
E. Kashefi, J. Krivine, F. van Raamsdonk (Eds.)
DCM 2011
EPTCS 88, 2012, pp. 16–27, doi:10.4204/EPTCS.88.2

c© A. Assaf and S.Perdrix
This work is licensed under the
Creative Commons Attribution License.

Completeness of algebraic CPS simulations

Ali Assaf
LIG, Université Joseh Fourier

Grenoble, France

École Polytechnique
Palaiseau, France

Ali.Assaf@imag.fr

Simon Perdrix
CNRS, LIG, Université de Grenoble

Grenoble, France

Simon.Perdrix@imag.fr

Thealgebraic lambda calculus(λalg) and thelinear algebraic lambda calculus(λlin) are two exten-
sions of the classical lambda calculus with linear combinations of terms. They arise independently in
distinct contexts: the former is a fragment of the differential lambda calculus, the latter is a candidate
lambda calculus for quantum computation. They differ in thehandling of application arguments and
algebraic rules. The two languages can simulate each other using an algebraic extension of the well-
known call-by-value and call-by-name CPS translations. These simulations are sound, in that they
preserve reductions. In this paper, we prove that the simulations are actually complete, strengthening
the connection between the two languages.

1 Introduction

Algebraic lambda calculi Thealgebraic lambda calculus(λalg) [18] and thelinear algebraic lambda
calculus(λlin ) [4] are two languages that extend the classical lambda calculus with linear combinations
of terms such asα .M+β .N. They have been introduced independently in two different contexts. The
former is a fragment of the differential lambda calculus, and has been introduced in the context of linear
logic with the purpose of quantifying non-determinism: each term of a linear combination represents
a possible evolution in a non deterministic setting. The latter has been introduced as a candidate for a
language of quantum computation, where a linear combination of terms corresponds to a superposition
of states such as1√

2
.|0〉+ 1√

2
.|1〉. The strength ofλlin is to allow superpositions of any terms without

distinguishing programs and data, whereas most of the candidate languages for quantum computation
are based on the sloganquantum data, classical control[14, 15, 11].

The two languages,λalg and λlin , differ in their operational semantics. It turns out that the first
follows acall-by-namestrategy while the second follows the equivalent of acall-by-valuestrategy. For
example, inλalg the term(λx. f xx)(α .y+β .z) reduces as follows:

(λx. f xx)(α .y+β .z) → f (α .y+β .z)(α .y+β .z)

However, this does not agree with the nature of quantum computing. It leads to the cloning of the state
α .y+ β .z, which contradicts theno-cloning theorem [19]. Only copying of base terms such asy is
allowed. Therefore,λlin reduces the term as follows.

(λx. f xx)(α .y+β .z) → (λx. f xx)(α .y)+ (λx. f xx)(β .z)
→ α .(λx. f xx)y+β .(λx. f xx)z

→ α . f yy+β . f zz
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Despite these differences, the work in [5] showed that the two languages can simulate each other.
This was accomplished by defining a translation from one language to the other. Given a termM of λlin ,
we can encode it into a termN of λalg such that reductions ofM in λlin correspond to reductions ofN in
λalg. The translation is an algebraic extension of the classicalcontinuation-passing style(CPS) encoding
used for simulating call-by-name and call-by-value [9, 12,13].

Contribution The CPS transformations introduced in [5] have been proven to be sound,i.e. if a term
M reduces to a valueV in the source language, then the translation ofM reduces to the translation ofV
in the target language. In this paper we prove that they are actually complete,i.e. that the converse is
also true: if the translation ofM reduces to the translation ofV in the target language, thenM reduces
to V in the source language. We do so by modifying techniques usedby Sabry and Wadler in [13] to
define an inverse translation and showing that it also preserves reductions. The completeness of these
CPS transformations strengthens the connection between works done in linear logic [6, 7, 8, 17] and
works on quantum computation [1, 2, 3, 16].

Plan of the paper The rest of the paper is structured as follows. In section 2, the syntax and the
reduction rules of both algebraic languages are presented.Section 3 is dedicated to the simulation ofλlin

by λalg, and section 4 to the opposite simulation. In each of the two cases, the translation introduced in
[5] is presented, the grammar of the encoded terms in the target language is given, the inverse translation
is defined, and finally the completeness of the CPS translation is proven.

2 The algebraic lambda calculi

The languagesλlin andλalg share the same syntax, defined by the following grammar, where α ranges
over a defined ring, thering of scalars.

M,N,L ::= V | MN | α .M | M+N (terms)
U,V,W ::= B | 0 | α .V |V +W (values)

B ::= x | λx.M (base values)

We can form sums of terms and multiplication by scalars, and there is a neutral element 0. The values
we consider are formed by taking linear combinations of basevalues,i.e. variables and abstractions. This
gives the languages the structure of a vector space (amoduleto be precise).

We describe the operational semantics of the two languages using small-step rewrite rules. The rules
are presented in Figure 1. As mentioned,λalg substitutes the argument directly in the body of a function,
while λlin delays the substitution until the argument is a base value. We use the same notation as in [5]
to define the following rewrite systems obtained by combining the rules described in Figure 1 .

→βn
::= βn∪ ξ

→a ::= A∪L∪ ξ
→βv

::= βv∪ ξ ∪ ξλlin

→l ::= Al ∪Ar ∪L∪ ξ ∪ ξλlin

The rewrite systems for the two languages are then defined as follows.

Language Rewrite system

λlin →l∪β ::= (→l )∪ (→βv
)

λalg →a∪β ::= (→a)∪ (→βn
)
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Rules specific toλalg

Call-by-name (βn) Linearity of application (A)

(λx.M)N → M[x := N]
(M+N)L → ML+NL
(α .M)N → α .(MN)

(0)M → 0

Rules specific toλlin

Call-by-value (βv) Right context rule (ξλlin
)

(λx.M)B → M[x := B]
M → M′

VM →VM′

Left linearity of application (Al ) Right linearity of application (Ar)

(M+N)V → MV +NV
(α .M)V → α .(MV)

(0)V → 0

B(M+N) → BM+BN
B(α .M) → α .(BM)

B(0) → 0

Common rules

Vector space rules (L = Asso∪Com∪F ∪S)

Associativity (Asso) Commutativity (Com)

M+(N+L) → (M+N)+L
(M+N)+L → M+(N+L)

M+N → N+M

Factorization (F) Simplification (S)

α .M+β .M → (α +β ).M
α .M+M → (α +1).M

M+M → (1+1).M
α .(β .M) → (αβ ).M

α .(M+N) → α .M+α .N
1.M → M
0.M → 0
α .0 → 0

0+M → M

Context rules (ξ )

M → M′

(M) N → (M′) N
M → M′

M+N → M′+N
M → M′

α .M → α .M′
N → N′

M+N → M+N′

Figure 1: Rewrite rules forλlin andλalg
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Example 1. Let 〈M,N〉 := λ f . f MN be the Church encoding of pairs, letcopy= λx.〈x,x〉, and consider
the termcopy(y+z). The term reduces inλalg:

copy(y+z) = (λx.〈x,x〉)(y+z)

→βn
〈y+z,y+z〉

As mentioned above, the termy+ z is cloned, and if it represented quantum superposition thiswould
violate the no-cloning theorem. Inλlin , the term reduces instead as:

copy(y+z) = (λx.〈x,x〉)(y+z)

→l (λx.〈x,x〉)y+(λx.〈x,x〉)z
→βv

〈y,y〉+(λx.〈x,x〉)z
→βv

〈y,y〉+ 〈z,z〉

3 Completeness of the call-by-value to call-by-name simulation

The translation in [5] is a direct extension of the classicalCPS encoding used by Plotkin [12] to show
that the call-by-name lambda calculus simulates call-by-value. The definition is the following.

[[x]] = λk.kx

[[λx.M]] = λk.k(λx.[[M]])

[[MN]] = λk.[[M]](λb1.[[N]](λb2.b1b2k))

[[0]] = 0

[[α .M]] = λk.(α .[[M]])k

[[M+N]] = λk.([[M]]+ [[N]])k

This translation simulates the reductions of a termM by the reductions of the term[[M]]k, where
k is free. It works the same way as the classical CPS simulation: instead of returning the result of a
computation, all terms receive an additional argumentk called thecontinuation, which describes the rest
of the computation. This technique makes evaluation order,intermediate values, and function returns
explicit, which allows us to encode the proper evaluation strategy.

The translation preserves the set of free variables. New variables names likek, b, b1 or b2 are chosen
to be fresh so as to not collide with free variables in the term. We reserve and always use the namek to
abstract over continuations, and the namesb, b1, andb2 for intermediate values. It is a fact that these
variables never clash with each other.

Example 2. The reductions of the termcopy(y+z) in λlin are simulated inλalg by the following reduc-
tions:
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[[copy(y+z)]]k = (λk. [[copy]] (λb1. [[y+z]] (λb2.b1b2k)))k

→βn
[[copy]] (λb1. [[y+z]] (λb2.b1b2k))

→βn
(λb1. [[y+z]] (λb2.b1b2k)) (λx. [[〈x,x〉]])

→βn
[[y+z]] (λb2. (λx. [[〈x,x〉]])b2k)

→βn
([[y]]+ [[z]]) (λb2. (λx. [[〈x,x〉]])b2k)

→a [[y]] (λb2. (λx. [[〈x,x〉]])b2k)+ [[z]] (λb2. (λx. [[〈x,x〉]])b2k)

→∗
a∪β (λb2. (λx. [[〈x,x〉]])b2k)y+(λb2. (λx. [[〈x,x〉]])b2k)z

→∗
a∪β (λx. [[〈x,x〉]]) yk+(λx. [[〈x,x〉]]) zk

→∗
a∪β [[〈y,y〉]]k+[[〈z,z〉]]k

We see that the result is the one that corresponds to call-by-value. As expected, there was no cloning.

Notice in the example above that there are many more steps in the simulation than in the original
reduction sequence in Example 1. A lot of the steps replace the continuation variables and intermediate
variables introduced by the translation. In a sense, all these intermediary terms represent the “same” term
in the source language, and we call these intermediary stepsadministrative reductions.

To deal with this, we use an intermediate translation denoted by M : K. This colon translation was
originally used by Plotkin [12] to describe intermediate reductions of translated terms, where initial
administrative redexeshad been eliminated.

Ψ(x) = x
Ψ(λx.M) = λx. [[M]]

B : K = KΨ(B)
0 : K = 0

α .M : K = α .(M : K)
M+N : K = M : K+N : K

BN : K = N : λb.Ψ(B)bK
(MN)L : K = MN : λb1. [[L]](λb2.b1b2K)
(0)N : K = 0 : K

(α .M)N : K = α .(MN) : K
(M+N)L : K = ML+NL : K

This CPS translation was proved to be sound by showing that itpreserves reductions: for any term
M, if M reduces toM′, thenM : K reduces toM′ : K for all K. Combined with the fact that[[M]]k reduces
initially to M : k, this gave the soundness of the simulation.

Proposition 3 (Soundness [5]). For any term M, if M→∗
l∪β V then[[M]]k→∗

a∪β V : k.

The goal of this paper is to show that the converse is also true:

Theorem 4 (Completeness). If [[M]]k→∗
a∪β V : k then M→∗

l∪β V.

To prove it, we define an inverse translation and show that it preserves reductions. First, we need to
characterize the structure of the encoded terms. We define a subset ofλalg which contains the image of
the translation and is closed by→a∪β reductions with the following grammar:
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C ::= KB | B1B2K | TK (base computations)
D ::= C | 0 | α .D | D1+D2 (computation combinations)

S ::= λk.C (base suspensions)
T ::= S| 0 | α .T | T1+T2 (suspension combinations)

K ::= k | λb.BbK | λb1.T(λb2.b1b2K) (continuations)

B ::= x | λx.S (CPS-values)

There are four main categories of terms:computations, suspensions, continuations, andCPS-values.
We distinguish base computationsC from linear combinations of computationsD, as well as base sus-
pensionsS from linear combinations of suspensionsT. The translation[[M]] gives a term of the classT,
while [[M]]k andM : K are of classD. One can easily check that each of the classesD, T, K andB is
closed by→a∪β reductions.

There are some restrictions on the names of the variables in this grammar. The variable namek that
appears in the classK must be the same as the one used in suspensions of the formλk.C. It cannot
appear as a variable name in any other term. This is to agree with the requirement of freshness that
we mentioned above. The same applies for the variablesb, b1 andb2: they cannot appear (free) in any
sub-term. In particular, these restrictions ensure that the grammar for each category is unambiguous.
The three kinds of variables (x, k andb) play different roles, which is why we distinguish them using
different names.

Computations are the terms that simulate the steps of the reductions, hence the name. They are
the only terms that contain applications, so they are the only terms that canβ -reduce. In fact, notice
that the arguments in applications are always base values. This shows a simple alternative proof for
the indifferenceproperty [5] of the CPS translation, namely that the reductions of a translated term are
exactly the same inλlin andλalg.

Proposition 5 (Indifference [5]). For any computations D and D′, D →a∪β D′ if and only if D→l∪β D′.
In particular, if M →∗

l∪β V then[[M]]k→∗
l∪β V : k.

We define the inverse translation using the following four functions, corresponding to each of the
four main categories in the grammar.

KB = K[ψ(B)] σ(λk.C) = C
B1B2K = K[ψ(B1)ψ(B2)] σ(0) = 0

TK = K[σ(T)] σ(α .T) = α .σ(T)
0 = 0 σ(T1+T2) = σ(T1)+σ(T2)

α .D = α .D
D1+D2 = D1+D2

k[M] = M
ψ(x) = x λb.BbK[M] = K[ψ(B)M]

ψ(λx.S) = λx.σ(S) λb1.T(λb2.b1b2K)[M] = K[Mσ(T)]

These functions are well-defined because the grammar for each category is unambiguous. To prove
the completeness of the simulation we need a couple of lemmas. The first two state that the translation
defined above is in fact an inverse.

Lemma 6. For any term M,[[M]]k= M.
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Proof. We have[[M]]k = k[σ([[M]])] = σ([[M]]) so we have to show thatσ([[M]]) = M for all M. The
proof follows by induction on the structure ofM.

In general,M : k 6= M. Although it would be true for a classical translation, it does not hold in the
algebraic case. Specifically, we have(α .M)L : k= α .(ML) : k and(M+N)L : k= ML+NL : K, so the
translation is not injective. However it is still true for values.

Lemma 7. For any value V,V : k=V.

Proof. By induction on the structure ofV.

The third lemma that we need states that the inverse translation preserves reductions.

Lemma 8. For any computation D, if D→a∪β D′ thenD →∗
l∪β D′.

With these we can prove the completeness theorem.

Proof of Theorem 4.By using Lemma 8 for each step of the reduction, we get[[M]]k →∗
l∪β V : k. By

Lemma 6 and Lemma 7, this impliesM →∗
l∪β V.

To prove Lemma 8. we need several intermediary lemmas.

Lemma 9 (Substitution). The following are true.

1. ψ(B1)[x := ψ(B)] = ψ(B1[x := B])

2. σ(T)[x := ψ(B)] = σ(T[x := B])

3. C[x := ψ(B)] =C[x := B]

4. K[M][x := ψ(B)] = K[x := B][M[x := ψ(B)]]

Proof. By induction on the structure ofB1, T, C, andK.

The next lemma states that we can compose two continuationsK1 andK2 by replacingk by K1 in K2.

Lemma 10. For all terms M and continuations K1 and K2, K1[K2[M]] = K2[k := K1][M].

Proof. By induction on the structure ofK2.

Lemma 11. For allK andC, K[C] =C[k := K].

Proof. By induction on the structure ofC, using Lemma 10 where necessary.

The following lemma is essential to the preservation of reductions. It shows that reductions of a term
M can always be carried in the contextK[M].

Lemma 12. For any continuation K and term M, if M→l∪β M′, then K[M]→l∪β K[M′].

Proof. By induction on the structure ofK.

Lemma 13. The following are true.

• K[M1+M2]→∗
l K[M1]+K[M2]

• K[α .M]→∗
l α .K[M]

• K[0]→∗
l 0



A. Assaf and S.Perdrix 23

Proof. We prove each statement by induction onK, using Lemma 12 where necessary.

Lemma 14. For any suspension T , if T→a T ′ thenσ(T)→l σ(T ′).

Proof. By induction on the reduction rule. SinceT terms do not contain applications, the only cases
possible areL∪ ξ , which are common to both languages.

We now have the tools to finish the proof of 8.

Proof of Lemma 8.By induction on the reduction rule, using Lemmas 9, 11, 12, 13and 14 where neces-
sary

4 Completeness of the call-by-name to call-by-value simulation

The simulation in this direction is similar to the other one,and uses the same techniques. The adjustments
we have to make are the same as in the classical case, and deal mainly with our treatment of variables
and applications. The CPS translation, as defined in [5], is the following.

{|x|} = x

{|λx.M|} = λk.k(λx.{|M|})
{|MN|} = λk.{|M|}(λb.b{|N|}k)

{|0|} = 0

{|α .M|} = λk.(α .{|M|})k
{|M+N|} = λk.({|M|}+{|N|})k

Again, this translation simulates the reductions of a termM by the reductions of the term{|M|}k,
wherek is free.

Example 15. The reductions of the termcopy(y+ z) in λalg are simulated inλlin by the following
reductions.

{|copy(y+z)|}k = (λk.{|copy|}(λb.b{|y+z|}k))k

→βv
{|copy|}(λb.b{|y+z|}k)

→βv
(λb.b{|y+z|}k) (λx.{|〈x,x〉|})

→βv
(λx.{|〈x,x〉|}) {|y+z|}k

→∗
l∪β {|〈y+z,y+z〉|}k

We see that the result is the one that corresponds to call-by-name. It is natural to ask how we were
able to perform this cloning of the statey+z in a call-by-value setting and how it can agree with the no-
cloning theorem. The answer is that the CPS encoding of the term y+z is {|y+z|}= λk.(x+y)k, which
is an abstraction. In the quantum point of view, we can interpret this as a program, or a specification, that
preparesthe quantum statex+y. Therefore this program can be duplicated.
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The soundness of the simulations uses a similar colon translation.

Φ(λx.M) = λx.{|M|}
λx.M : K = KΦ(λx.M)

x : K = xK
0 : K = 0

α .M : K = α .(M : K)
M+N : K = M : K+N : K

(λx.M)N : K = Φ(λx.M){|N|}K
xN : K = x : (λb.b{|N|}K)

(MN)L : K = MN : λb.b{|L|}K
(0)N : K = 0 : K

(α .M)N : K = α .(MN) : K
(M+N)L : K = ML+NL : K

Proposition 16 (Soundness [5]). For any term M, if M→∗
a∪β V then{|M|}k→∗

l∪β V : k.

We will use the same procedure as in the previous section to show that the translation is also complete.

Theorem 17 (Completeness). If {|M|}k→∗
l∪β V : k then M→∗

a∪β V.

Here is the grammar of the target language. It is closed under→l∪β reductions.

C ::= KB | BSK| TK (base computations)
D ::= C | 0 | α .D | D1+D2 (computation combinations)
S ::= x | λk.C (base suspensions)
T ::= S| 0 | α .T | T1+T2 (suspension combinations)
K ::= k | λb.bSK (continuations)
B ::= λx.S (CPS-values)

Notice howx is now considered a suspension, not a CPS-value. This is becausex is replaced by a
suspension after beta-reducing a term of the form(λx.S)SK. This is the main difference between the
call-by-name and call-by-value CPS simulations. Other than that, it satisfies the same properties. In
particular, we have the same indifference property.

Proposition 18 (Indifference [5]). For any computations D and D′, D→a∪β D′ if and only if D→l∪β D′.
In particular, if M →∗

a∪β V then{|M|}k→∗
a∪β V : k.

We define the inverse translation using the following four functions.

KB = K[φ(B)] σ(x) = x
BSK = K[φ(B)σ(S)] σ(λk.C) = C
TK = K[σ(T)] σ(0) = 0

0 = 0 σ(α .T) = α .σ(T)
α .D = α .D σ(T1+T2) = σ(T1)+σ(T2)

D1+D2 = D1+D2

k[M] = M
φ(λx.S) = λx.σ(S) λb.bSK[M] = K[Mσ(S)]

To prove the completeness of the simulation we need analogous lemmas. Their proofs are similar,
but we need to account for the changes mentioned above.

Lemma 19. For any term M,{|M|}k= M.

Proof. We have{|M|}k= k[σ({|M|})] = σ({|M|}) so we have to show thatσ({|M|}) = M for all M. The
proof follows by induction on the structure ofM.

Lemma 20. For any value V ,V : k=V.
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Proof. By induction on the structure ofV.

Lemma 21. For any computation D, if D→l∪β D′ thenD →∗
a∪β D′.

With these we can prove the completeness theorem.

Proof of Theorem 17.By using Lemma 21 for each step of the reduction, we get{|M|}k→∗
a∪β V : k. By

Lemma 19 and Lemma 20, this impliesM →∗
a∪β V.

To prove Lemma 21, we need similar intermediary lemmas.

Lemma 22 (Substitution). The following are true.

1. φ(B)[x := σ(S)] = φ(B[x := S])

2. σ(T)[x := σ(S)] = σ(T[x := S])

3. C[x := σ(S)] =C[x := S]

4. K[M][x := σ(S)] = K[x := S][M[x := σ(S)]]

Proof. By induction on the structure ofB, T, C andK.

Lemma 23. For all terms M and continuations K1 and K2, K1[K2[M]] = K2[k := K1][M].

Proof. By induction on the structure ofK2.

Lemma 24. For allK andC, K[C] =C[k := K].

Proof. By induction on the structure ofC, using Lemma 23 where necessary.

Lemma 25. For any continuation K and term M, if M→a∪β M′ then K[M]→a∪β K[M′].

Proof. By induction on the structure ofK.

Lemma 26. The following are true.

• K[M1+M2]→∗
a K[M1]+K[M2]

• K[α .M]→∗
a α .K[M]

• K[0]→∗
a 0

Proof. We prove each statement by induction onK, using Lemma 25 where necessary.

Lemma 27. For any suspension T , if T→l T ′ thenσ(T)→a σ(T ′).

Proof. By induction on the reduction rule. SinceT terms do not contain applications, the only cases
possible areL∪ ξ , which are common to both languages.

We can now prove Lemma 21.

Proof of Lemma 21.By induction on the reduction rule, using Lemmas 22, 24, 25, 26 and 27 where
necessary. Notice that the rulesξλlin

andAr are not applicable since arguments in the target language are
always base terms.
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5 Discussion and conclusion

We showed the completeness of two CPS translations simulating algebraic lambda calculi introduced in
[5]. We did so by using techniques inspired from [13] to definean inverse translation and showing that it
preserves reductions.

Our treatment differs from Sabry and Wadler’s [13], not onlybecause they work in a non-algebraic
setting, but also because they decompile continuations into abstractions. For example, they defined
λb.Bbk[M] aslet b= M in φ (B)b. This required the modification of the source language and led to the
consideration of thecomputational lambda calculus[10] as a source language instead. We avoid this by
directly substituting and eliminating variables introduced by the forward translation, which allows us to
obtain an exact inverse.

However, the translations defined in [13] satisfy an additional property: they form a Galois connec-
tion. Our translations fail to satisfy one of the four required criteria to be a Galois connection, namely
thatN : k reduces toN. It would be interesting to see if we can accomplish the same thing in the algebraic
case, all while dealing with the problems mentioned above.

Originally, the work in [5] also considers another version of λlin andλalg with algebraic equalities
instead ofalgebraic reductions. For example, we could go back and forth betweenM +N−N andM,
which is not permitted by the rules we presented above. Algebraic equalities can be formulated as the
symmetric closure of the algebraic reductions→a and→l . The resulting four systemsλ→

lin , λ→
alg, λ=

lin ,
andλ=

alg have all been shown to simulate each other. The results of this paper can be extended to these
systems as well.
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