b

n
σ , pn

¬σ ,q
n
¬σ , and rn−1

¬σ ,

Ken Akiba 17

(rn−1
¬σ (−n

σ an
σ)n

σ)n
�

= (−n
�
(rn−1
¬σ an

σ)n
�
)n
�
;

(rn−1
¬σ (an

σ ⊓n
σ bn

σ)n
σ)n

�
= ((rn−1

¬σ an
σ)n

�
⊓n
�
(rn−1
¬σ bn

σ)n
�
)n
�
;

(rn−1
¬σ (an

σ ⊔n
σ bn

σ)n
σ)n

�
= ((rn−1

¬σ an
σ)n

�
⊔n
�
(rn−1
¬σ bn

σ)n
�
)n
�
;

(rn−1
¬σ (⊓

a

n
σ an

σ)n
σ)n

�
= (⊓

a

n
�
(rn−1
¬σ an

σ)n
�
)n
�
;

(rn−1
¬σ (⊔

a

n
σ an

σ)n
σ)n

�
= (⊔

a

n
�
(rn−1
¬σ an

σ)n
�
)n
�
;

((−n
¬σ pn

¬σ)n
¬σ an

σ)n
�

= (−n
�
(pn

¬σ an
σ)n

�
)n
�
;

((pn
¬σ ⊓n

¬σ qn
¬σ)n

¬σ an
σ)n

�
= ((pn

¬σ an
σ)n

�
⊓n
�
(qn

¬σ an
σ)n

�
)n
�
;

((pn
¬σ ⊔n

¬σ qn
¬σ)n

¬σ an
σ)n

�
= ((pn

¬σ an
σ)n

�
⊔n
�
(qn

¬σ an
σ)n

�
)n
�
;

((⊓
p

n
¬σ pn

¬σ)n
¬σ an

σ)n
�

= (⊓
p

n
�
(pn

¬σ an
σ)n

�
)n
�
;

((⊔
p

n
¬σ pn

¬σ)n
¬σ an

σ)n
�

= (⊔
p

n
�
(pn

¬σ an
σ)n

�
)n
�
.

A further special case of this is where σ = � too.
The next theorem is crucial to the appropriateness of the present infinite Boolean structure for a

semantics of the simplified λ µ-calculus:

Theorem 3 (Type Reduction Theorem) For any type σ , Dn
¬¬σ is isomorphic to Dn+1

σ .

Proof. D0
¬σ is the set of functions from D0

σ to {0,1}. This may be considered ℘(D0
σ), i.e., the set

of sets of the members of D0
σ . Consequently, D0

¬¬σ may be considered ℘(℘(D0
σ)), whose members

are the sets of sets of the members of D0
σ . There is a one-to-one translation from those members

to the member of D1
σ : Read the members of each set disjunctively with ⊔1

σ , and read each of those
members as the conjunction, with ⊓1

σ , of the literals, with −1
σ , whose atoms are in D0

σ , depending on
whether or not each atom is in the original set. For instance, if D0

σ = {a,b,c}, read {{a},{b,c}} as
((a0

σ⊓1
σ(−1

σ b0
σ)1

σ⊓1
σ(−1

σ c0
σ)1

σ)1
σ⊔1

σ((−1
σ a0

σ)1
σ⊓1

σ b0
σ⊓1

σ c0
σ)1

σ)1
σ . That is, the resulting item is in disjunctive

normal form. Since every member of D1
σ can be expressed in disjunctive normal form, there is a one-to-one

correspondence between D0
¬¬σ and D1

σ . Furthermore, the correspondence is an isomorphism because
−,∩, and ∪ in D0

¬¬σ are translated into −1
σ ,⊓1

σ , and ⊓1
σ in D1

σ . The isomorphism between Dn
¬¬σ and Dn+1

σ ,
where n > 0, is obvious. ◻

This isomorphism from Dn
¬¬σ to Dn+1

σ is named in+1
¬¬σ→σ . Theorem 3 and i are the key to the current

semantics of the simplified λ µ-calculus. When (λx¬σ .P�)¬¬σ denotes a member an
¬¬σ of Dn

¬¬σ , the
corresponding (µ¬σ .P�)σ denotes the shadow (in+1

¬¬σ→σ an
¬¬σ)n+1

σ in Dn+1
σ . The guaranteed existence of

such shadows makes double-negation elimination possible in classical type inferences. By a repeated
application of Theorem 3, the following follows:

Corollary 4 For any type σ , Dn
¬⋯¬

±

2m

σ is isomorphic to Dn+m
σ , and Dn

¬⋯¬

±

2m+1

σ is isomorphic to Dn+m
¬σ .

The picture that emerges from the above series of results is as follows:

⋮
D¬5σ ⊃⋯ ⊃D0

¬5σ
⋮

↓ i D0
¬4σ

⊂⋯ ⊂D¬4σ

D¬3σ ⊃⋯ ⊃D1
¬3σ

⊃D0
¬3σ

↓ i
↓ i ↓ i D0

¬¬σ ⊂D1
¬¬σ ⊂⋯ ⊂D¬¬σ

D¬σ ⊃⋯ ⊃D2
¬σ ⊃ D1

¬σ ⊃ D0
¬σ ↓ i ↓ i

D0
σ ⊂ D1

σ ⊂ D2
σ ⊂ ⋯ ⊂Dσ

18 Denotational Semantics of Lambda-Mu Calculus

Here ‘¬3’ = ‘¬¬¬’, etc. The members of D0
¬σ distribute over the members of D0

σ , the members of D0
¬¬σ

distribute over the members of D0
¬σ , etc. But, by i, the members of D1

σ distribute over the members of
D0
¬σ , and the members of D1

¬σ distribute over the members of D0
¬¬σ , etc.

3.2 Interpretation

In what follows, ρ is an assignment (or a valuation) to the variables; ρ[x↦ a] is the same assignment as
ρ except that the assignment to the variable x is a.

• [[xσ]]Mρ = ρ(xσ) ∈Dσ .

• [[(Pσ→τAσ)τ
]]Mρ = [[Pσ→τ]]Mρ [[Aσ]]Mρ .

• [[(λxσ .Pτ)σ→τ
]]Mρ = the function fσ→τ such that for any aσ , (fσ→τaσ)τ

= [[Pτ]]Mρ[x↦a].

• [[(µx¬σ .P�)σ
]]Mρ = the compound function i¬¬σ→σ ○ f¬¬σ such that i¬¬σ→σ is the isomorphism

introduced in the last subsection and f¬¬σ is the function such that for any a¬σ , (f¬¬σ a¬σ)� =
[[P�]]Mρ[x↦a] (i.e., f¬¬σ = [[(λx¬σ .P�)¬¬σ

]]Mρ).

Equivalently, [[(µx¬σ .P�)σ
]]Mρ = the object such that for any a¬σ , (a¬σ [[(µx¬σ .P�)σ

]]Mρ)�
= ([[(λx¬σ .P�)¬¬σ

]]Mρ a¬σ)�.

• M,ρ ⊧ P =Q iff [[P]]Mρ = [[Q]]Mρ .

• Γ ⊧ N, where Γ is a set of equations and N is an equation, iff, for any modelM and assignment ρ ,
ifM,ρ ⊧ M for every M ∈ Γ, thenM,ρ ⊧ N.

3.3 Soundness

The appropriateness of the above semantics for the simplified λ µ-calculus is revealed in the following
soundness theorem:

Theorem 5 (Soundness) The simplified λ µ-calculus is sound (or correct) with respect to the above
semantics; that is, if Γ ⊢Sλ µ N, then Γ ⊧ N.

Proof. It is obvious that all the inference rules of the theory of βηµ-equality except µ-equality are correct
with respect to the current semantics. This includes the correctness of 11. ηµ -equality:

[[(µx¬σ(x¬σ Pσ)�)σ
]]Mρ = [[Pσ]]Mρ if x¬σ ∉ FV(Pσ). (1)

The only thing left to show is thus the correctness of 12. µ-equality.
µ-equality given in Subsection 2.2 can also be expressed thus:

⇒ ((µx¬(σ→τ).C�[(x¬(σ→τ)Rσ→τ)�])
σ→τ

Qσ)
τ
= (µy¬τ .C�[(y¬τ(Rσ→τQσ)τ)�])τ

(2)

where C�[⋅] is a context: if it is filled with a term of type �, it will become a term of type �. Then what
we need to show is that for anyM and ρ ,

[[((µx¬(σ→τ).C�[(x¬(σ→τ)Rσ→τ)�])
σ→τ

Qσ)
τ
]]Mρ = [[(µy¬τ .C�[(y¬τ(Rσ→τQσ)τ)�])τ

]]Mρ . (3)

Ken Akiba 19

We assume that we are dealing with one of the largest of such substitutions; once we prove (3) for it,
then the result trickles down to the smaller of such substitutions. Since both sides of (2) contain exactly
the same free variables (which denote objects of the same ranks), by Proposition 1, both sides of (3), i.e.,
individuals or shadows, must have canonical expressions that have the same molecular structure; their
difference must lie solely in their atomic structures. Thus, to show (3), it is sufficient to show that it holds
for the cases in which the free variables denote individuals, i.e., objects of rank 0.

Note that, focusing on such cases, C�[⋅] in (3) is semantically a truth function, i.e., a function from
truth values (0 or 1) to truth values. There are only four such truth functions: T 1 (identity function):
0↦ 0,1↦ 1; T 2 (negation function): 0↦ 1,1↦ 0; T 3 (constant falsity function): 0,1↦ 0; T 4 (constant
truth function): 0,1↦ 1.

If C�[⋅] = T 1, then we can simply eliminate it. Then, by (1), both the right side and the left side
of the equation (3) equal [[(Rσ→τQσ)τ]]Mρ , and the equation holds. Similarly, if C�[⋅] = T 2, both
sides equal −1

τ[[(Rσ→τQσ)τ]]Mρ , and the equation holds. If C�[⋅] = T 3 (or = T 4), then, on the one
hand, [[(µy¬τ .C�[(y¬τ(Rσ→τQσ)τ)�])τ]]Mρ = (⊓1

τa0
τ)1

τ (resp. = (⊔1
τa0

τ)1
τ), i.e., the infimum (supremum)

of D1
τ . On the other hand, [[(µx¬(σ→τ).C�[(x¬(σ→τ)Rσ→τ)�])σ→τ]]Mρ = (⊓1

σ→τ p0
σ→τ)1

σ→τ (resp. =
(⊔1

σ→τ p0
σ→τ)1

σ→τ); so, assuming that [[Qσ]]Mρ = q0
σ , [[((µx¬(σ→τ).C�[(x¬(σ→τ)Rσ→τ)�])σ→τQσ)τ]]Mρ =

[[(µx¬(σ→τ).C�[(x¬(σ→τ)Rσ→τ)�])σ→τ]]Mρ [[Qσ]]Mρ = ((⊓1
σ→τ p0

σ→τ)1
σ→τq0

σ)1
τ = ((⊓1

τ(p0
σ→τq0

σ)0
τ)1

τ =
(⊓1

τa0
τ)1

τ (resp. = (⊔1
τa0

τ)1
τ). Thus, again, the equation holds. Therefore, regardless of what C�[⋅] is,

the equation holds. ◻

4 The classical type system

We regret to say that we have not yet determined whether or not the simplified λ µ-calculus is complete
with respect to the above semantics – that is, whether or not if Γ ⊧ N, then Γ ⊢Sλ µ N. We wish to point
out, however, that the infinitely nested Boolean structure of the above semantics suggests a new and
interesting deductive system of classical type theory. We call it simply the classical type system (CTS). It
is a sequent calculus. In this section we shall present CTS.

The distinctive features of CTS are as follows:

1. Its terms, i.e., the members of each sequent, are expressions (subterms) of type �, which are
identified (naturally) as propositions.

2. Its language is purely combinatory and does not include λ , µ , or bound variables.

3. The language, instead, includes the usual logical operators, ¬, ∧, ∨, ⋀, and ⋁ (the universal and the
existential quantifier without binding, taken as the generalized conjunction and disjunction), which
simulate −, ⊓, ⊔, ⊓, and ⊔ in the previous semantics.

4. The deduction rules for each logical operators consist of six rules: two usual introduction rules
(for the antecedent and the succeedent), and four substitution rules (for the antecedent and the
succeedent) corresponding to the expansion conditions presented in Subsection 3.1.

We now present CTS.

4.1 Language

• Types. Same as those in Sλ µ .

• Variables. Same as those in Sλ µ .

20 Denotational Semantics of Lambda-Mu Calculus

• Subterms.

Pk
σ ∶∶= xk

σ ∣ (Pm
σ→τPn

σ)
max(m,n)
τ ∣ (¬k

σ Pm
σ)k

σ ∣ (Pm
σ ∧k

σ Pn
σ)k

σ ∣ (Pm
σ ∨k

σ Pn
σ)k

σ ∣ (⋀ k
σ xm

σ)k
σ ∣ (⋁ k

σ xm
σ)k

σ

where m,n ≤ k ≠ 0.

• Terms. The terms are the subterms of type �.

4.2 Deduction system

To avoid unnecessary repetition, in what follows only the rules for negation and conjunction are presented
(along with the axiom), but the rules for the other operators are analogous. The following rules may
seem to be rather complicated at first sight, but the only important point is that the rank k of the operator
introduced needs to be the highest in the subterm.

Ax
Γ, Ak

�
⇒ Ak

�
, ∆

Γ⇒ Am
�
, ∆

¬L�
Γ, (¬k

�
Am
�
)k
�
⇒ ∆

Γ, Am
�
⇒ ∆

¬R�
Γ⇒ (¬k

�
Am
�
)k
�
, ∆

In the above two rules, m ≤ k ≠ 0.

Γ, C�[(¬k
τ(Rh

σ→τAm
σ)

max(h,m)

τ)k
τ]⇒ ∆

¬Lr
Γ, C�[(Rh

σ→τ(¬k
σ Am

σ)k
σ)k

τ]⇒ ∆

Γ⇒C�[(¬k
τ(Rh

σ→τAm
σ)

max(h,m)

τ)k
τ], ∆

¬Rr
Γ⇒C�[(Rh

σ→τ(¬k
σ Am

σ)k
σ)k

τ], ∆

In the above two rules, h+1,m ≤ k.

Γ, C�[(¬k
τ(Pm

σ→τAh
σ)

max(m,h)
τ)k

τ]⇒ ∆
¬Ll

Γ, C�[((¬k
σ→τPm

σ→τ)k
σ→τAh

σ)k
τ]⇒ ∆

Γ⇒C�[(¬k
τ(Pm

σ→τAh
σ)

max(m,h)
τ)k

τ], ∆
¬Rl

Γ⇒C�[((¬k
σ→τPm

σ→τ)k
σ→τAh

σ)k
τ], ∆

In the above two rules h,m ≤ k ≠ 0.

Γ, Am
�
, Bn

�
⇒ ∆

∧L�
Γ, (Am

�
∧k
�

Bn
�
)k
�
⇒ ∆

Γ⇒ Am
�
, ∆ Γ⇒ Bn

�
, ∆

∧R�
Γ⇒ (Am

�
∧k
�

Bn
�
)k
�
, ∆

In the above two rules, m,n ≤ k ≠ 0.

Γ, C�[((Rh
σ→τAm

σ)
max(h,m)

τ ∧k
τ (Rh

σ→τBn
σ)

max(h,n)
τ)k

τ]⇒ ∆
∧Lr

Γ, C�[(Rh
σ→τ(Am

σ ∧k
σ Bn

σ)k
σ)k

τ]⇒ ∆

Γ⇒C�[((Rh
σ→τAm

σ)
max(h,m)

τ ∧k
τ (Rh

σ→τBn
σ)

max(h,n)
τ)k

τ], ∆
∧Rr

Γ⇒C�[(Rh
σ→τ(Am

σ ∧k
σ Bn

σ)k
σ)k

τ], ∆

In the above two rules, h+1,m,n ≤ k.

Γ, C�[((Pm
σ→τAh

σ)
max(m,h)
τ ∧k

τ (Qn
σ→τAh

σ)
max(n,h)
τ)k

τ]⇒ ∆
∧Ll

Γ, C�[((Pm
σ→τ ∧k

σ→τ Qn
σ→τ)k

σ→τAh
σ)k

τ]⇒ ∆

Γ⇒C�[((Pm
σ→τAh

σ)
max(m,h)
τ ∧k

τ (Qn
σ→τAh

σ)
max(n,h)
τ)k

τ], ∆
∧Rl

Γ⇒C�[((Pm
σ→τ ∧k

σ→τ Qn
σ→τ)k

σ→τAh
σ)k

τ], ∆

In the above two rules, h,m,n ≤ k ≠ 0.

Ken Akiba 21

Here Γ and ∆ are sets of terms. C�[⋅] is a context: if it is filled with an appropriate subterm, it will become
a term. As is usually the case in sequent calculi, the antecedents of ⇒ should be read conjunctively,
and the succedents disjunctively. We regard Γ ⊢CT S ∆ if and only if ‘Γ⇒ ∆’ is provable with the above
inference rules.

4.3 Semantics

The domains of the models are the same as those given in Subsection 3.1, and the interpretations of
subterms are straightforward as follows:

• [[xk
σ]]Mρ = ρ(xk

σ) ∈Dk
σ .

• [[(Pm
σ→τAn

σ)
max(m,n)
τ]]Mρ = [[Pm

σ→τ]]Mρ [[An
σ]]Mρ .

• [[(¬k
σ Am

σ)k
σ]]Mρ = −k

σ [[Am
σ]]Mρ .

• [[(Am
σ ∧k

σ Bn
σ)k

σ]]Mρ = [[Am
σ]]Mρ ⊓k

σ [[Bn
σ]]Mρ and [[(Am

σ ∨k
σ Bn

σ)k
σ]]Mρ = [[Am

σ]]Mρ ⊔k
σ [[Bn

σ]]Mρ .

• [[(⋀k
σ xm

σ)k
σ]]Mρ =⊓k

σ [[xm
σ]]Mρ and [[(⋁k

σ xm
σ)k

σ]]Mρ =⊔k
σ [[xm

σ]]Mρ .

CTS is clearly sound and complete with respect to this semantics, which basically states that CTS
ought to be the mirror image of the valid object-level inferences involving shadows.

5 Note on the unranked classical type system

Since Sλ µ is unranked, comparing to it, it seems only natural to think of the unranked CTS, UCTS,
dropping superscripts from the subterms and terms of CTS.

5.1 Language

• Types. Same as those in CTS.

• Variables. Same as those in CTS.

• Subterms.

Pσ ∶∶= xσ ∣ (Pσ→τPσ)τ
∣ (¬σ Pσ)σ

∣ (Pσ ∧σ Pσ)σ
∣ (Pσ ∨σ Pσ)σ

∣ (⋀σ
xσ)σ

∣ (⋁σ
xσ)σ

• Terms. The terms are the subterms of type �.

5.2 Deduction system

Ax
Γ, A�⇒ A�, ∆

Γ⇒ A�, ∆ ¬L�
Γ, (¬�A�)�⇒ ∆

Γ, A�⇒ ∆ ¬R�
Γ⇒ (¬�A�)�, ∆

Γ, C�[(¬τ(Rσ→τAσ)τ)τ]⇒ ∆
¬Lr

Γ, C�[(Rσ→τ(¬σ Aσ)σ)τ]⇒ ∆

Γ⇒C�[(¬τ(Rσ→τAσ)τ)τ], ∆
¬Rr

Γ⇒C�[(Rσ→τ(¬σ Aσ)σ)τ], ∆

22 Denotational Semantics of Lambda-Mu Calculus

Γ, C�[(¬τ(Pσ→τAσ)τ)τ]⇒ ∆
¬Ll

Γ, C�[((¬σ→τPσ→τ)σ→τAσ)τ]⇒ ∆

Γ⇒C�[(¬τ(Pσ→τAσ)τ)τ], ∆
¬Rl

Γ⇒C�[((¬σ→τPσ→τ)σ→τAσ)τ], ∆

Γ, A�, B�⇒ ∆ ∧L�
Γ, (A�∧� B�)�⇒ ∆

Γ⇒ A�, ∆ Γ⇒ B�, ∆ ∧R�
Γ⇒ (A�∧�B�)�, ∆

Γ, C�[((Rσ→τAσ)τ ∧τ (Rσ→τBσ)τ)τ]⇒ ∆
∧Lr

Γ, C�[(Rσ→τ(Aσ ∧σ Bσ)σ)τ]⇒ ∆

Γ⇒C�[((Rσ→τAσ)τ ∧τ (Rσ→τBσ)τ)τ], ∆
∧Rr

Γ⇒C�[(Rσ→τ(Aσ ∧σ Bσ)σ)τ], ∆

Γ, C�[((Pσ→τAσ)τ ∧τ (Qσ→τAσ)τ)τ]⇒ ∆
∧Ll

Γ, C�[((Pσ→τ ∧σ→τ Qσ→τ)σ→τAσ)τ]⇒ ∆

Γ⇒C�[((Pσ→τAσ)τ ∧τ (Qσ→τAσ)τ)τ], ∆
∧Rl

Γ⇒C�[((Pσ→τ ∧σ→τ Qσ→τ)σ→τAσ)τ], ∆

The deduction system of RCTS seems to make perfect sense on its own. We simply assign a sufficiently
high rank ‘in our head’ to the logical operator introduced as we go along. However, a compositional
semantics like those given to Sλ µ and CTS cannot be given to RCTS at least in a straightforward manner,
for the rank of an operator cannot be determined once and for all – a situation somewhat similar to that of
the untyped λ calculus. Further research is called for in this connection.

6 Conclusion

Our investigation of the simplified λ µ-calculus has led us to the structured domains of its models, the
infinitely nested Boolean structures, and to classical type system (CTS), which reflects the structures of
the domains in a more straightforward fashion. CTS is attractive because, though it is just as basic as
the simply-typed λ -calculus or combinatory logic, it incorporates the basic classical logical operators
such as classical negation, conjunction, and disjunction. This is an advantage at least in certain situations
because we often find it difficult to introduce those operators into basic systems of computation. Since
Sλ µ and CTS look very different at first sight, it is all the more interesting and important to explore the
deep relations between them.

We also need to answer the outstanding question whether Sλ µ is complete with respect to our
semantics, and, if not, what more rules should be added to it. Another interesting question is how to
expand our semantics to deal with the untyped λ µ-calculus. In Scott’s [9] D∞ model of the untyped
λ -calculus, only the continuous functions are selected as the members of a function type, i.e., the functions
whose suprema⊔ are distributable. The domains of our models are even more restrictive since the negation
(or complement) is distributable as well. Can we, perhaps, use basically the same models to deal with the
untyped λ µ-calculus?

Outside of logic and computation, classical type theory may have much use in formal linguistics.
According to generalized quantifier theory (see, e.g., Montague [5] and Barwise and Cooper [3]), proper
names and their conjoinments such as Adam, Bob, Adam and Bob, and Adam or Bob, as well as
quantificational phrases such as every man and some women, are not of the type of individuals e (or ind or
i) but of type ¬¬e. This is based on the idea that we cannot have logically compound objects in e. This
theory has had much success in some areas, but has difficulty dealing with the scopes of logical operators.
For instance,

• Adam and Bob love Carol or Diane

is ambiguous and can be read in two ways, but, assuming that the grammatical structure of the sentence
is fixed as [[Adam and Bob]NP[[love]V [Carol and Diane]NP]V P]S, how can we analyze the ambiguity?

Ken Akiba 23

The advocates of generalized quantifier theory do have a few answers, but they are all rather complicated.
For instance, in Hendriks’ [4] answer, x loves y is given two formalizations, λvλ z(v(λx(z(λy.(ly)x))))
and λ zλv(v(λy(z(λx.(ly)x)))). In contrast, CTS can offer a very simple answer:

• ((L0
e→¬e(C0

e ∨1
e D0

e)1
e)1
¬e(A0

e ∧1
e B0

e)1
e)1
�
⇒

((((L0
e→¬eC

0
e)0
¬eA0

e)0
�
∧1
�
((L0

e→¬eC
0
e)0
¬eB0

e)0
�
)1
�
∨1
�
(((L0

e→¬eD0
e)0
¬eA0

e)0
�
∧1
�
((L0

e→¬eD0
e)0
¬eB0

e)0
�
)1
�
)1
�
;

Adam and Bob both love Carol, or they both love Diane.

• ((L0
e→¬e(C0

e ∨1
e D0

e)1
e)1
¬e(A0

e ∧2
e B0

e)2
e)2
�
⇒

((((L0
e→¬eC

0
e)0
¬eA0

e)0
�
∨1
�
((L0

e→¬eD0
e)0
¬eA0

e)0
�
)1
�
∧2
�
(((L0

e→¬eC
0
e)0
¬eB0

e)0
�
∨1
�
((L0

e→¬eD0
e)0
¬eB0

e)0
�
)1
�
)2
�
;

Adam loves either Carol or Diane, and so does Bob.

The two formalizations (before ⇒) have the identical logical structure which matches the assumed
grammatical structure; the only difference is the ranks of ∧ (1 versus 2). But this difference leads to the
two different interpretations (after ⇒) of the original sentence. This is possible only because in CTS
the distribution of the operators is determined not by the type structures of the sentences but purely by
the ranks involved. Generally, CTS can separate the scope relations in sentences from the sentences’
grammatical and logical structures (for more on this, see Akiba [1]). A further investigation of CTS is
important also in this connection.

References
[1] K. Akiba. Conjunctive, disjunctive, negative objects and generalized quantification. In A. Torza (ed.), Quanti-

fiers, Quantifiers, and Quantifiers, 73–95. Springer, 2015. doi:10.1007/978-3-319-18362-6 5
[2] K. Baba, Y. Kameyama, and S. Hirokawa. Combinatory logic and λ -calculus for classical logic. Bulletins of

Information and Cybernetics 32 (2000): 105–122.
[3] J. Barwise and R. Cooper. Generalized quantifiers and natural language. Linguistics and Philosophy 4 (1981),

159–219. doi:10.1007/BF00350139
[4] H. Hendriks. Studied Flexibility. Institute for Logic, Language and Computation, University of Amsterdam,

1993.
[5] R. Montague. The proper treatment of quantification in ordinary English. In J. Hintikka, J. Moravcsik, and P.

Suppes (eds.), Approaches to Natural Language, 221–242. Reidel, 1973. doi:10.1007/978-94-009-2727-8 7
[6] M. Parigot. λ µ-calculus: an algorithmic interpretation of classical natural deduction. In A. Voronkov (ed.),

Logic Programming and Automated Reasoning: International Conference, LPAR ’92 (Lecture Notes in
Artificial Intelligence 624), 190–201. Springer, 1992. doi:10.1007/BFb0013061

[7] D. Prawitz. Natural Deduction. Almqvist and Wiksell, 1965.
[8] N. J. Rehof and M. H. Sørensen. The λ∆-calculus. In M. Hagiya and J. C. Mitchell (eds.), Theoretical Aspects

of Computer Software: International Symposium TACS ’94 (Lecture Notes in Computer Science 789), 516–542.
Springer, 1994. doi:10.1007/3-540-57887-0

[9] D. S. Scott. Continuous lattices. In F. W. Lawvere (ed.), Toposes, Algebraic Geometry and Logic (Lecture
Notes in Mathematics 274), 97–136. Springer, 1972. doi:10.1007/BFb0073967

[10] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism. Elsevier, 2006.
[11] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory, 2nd edn. Cambridge University Press, 2000.

http://dx.doi.org/10.1007/978-3-319-18362-6_5
http://dx.doi.org/10.1007/BF00350139
http://dx.doi.org/10.1007/978-94-009-2727-8_7
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1007/3-540-57887-0
http://dx.doi.org/10.1007/BFb0073967

	1 Introduction
	2 The simplified simply-typed -calculus
	2.1 Language
	2.2 Deduction system

	3 Denotational semantics of the simplified -calculus
	3.1 Domains
	3.2 Interpretation
	3.3 Soundness

	4 The classical type system
	4.1 Language
	4.2 Deduction system
	4.3 Semantics

	5 Note on the unranked classical type system
	5.1 Language
	5.2 Deduction system

	6 Conclusion

