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A denotational semantics of quantum Turing machines haaiggantum control is defined in the

dagger compact closed category of finite dimensional Hilbpaces. Using the Moore-Penrose
generalized inverse, a new additive trace is introducetienrgstriction of this category to isometries,
which trace is carried over to directed quantum Turing maehias monoidal automata. The Joyal-
Street-Verityint construction is then used to extend this structure to a séverbidirectional one.

1 Introduction

In recent years, following the endeavors of Abramsky andcke¢o express some of the basic quantum-
mechanical concepts in an abstract axiomatic categoryyttsatting, several models have been worked
out to capture the semantics of quantum information prdsofdd and programming languages [12] 16,
24]. Concerning quantum hardware, an algebra of automaizhviticlude both classical and quantum
entities has been studied [n [13]. In all of these works, gttile model could manipulate quantum data
structures, the actual control flow of the data was assumbd tcessarily classical.

The objective of the present paper is to show that the ideagpfamtum control is logically sound
and feasible, and to provide a denotational style semafticguantum Turing machines having such a
control. Atthe same time, the rigid topological layout ofifig machines as a linear array of tape cells is
replaced by a flexible graph structure, giving rise to thecepi of Turing automata and graph machines
as introduced in_[6]. By denotational semantics we meantiigathanging of the tape contents caused
by the entire computation process is specified directly aseat operator, rather than just one step of
this process.

Our presentation will use the language [of[[1} [17, 23], butiit e specific to the concrete dagger
compact closed catego(¥FdHilb ,®) of finite dimensional Hilbert spaces at this time. One canalit
read Section 4 separately as an interesting study in lifrgabi, introducing a novel application of the
Moore-Penrose generalized inverse of range-Hermitiamabqes by taking their Schur complement in
certain block matrix operators. This is the main technicaitdbution of the paper. We believe, however,
that the category theory contributions are far more intergsnd relevant. All of these results are around
the well-known Geometry of Interaction (Gol) concept intwoed originally by Girard [14] in the late
1980’s as an interpretation of linear logic. The ideas, h@reoriginate from and are directly related to a
yet earlier work[[2] by the author on the axiomatization offttnart schemes, where the traced monoidal
category axioms first appeared in an algebraic context. &egory theory contributions are as follows:

(). We introduce a total trace on the monoidal subcategdryFdHilb,®) defined by isometries,
which has previously been sought by othérd [15, 21].

(i). We explain the role of thént construction for traced monoidal categories! [17] in tugiéncom-
putation process bidirectional or reversible.

(iiif). We capture the phenomenon in (ii) above by our own epic'indexed monoidal algebral’l[7],
which is an equivalent formalism for certain regular sel&bcompact closed categories.
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Due to space limitations we have to assume familiarity witme advanced concepts in category
theory, namely traced monoidal categorled [17], compacted] categories [19], and tha construction
that links these two types of symmetric monoidal categd@i@fto each other. For brevity, by a monoidal
category we shall mean a symmetric monoidal one througlheupaper.

2 Traced and compact closed monoidal categories

The following definition of (strict) traced monoidal catems uses the terminology of [17]. Trace (called
feedback in[[2]) in a monoidal catego® with unit objectl, tensor®, and symmetriesag : A®Q B —
B® Ais introduced as a left trace, i.e., an operatift) ® A,U @ B) — € (A, B).

Definition 1. A tracefor a monoidal category is a family of functions
Trag: ¢ (U®AU®B) - ¢(AB)

natural inA andB, dinatural inU, and satisfying the following three axioms:

vanishing:
T"kB(f) =f, T"X%V(g) = TrXB(Tr\l;@AN@B(g));

superposing:
Trap(f) ®9=Trascpsp(f ®0), whereg: C — D;

yanking:
Tigu(ouu) = .

We use the wordgliding as a synonym for dinaturality id. When using the terrfeedbackor trace,
the notation Tr changes tbor 1}, and we simply write T (1Y, 4V) for Tr/‘iB wheneverA andB are
understood from the context. The reason for using threereifit symbols for trace is the different nature
of semantics associated with these symbols.

As it is customary in linear algebra, we shall use the symbalsd 0 as “generic” identity (respec-
tively, zero) operators, provided that the underlying Hitispace is understood from the context. As a
further technical simplification we shall be working witketbtrict monoidal formalism, even though the
monoidal category of Hilbert spaces with the usual tensodyet is not strict. It is known, cfi_[20], that
every monoidal category is equivalent to a strict one.

Definition 2. A monoidal category” is compact close@dCC, for short) if every objedh has a left adjoint
A* in the sense that there exist morphistas | — A* ® A (the unit map) an@a : A® A* — | (the counit
map) for which the two composites below result in the idgmibrphisms 4 and L, respectively.

A= AR 51,00 AR (AR A) = (AR A ® A e, | OA=A,
A = 1QA S, (A QA DA =A@ (ADAT) 1, 0 AT @1 = A",

As itis well-known, every CC category admits a so caltadonical tracg17] defined by the formula
Trlgf = (dy ®1a) o (1y- @ f) o (e @ 1).

Notice that we write composition of morphismg (n a left-to-right order, avoiding the use of “;”, which
some may find more appropriate. We do so in order to facil@agmooth transition from composition to
matrix product in Section 4. In the formula of canonical &#@above we have made the additional silent
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Figure 1: Diagram for dagger compact closed categories

assumption that the involutiof)* is strict, so tha** = U holds for each objed#. As it is known from
[11], this assumption can also be made without loss of gétyera

Recall from [23] that adlagger monoidal categoris a monoidal category” equipped with an in-
volutive, identity-on-objects contravariant functbr ¥°P — ¢ coherently preserving the symmetric
monoidal structure as specified in [23]. dagger compact closed categas/a dagger monoidal cate-
gory that is also compact closed, and such that the diagrdtigime[1 commutes for all objects

3 Monoidal vs. Turing automata

Circuits and automata over an arbitrary monoidal catedbiyave been studied inl[8] 4, 5,118]. It was
shown that the collection of such machines has the structueemonoidal category equipped with a
natural feedback operation, which satisfies the traced idahaxioms, except for yanking. Moreover,
sliding holds in a weak sense, for isomorphisms only.

Let A and B be objects inM. An M-automaton(circuit) A — B is a pair(U,a), whereU is a
further object andr : U ® A — U ® B is a morphism irM. If, for example,M = (Set x), then the pair
(U,a) represents a deterministic Mealy automaton with stdtesput A, and outpuB. The structure
of M-automata/circuits has been described as a monoidal egt€ga(M) with feedback in[[18]. This
category was also shown to be freely generatetfiby

In this paper we take a different approach to the study of nuahautomata. We follow the method
of [6] with the aim of constructing &#aced monoidal category as an adequate semantical structure for
these automata. One must not confuse this type of semaritltthe meaning normally associated with
the category CirgM) above, as they have seemingly very little in common. A travedoidal category
indicates alelay-freesemantics, as opposed to the step-by-dtdayedsemantics suggested by Gikt).
Moreover, the category that we are going to construct is resimhto be the quotient of Cifl) by the
yanking identity, so as to turn it into a traced monoidal gatg in the straightforward manner. Rather,
we define a brand new tensor and feedback (trace) oMeamtomata, which are analogous to the basic
operations in iteration theories [10]. Regarding the bagegoryM, we shall assume an additional,
so called additive tensap, so that® distributes overp. These two tensors will then be “mixed and
matched” in the definition of tensor fd-automata, providing them with an intrinsic Turing machine
behavior.

The “prototype” of this construction, resulting in the CQeggory of conventional Turing automata,
has been elaborated inl [7] usihg = (Rel, x,+) as the base category. This category was ideal as a
template for the kind of construction we have in mind, sirtdeas a biproduct as the additive tensor
and is self-dual compact closed according to the multifiliegensorx. Below we present the quantum
counterpart of this construction, working in the dagger paot closed category of finite dimensional
Hilbert spacegFdHilb ,®,®). More precisely, the categoi above will be the restriction dfdHilb to
isometries as morphisms, which subcategory is no longepaotritlosed and does not have a biproduct.
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4 Directed quantum Turing automata

In this section we present the construction outlined abtaveptain a strange asymmetric model which
does not yet qualify as a recognizable quantum computingeév its own right. The model represents
a Turing machine in which cells are interconnected in a tieavay, so that the control (tape head)
always moves along interconnections in the given fixed toeg should it be left or right. In other
words, direction is incorporated in the scheme-like greghsyntax, rather than the semantics. We
use this model only as a stepping stone towards our real talget¢he (undirected) quantum Turing
automaton described in Section 5.

Definition 3. A directed quantum Turing automatda quadruple
T=,x,%,1),
wheres?Z, # , and.Z are finite dimensional Hilbert spaces over the complex figldndrt : 7 ® 2 —

R L is an isometry irFdHilb .

Recall that arisometrybetween Hilbert space#i and. is a linear mag : 574 — % such that
ooco’ =1, wherea' is the (Hilbert spacejdjoint of o. Following the notation of general monoidal
automata we writd : 7 — ¢, and call the isometry the transition operatorof T. Thus,T is the
monoidal automato?’, 1) : % — .£. Sometimes we simply identify with 7, provided that the other
parameters of are understood from the context.

&
) a@@@ SCT

Figure 2: Two simple DQTA

The reader can obtain an intuitive understanding of thenaatonT from Figure 2a. The state space
2 is represented by a finite number of qubits (in our examplevBjle the control is a moving particle
that moves from one of the input interfaces (spa&¢to one of the output ones (spag€). It can only
move in the input— output direction, as specified by the operatorThe number of input and output
interfaces is finite. The control itself does not carry arfgiimation, it is just moving around and changes
the state off . In comparison with conventional Turing machines, theestdT is the tape contents of the
corresponding Turing machine, and the current state of thied machine is just an interface identifier
for T. For example, one can consider the DQTA in Fidure 2b as oredalb of a Turing machind M
having 2 symbols in its tape alphabet and only 2 states (2 left-mowing 2 right-moving interfaces,
both input and output). Correspondingl§#’ is 8-dimensional, while the dimension of bo#f and. %
is 4. In motion, if the control particle of resides on the input interface label@di) ((R,i)), thenTM
is in statei moving to the left (respectively, right). The point is, haxgg that the automatoh need not
represent just one cell, it could stand for any finite segméatTuring machine, in fact a Turing graph
machine in the sense 6f/[6]. In our concrete example, a segohdriM with n tape cells would haver3
qubits inside the circle of Figufé 2b, but still the same 4l interfaces.

An isometric isomorphisn : 74 — 5 (unitary map if 271 = %) is a linear operator such that
both o ando™ are isometries. Two automata: (1) X — £, i =12, areisomorphi¢ notation
T1 & Ty, if there exists an isometric isomorphison 73 — 5% for which

T2:(0T®|%)OT10(O'®|_§;).
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For simplicity, though, we shall work with representativegher than equivalence classes of automata.
Turing automata can be composed by the standasdade produobf monoidal automata, cfl. [4] 5,
18). If T = (WA, 11) : £ — A4 andT, = (5,12) . M4 — A are directed quantum Turing automata
(DQTA, for short), then
TioTh=(A® 7, L,N,T)

is the automaton whose transition operatas

(Toa.5@2) o (L@ T1) o (Thyn @.a) o (ly®T2),

whererry,  is the symmetry? ® % — % ® 2 in (FdHilb,®). As known from [18], the cascade

product of automata is compatible with isomorphism, so ithiatwell-defined on isomorphism classes

of DQTA. The identity Turing automaton 4 : 2" — % has the unit spac€ as its state space, and its

transition operator is simpli;,-. The results in[[18] imply that these data define a cate@\ over

finite dimensional Hilbert spaces as objects, in which theghisms are isomorphism classes of DQTA.
Now let

Ti=(/4,11) : 1L — L andTy = (H5,12) - Ho — L5

be DQTA, and defind, H T, to be the automaton over the state spafex .7 whose transition operator
T=T1B1: (AR (HdH) = (AR )R (L L)
acts as followst ~ g, d 0, where the morphisms
0i: (AR M) QK — (AR M) RL, 1=1,2are:

1= (T @11) 0 (L, @ T1) 0 (T @ .z), and 02 = |, ® To.

In the above equations; denotes the orthogonal sum of Hilbert spaces. Intuitivelg,the selective
performance ogither 1, or 17, on the tensor spac#i ® 7%. We say “either or”, because the interfaces
of T; andT, are separated by, rather than®. The natural isomorphisny is distributivity in the sense
of [1, Proposition 5.3]. It is clear that the operat@f 1, is an isometry, so that the operatighis well-
defined. We call this operation theuring tensor The Turing tensor is also associative, up to natural
isomorphism, of course.

The symmetries? & . — ¥ @ % associated witF are the “single-state” Turing automata whose
transition operator is the permutation

<z x
Ky o= K (o | ) (Ce) (A aZ)— (C)(ZLoX).
< I 0

Along the lines of [[18] it is routine to check th&t is also compatible with isomorphism of automata,
and(DQT,H) becomes a monoidal category in this way.

Our third basic operation on DQTA is feedback. Feedbackfalthe scheme of iteration in Conway
matrix theories[[10], using an appropriate star operatiant.T : % & % — % £ be a DQTA having

T HRQUDKH) = HRQ(UDL)
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as its transition operator. Theé T : % — £ is the automaton over (trsamespace)#” specified as
follows. Consider the matrix of:

HRQU HRYL
HRQU A 42!
HRH c )

according to the biproduct decomposition

T = ([Ta, Tc], [TB, D)),

where[_,_] stands for coproduct and, _) for product. The transition operator ¥ T is defined by the
Kleene formula
1% T=lim (o +TcoTa o Te). (1)

In the Kleene formulaz;” = S, 7h, wheretd = | and 1y = th o Ta. In other words ;" is then-th
approximation ofta’s Neumann seriewell-known in operator theory. The correctness of the alumie
inition is contingent upon the existence of the limit andads the resulting operator being an isometry.
For these two conditions we need to make a short digressibichwvill also clarify the linear algebraic
background.

Let Iso denote the subcategory &dHilb having only isometries as its morphisms. Notice that
(Iso,®) is no longer compact closed, even though the multiplicatévesor® is still intact in it. (The
duals are gone.) This tensor, however, does not concerntbe atoment. Considep as an additive
tensor inlso:

T1® T2 = ([11,0],[0, 12]) for all isometriest; : 74 — J#,1=1,2.

Clearly, 11 ® 12 is an isometry. The new additive unit (zero) object is th®zgrace?’. With the additive
symmetrieX » » : A © X — H &I, (Iso,®) again qualifies as a monoidal category. The biproduct
property of@ is lost, however. Nevertheless, one may attempt to defirsca tperationt” 1 in Iso by
the Kleene formula (1), where: % & % — % & %. (Cut#® in the matrix oft.)

Since the Kleene formula does not appear to be manageablistveedefinet” t and prove the
equivalence of the two definitions later. Let

%1 =1p+1c0(I —Ta) 018, (2)

where()* denotes théloore-Penrose generalized inversElinear operators. Recall, e.g., frond [8] that
the Moore-Penrose inverse (MP inverse, for short) of antraryi operatoro : 72 — ¢ is the unique
operatoro™ : ¥ —  satisfying the following two conditions:

(). cootoo=0,ando" o000 =0";
(). ocoot ando™ oo are Hermitian.

The connection between formulas (1) and (2) is the followiighe Neumann serieg, converges,
then(l — 1a) is invertible and

G=0-10)t=(—-10)".
We know that||7a|| < 1, where|| || denotes the operator nornt i€ an isometry.) Therefore the Kleene

formula needs an explanation only|jifa|| = 1. In that case, even {fl — 1) is invertible, T; may not
converge.
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Just as the Kleene formula in computer science, the expressithe right-hand side of equation (2)
is well-known and frequently used in linear algebra. Foracklmatrix

A B
(e 5)
whereA is square, the matriw — CA™B is called theSchur complemertdf A on M, denotedA/M. Cf.,
e.d., [8]. Observe that, under the assumptién= .Z,

A1 =1—(0—-18)/(1 —T).

For this reason we cajt” T the Schur I-complementf 1 on 7, and write? T = TA\T.
Theorem 4. The operatorra\T is an isometry.

Proof. Isolate the kernel¥” of (1 — 14), and let%; be the orthogonal complement [22].0f on% . The
matrix of (I — 7a) in this breakdown is

N Uo
| —ta= A 0 0 . (3)
Yo ~1" 1-12
Put this matrix (rathen, — (I — 7a)) in the top left corner of:

N U <

N | 0 1

Uo [ 5 G ¢

H i i

SinceTt is an isometry (regardless of its concrete orthogonal sgpr@ation as a matrix operator), all
entries in the above block matrix with superscript must be 0. Consequenti, — 2) is invertible and
TA\T = TX\TO, wherety : % & X — % P L is the restriction ofr to the bottom right 2 2 corner.

Indeed,
0 o \" /o 0
0o I-12) ~\o (-1t )

tco(l —ta)Totg=120(I —1%) Lol

so that

It turns out from the above discussion tiiat- 1a) is group invertibleandrange-Hermitian cf. [8,[9].
Therefore the MP inverse d@f — 74) coincides with its Drazin inverse, which is the group gelieed
inverse of this operator. Cf. againl [&, 9]. It follows that wen assume, without loss of generality, that
(I — 1a) is invertible. Note that (3) is only a unitary similarity,ettefore the sliding axiom is needed to
make this argument correct. Cf. Theoreim 7 below. For betdability, replace the symbatg, 1g, Tc,
and1p by A, B, C, andD, respectively. Furthermore, ignore the composition syimbas if we were
dealing with ordinary matrix product. Then we have:

(¢o)(e o )=(o?)
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The following four matrix equations are derived:

AA"+ BB =
AC'+BD' =
CA'+DB' =
cc'+pD' =

(4)
()
(6)
(7)

— oo

We need to show that
(D+C(l—AB)(D'+B'(1I—AH~IchH =1.

The product on the left-hand side yields:
DD'+DB'(1 — AN ~ict+Cc(1 —A)'BD' +C(1 — A)'BB'(1 — A")~IC™.
By (5) and (6) this is equal to:
DD'—CA'(I — A"~ Ict —c( —A)~ACT +c(1 — A~ 1BB (1 — AT ~ICT,
which is further equal t®D' +CQC', where
Q=(1-A)1BB(1 —ANH1-AT1 —AH -1 —A) A

According to (7) it is sufficient to prove th& = 1. A couple of equivalent transformations follow.
Multiply both sides ofQ = | by (I — A) from the left:

BB'(I —AN (1 —AATI—AHT_A = |-A
BB (I — AN 1 (1 —AAT1I AN = |

Multiply by (I — AT) from the right:

BB — (1 —AAT = |—-AT
BB'+AAT = I
The result is equation (4), which is given. The proof is nownptete. g.e.d.

Lemmabs5. Lett: Z @V &% — % &V &L be an isometry defined by the matrix

B1
M By ,WhereM:<E g)
C G D

If I —(P\M) =1—(S+R(l —P)*Q) is invertible, then
MCREIES R

Proof. Using the kernel-on-top representation of operators akigqu under Theoreild 4, we can as-
sume (without loss of generality) that- P is also invertible. Then the statement follows from the
Banachiewicz block inverse formulal [9, Proposition 2.8.7]

A B ’l_ Al4+A-1B(D-CA B! —AB(D-CA!B)!
CD ~\ —-(b-cAlB)lcatl (D-CcA 1B ’
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usingA=1—-P,B=-Q,C=—R,andD = | — S Computations are left to the reader. g.e.d.

Note that the Banachiewicz formula does not hold true folMieor the Drazin inverse of the given
block matrix whemA~! and(D —CA~!B)~! are replaced on the right-hand sidefoyand(D —CA™B)™,
respectively, even if one of these square matrices is iinert There are appropriate block inverse
formulas for generalized inverses, ¢fl [9], but these fdemware extremely complicated and are of no
use for us.

Lemma6. Lett: Z &V &% — U &V L be an isometry as in Lemrha 5. IfM = |, then
ORISR

Proof. Again, we can assume thiat- P is invertible. To keep the computation simple, #tand ¥ both
be 1-dimensional. This, too, can in fact be assumed wittasag bf generality, if one uses an appropriate
induction argument. The induction, however, can be avoatdatie expense of a more advanced matrix

computation. Thus,
p q U
T= r S w |,
Y,

14wl D

wherey; and(vi ), i = 1,2 are row and column vectors, respectively. To simplify tbmputation even
further, let the numberg, g,r,sbe real. The % 2 matrix] — M is singular and range-Hermitian, therefore
it is Hermitian (only because the numbers are real, see [&l@oy 5.4.4]), so that it must be of the form

I—M:(ﬁ bzt;a>

for some real numbems bwitha=1— p=# 0. Then

Cc u
ﬂ%T:<V\L D/)a

wherec = (1—b?/a) +b?/a=1,

u = w—(b/a)- u,
(vl) = (v2l)—(b/a)-(vil), and
D' = D+(1/a)- (vil)us.

Sincec = 1,uand(v]) must be 0. Consequently,

a-up =b-u; anda- (V2~L) =b- (V]_\L).

In order to calculatél — M) ™, letM’ =

S:a

After a short computation,

(8)

S(I —M)S™1, whereS= S is the unitary matrix

< b a), o =&+ b2,

a b

, (0 0
M_<0 d?/a

).
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It follows that:
0 0

(I—M)*:S( 0 a/d )S and

0 0
ﬂ‘o//@/y/r = D+(V1\L,V2\l/)s< 0 a/dZ >S< Uy > )

uz
Comparing this expression with
fty (1 T) =D' =D+ (1/a) - (Vi d)ua,

we need to prove that

s o e )S( ) =5 tabu

On the left-hand side we have:
(a/d*)-(a-vi) +b-val)(a-u +b-up),
which indeed reduces 1d./a) - (v1})u; by the help of (8). The proof is complete. g.ed.

Theorem 7. The operationt? defines a trace for the monoidal categaqigo, @).

Proof. Naturality can be verified by a simple matrix computatioft, iethe reader. Regarding the sliding
axiom, we know from[[17, Lemma 2.1] that slidings of symmestrsuffice for all slidings in the presence
of the other axioms. Let therefoe: ¥ — % be an arbitrary symmetry (or permutation, in general), and
T:U A — U DL be an isometry witH[A, B], [C, D]) being the biproduct decomposition (matrix)
of t. Then, for the “matrix"Sof o:

1 ((c@l)oto(o tal))
— D+CS!(1-sAsl)fsB=D+CSt(sst-sAs!)fsB
= D+CSY{S1-AS ) tsB=D+CS gl -ATSiSB
D+C(I—A)B=1%T.
In the above derivation we have used the obvious prop@MS!)* = SM*S1 of the MP inverse.
Remember that is a permutation, so that—* = o'. Superposing and yanking are trivial. Therefore

the only challenging axiom is vanishing.
Lett: 7 &V o — UV L be anisometry given by the matrix

M B _ (P Q
(C D>,whereM_<R S>'

We need to prove that” (1% 1) = 1% “” 1. Again, without loss of generality, we can assume thatP)

is invertible and
0 O
| —P\M = ( 0 S > )

where? = 4 @ % andS @ % — %o is invertible. If .4 is the zero space, so that- P\M itself is
invertible, then the statement follows from Lenitha5. Otlisew

Y @7y =17 (1% 1)).
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By Lemmd®" (1% 1) = %% 1, and by Theorerfil4,

Yo (NU BN U DN DY wUSYV
(G R U el e &

The proof is now complete. g.e.d.

At this point the reader may want to check the validity of trn@ay semiring axioms
(ab)* =a(ba)"b+1, (a+b)* = (a’b)*a* forall a,b € C, where

. . [ (@A-07t ifc#£1
c=01-9 —{o if c=1.
Cf. [10Q]. Obviously, they do not hold, but they come very eloft may also occur to the reader that the
Schurl-complement defines a trace in the whole catedddHilb ,©). Of course this is not true either,
because the Banachiewicz formula does not work for the Mérgaz
In the recent paper [21], the authors introduced the sodtck#enel-image trace as a partial tracel [15]
on any additive category’. Given a morphisnt : % & % — % & £ in € with a block matrix

T = ([Ta, 7c], [T, TD])

as above, th&ernel-image tracetﬁ”_i T is defined if bothrg and1¢ factor through(l — 1), that is, there
exist morphisms: 7 — % andk : Z — £ such that

Tc=io(l —1a) and g = (I — 1) ok.

Cf. Figure3. In this case
. T=Tp+Tcok=Tp+ioTs.

Itis easy to see thaff/_ i Tis always defined if is an isometry, and” [ T= 1% 1. (Use the kernel-on-top

transformation ofl — 74) as in Theorerl4.) Thereforg . is totally defined orflso, @) and it coincides
with 1% . Using [21, Remark 3.3] we thus have an alternative proofunfiheorenil7 above.

Figure 3: The kernel-image trace

Now we turn back to the original definition of trace(ilso, @) by (1).

Theorem 8. For every isometryt : % &7 — % &.%, 1% 1 is well defined as an isometty” — .Z.
Moreover,
17 1 =4"1.

Proof. This is in fact a simple formal language theory exercise. eTalkconcrete representation Df
as an(n+k) x (n+1) complex matrix(a; ), wheren, k, andl are the dimensions of/, %", and.Z,
respectively. For a corresponding set of variables {;; }, consider the matrix iteration theoMat | x-
determined by the iteration semiring of &irmal power serie®ver thew-complete Boolean semiring
B with variablesX as described in Chapter 9 6f [10]. The fundamental observasi thatt" (a;j) is
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the evaluation of the series matrf® (x;) under the assignmeny; = a;j, provided that each entry in
this matrix is convergent. In our case, sinag;| < 1, this matrix is definitely convergentif= 1, and
1 (aj) = 1*(a). A straightforward induction on the basis of Theoflgm 7 thietdg " (a;;) = 1" (aj),
knowing that every iteration theory is a traced monoidatgaty. g.e.d.

Corollary 9. The monoidal categor§DQT,H) is traced by the feedbadk
Proof. Now the key observation is that, for every isometryZ & % — % ® % and object#,

17T @1y =177 (101 4).
This equation is an immediate consequence of
(o) =o0"al,

which is an obvious property of the MP inverse. (Cf. the definrequations (i)-(ii) ofo™.) In the light
of this observation, each traced monoidal category axioassentially the same {(DQT,H) as itis in
(Iso,®). Thus, the statement follows from Theorems 7 and 8. q.e.d.

5 Making Turing automata bidirectional

Now we are ready to introduce the model of quantum Turingraata as a real quantum computing
device.

Definition 10. A quantum Turing automato(QTA, for short) ofrank .7 is a triple T = (¢, %", 1),
wheresZ and._# are finite dimensional Hilbert spaces and’Z’ ® 2 — 5 ® 2 is aunitary morphism

in FdHilb .

Figure 4: One cell of a Turing machine as a QTA

Again, two automatd; : (%4,.%,1;), i = 1,2 are calledsomorphicif there exists an isometric iso-
morphisma : 74 — . for which T, = (6T @1 4 )oTi0 (@1 4).

Example. In Figure[4a, consider the abstract representation of greedell drawn from a hypothet-
ical Turing machine having two states: 1 and 2. The tape akth®, 1} is also binary, which means
that there is a single qubit sitting in the cell. Thug, is 2-dimensional. The control particbecan reside
on any of the given four interfaces. For exampleg i on the top left interface, then the control is
coming from the left in state 1. After one mowesan again be on any of these four interfaces, so that the
dimension ot is 4. Notice the undirected nature of one move, as opposdeetadid input—output
orientation forced on DQTA. The situation is, however, agals to having a separate input and dual
output interface for each undirected one in a corresponBi@JA. Cf. Figure[4b. The quantum Turing
automaton obtained in this way will then have a transitioarapprt as an 8< 8 unitary matrix.

Let ¥ be an arbitrary traced monoidal category. In order to desdtie structure of (undirected)
guantum Turing automata we shall use a variant of the Jayak&VerityInt construction([1]7] by which
tensor is defined on objectslint(%¢) as

X,U) @ (X,U") = (X®¢ X' ,U @gU"),
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and on morphisms : (X,U) — (Y,V), f': (X’,U") — (Y',V') as
f@f =1k ®@g¢cxy ¢ lv)o(fey f)o(ly ®¢ Cuy’ ®¢ ur).

Recall thatf : X®V — Y ®@U in ¥. Correspondingly,

1ixu) = Ixe Uy Cxu),(vv) = Cxy ¢ Ovu, anddix u) = €x u) = (Cxu )%

The reason for the change is that, by the original definitioa self-dual objectéX, X) in Int(%¢’) are not
closed for the tensor.

Definition 11. A CC-category#’ is completely symmetri€ A= A", (A2 B)* = A*® B*, and the natural
isomorphismA* @ B* = (A® B)* = B*® A* determined by the duality)* coincides withca- g+ for all
objectsA,B.

In the above definition, “the duality)*” refers to the pure autonomous structure@f forgetting
the symmetries. Observe that complete symmetry impligsthleacoherence conditions in effect for the
symmetriesca g are automatically inherited by the undg and counitsea in an appropriate way, e.g.,

da- =daocaa and dage = (da®dp) o (1o ®Cap: @ 1),

as one would normally expect. These equations do not nededszld without complete symmetry.

Proposition 12. For every traced monoidal categof, the CC-category Irft5’) is completely symmet-
ric.

Proof. Immediate by the definitions. g.e.d.

Let Intg(%") denote the full subcategory bift(%) determined by its self-dual objectX, X). Again,
as an immediate consequence of the definitidyisdefines a dagger structure by (%) through which
it becomes a dagger compact closed category. Clearly, thgeddédual) off : X®¢Y - Y®¢ X as a
morphism(X,X) — (Y,Y) iscyx o f ocyx. In general, we put forward the following definition.

Definition 13. A completely symmetric self-dual CC categ(8yDC? category, for short) is a completely
symmetric CC category such that= A* for all objectsA.

Corollary 14. In every SDC? category%, the contravariant functof)* defines a dagger structure on
¢ by which it becomes dagger compact closed. ConsequeRthy,dd ocaa and e = caaoea hold in
% . For every traced monoidal categof, Inty(%') is an SDC? category.

Proof. Cf. Figurel 1. q.e.d.

Now let us assume th&f is a dagger traced monoidal category, thatdshas a monoidal dagger
structure for which

TV =TV HT for f:U®A— U®B.

This is definitely the case for the subcategb@T, of DQT consisting of automata having an isometric
isomorphism as their transition operator. Moreover, the fia> THT is injective inDQT,,.

Theorem 15. For every dagger traced monoidal categafy the map f— f ® 1 defines a strict dagger-
traced-monoidal functor §: € — Intg(%¢’) by which A= (A, A) for each object A.



30 Quantum Turing automata

Proof. Routine computation, left to the reader. g.e.d.

At this point we have sufficient knowledge to understand thecture and behavior of QTA. Indeed,
any such automato(?’, .4, 1) with 17 : 5 ® A4 — 2 @ .4 is in fact a morphisnil,l) — (A", .4")
in the $DC? categorylnty(DQT,). Using the terminology of |1, Definition 3.2], such a morphiss
the nameof any appropriate morphistve’, . 7") — (£,.%) in Intg(DQTy) such thaty = 7 & Z.
The natural isomorphism induced by duality simply collapdeese hom-sets into their name hom-set.
However, the reader should not be confused by the fact teatame of a morphism : (X, X) — (V,Y)
in Intg(¢’) —thatis, f : X®Y = Y®X in € —is in fact a morphisnK ® Y — X®Y in €, actually
f oCyX.

In particular, for every automatoh : % — £ in DQT, the name ofpgr, T =T BT" as a mor-
phism(l,1) —» (# & .2, % &%) is the QTA of rankz” @ £ which reflects the joint behavior df
and its reverse. Of course, however, the whole structureTé @ a lot richer than simply the image
of DQTy underFpgr,. This observation is analogous to the obvious fact thatehedr of two vector
spaces is richer than the collection of tensors of indiMidegtors. Building on this analogy we can
consider the collection of QTA as a suitable algebraic stineg rather than a category.

An equivalent formalism for @ C? categories in terms of so called indexed monoidal algebaas h
been worked out in ]6,/7]. This new formalism deals with QTA"aectors” rather than morphisms, in
the spirit explained in the previous paragraph. The basteetquivalence between indexed monoidal
algebras and4®C? categories is the naming mechanism, which identifies menpiwith their names.
The advantage of using this algebraic framework is thaniipéifies the understanding o?BC? cat-
egories by essentially collapsing the dual category siractwhich may sometimes be extremely but
unnecessarily convoluted.

6 Conclusion

We have provided a theoretical foundation for the study @fium Turing machines having a quantum
control. The dagger compact closed categedHilb of finite dimensional Hilbert spaces served as
the basic underlying structure for this foundation. We oagd down the scope of this category to
isometries, switched from multiplicative to additive tensand defined a new additive trace operation
by the help of the Moore-Penrose generalized inverse. Téie twas then carried over to the monoidal
category of directed quantum Turing automata. Finally, wpliad thelnt construction to obtain a
compact closed category, and restricted this categorg gelf-dual objects to arrive at our ultimate goal,
the model (indexed monoidal algebra) of undirected quarfturing automata.
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