
B. Löwe, G. Winskel (Eds.):
Developments in Computational Models 2012 (DCM 2012)
EPTCS 143, 2014, pp. 32–40, doi:10.4204/EPTCS.143.3

c© E. Blakey

Ray tracing—computing the incomputable?

Ed Blakey
School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, United Kingdom

ed.blakey@queens.oxon.org

We recall from previous work a model-independent framework of computational complexity the-
ory. Notably for the present paper, the framework allows formalization of the issues of precision
that present themselves when one considers physical, error-prone (especially analogue rather than
digital) computational systems. We take as a case study the ray-tracing problem, a Turing-machine-
incomputable problem that can, in apparent violation of the Church-Turing thesis, nonetheless be
said to be solved by certain optical computers; however, we apply the framework of complexity the-
ory so as to formalize the intuition that the purported super-Turing power of these computers in fact
vanishes once precision is properly considered.
Keywords: Church-Turing thesis, complexity, computability, optical computation, precision, ray tracing, uncon-
ventional computation

1 Introduction

There are certain unconventional models of computation that appear at first glance to offer super-Turing
power or efficiency, only to prove impracticable when physically implemented. Furthermore, the reasons
for which the models transpire to be too good to be true are often difficult to formalize: it may be that any
purported computational advantage, such as time/space complexity that compares favourably with that of
the best known Turing machines, comes at a cost—such as an unrealistic constraint on the precision with
which the computer must be constructed—for which there exists no complexity-theoretic formalism.
Rather, one must intuit that a computational model is ‘cheating’ (by deferring to unreasonable precision
requirements the inherent difficulty of the computation, for example), and forming this intuition is an
informal and ad hoc process; whereas the comparatively formal and mechanical tools of complexity
theory deal effectively with issues of time and space, they cater poorly if at all for non-standard resources
such as precision.

In the present paper, we recap from [4] and related publications a model-independent framework
of computational complexity theory, in which one may consider not only time and space but also non-
standard resources such as precision, and not only Turing machines but also unconventional computers.
We also recall from [9] the ray-tracing problem, a Turing-undecidable problem that nonetheless appears
decidable by certain optical systems. We go on to consider the problem and the optical devices of [9]
in the context of the model-independent complexity framework of [4], focussing in particular on issues
of precision and the computability implications thereof; ultimately, we dispel any suggestion that the
optical systems violate the Church-Turing thesis.

1.1 Model-independent complexity theory

We recall throughout Section 1.1 the model-independent approach to complexity theory advocated in [4].

http://dx.doi.org/10.4204/EPTCS.143.3

E. Blakey 33

1.1.1 Complexity theory

(Computational) complexity theory is the study of computers’ efficiency and of computational tasks’
difficulty. By quantifying the resources—run-time and memory space, for example—necessary for the
successful execution of a task when using a given device, one measures the efficiency of this device; this
bounds from above the efficiency of the optimal device that performs the same task, and thus bounds
from above the difficulty of the task itself.

See for example [1, 8, 10] for much more detail concerning complexity theory.

1.1.2 Turing machines

In order that the concepts of complexity theory be well defined, it is necessary to specify which class
of computational devices one is considering. By far the most thoroughly studied model of computation
is the Turing machine [12]; accordingly, the resources traditionally considered in complexity theory are
those—time and space—consumed by Turing machines.

The model’s almost exclusive consideration is widely seen as unproblematic, due perhaps in no small
part to the Church-Turing thesis [6], which suggests that the tasks computable by Turing machine are
precisely those effectively computable by any finite algorithm, and due perhaps also to the thesis’s ex-
tended version, which suggests that not only the computability but also the complexity of computational
tasks is in some suitable sense independent of the choice of computational model.

Hence, the theses suggest, one may choose with impunity an arbitrary computational model within
which to work, and nonetheless gain general, model-independent insights. However, we claim that
there exist computational models that demand an approach to complexity theory different from that
practised when considering Turing machines. This approach is described in detail in [4] and outlined in
the remainder of Section 1.1.

1.1.3 Unconventional computers

So as to make more concrete the preceding comments, we claim (and defer proof and further discussion
to, for example, [2]) that there exists an analogue computer that factorizes natural numbers in polynomial
time and space, but that nonetheless has an exponential resource overhead; specifically, the computer’s
‘precision complexity’—see Section 1.1.4—is exponential.

Therefore, a complexity analysis following the pattern of standard complexity theory—explicitly, an
analysis that heeds the Turing-machine resources of time and space, but no others—would reveal only the
system’s polynomial time and space requirements, whilst overlooking its true exponential complexity,
which arises by virtue of requirements relating to neither time nor space, but rather to precision.

Note, then, that this analogue system is an example of an unconventional computer that requires
in its analysis an unconventional approach to complexity theory. We suggest that other non-standard
computational paradigms—quantum, chemical and, notably for the purposes of the present paper, optical
systems, for example—may similarly demand non-standard complexity-theoretic techniques.

1.1.4 Precision

We hint above that, although our analogue factorization system [2] requires only polynomial quantities
of time and space, it nonetheless has an exponential precision overhead. Implicit, then, is that one may
quantify precision as a computational resource, whence the corresponding complexity function may be

34 Ray tracing—computing the incomputable?

considered; we briefly recall now the method whereby this quantification may be performed, though
defer full details to, for example, [2, 4].

Let us be more specific about what one wishes to quantify: the aim is numerically to measure the
precision required of a system’s user during the system’s input and output processes. It may be, for ex-
ample, that the user conveys his chosen input value to some physical computing system by manipulating
a physical parameter of the system—e.g., turning a dial through an angle, or adjusting the wavelength of
a source of rays; the angle/wavelength encodes the input value—, and that the user receives the output
value from the system by measuring a physical parameter. If these input and output processes are subject
to imprecision, as with physical computing systems they are indeed likely to be, then the user’s intended
input value and that actually received by the system may differ, as may the actual output value supplied
by the system and that measured by the user. Suppose now that these differences can be parameterized
numerically: say that the intended and actual input values differ by no more than ε1 ≥ 0, and the actual
and measured output values by no more than ε2 ≥ 0. (We describe here additive error, where imprecision
corrupts a true value x so as to render it an arbitrary element of [x− εi,x+ εi] (εi ≥ 0); one may equally
consider other forms of imprecision, such as multiplicative error, where x is rendered an arbitrary element
of
[

x
εi
,εix
]

(εi ≥ 1). Which of these or other models of imprecision is appropriate in a given situation de-
pends upon the details of implementation of the process whence the imprecision arises.) Suppose further
that sufficiently small error pairs (ε1,ε2) are corrigible: that, provided that the εi are sufficiently close
to 0 (if the error is additive, or 1 if multiplicative, etc.), the computation is successful in that the user
receives the correct output value corresponding to his intended input value, imprecision notwithstanding.
Then it is natural to consider the area of the region of corrigible pairs (ε1,ε2) within the two-dimensional
space with axes εi—see (1) below for an example of such a region; the larger the area, the more robust
against input/output imprecision the system. One takes one divided by this area as the quantification of
required precision, and views the quantity as a function of the size of the input value so as to obtain a
complexity function: precision complexity. (We give here only a feel of the quantification of precision,
and reiterate that [2, 4] offers much more detail and justification.)

1.1.5 Resource

We note from the above discussion that the crucial shortcoming of a standard complexity analysis in the
case of our analogue factorization system [2] is that such an analysis overlooks relevant resources, in this
instance precision. Accordingly, a feature of our model-independent framework of complexity theory is
that it accommodates arbitrary resources: as well as the standard time and space, and the illustrative,
non-standard precision outlined above, one may consider other non-standard resources such as energy,
mass, thermodynamic cost and material cost, for example.

For present purposes, a resource AΦ is a function that maps each valid input value x that may be
passed to a computing system Φ to the corresponding natural number AΦ (x) of units of A used by Φ

given input value x (this definition indeed suffices “[f]or present purposes”, though it is beneficial in
certain other contexts to restrict oneself to consideration only of so-called normal resources—see [3] for
discussion of this side-issue). The complexity function A∗

Φ
corresponding to resource AΦ is defined by

A∗
Φ
(n) := sup{AΦ (x) | |x|= n}, where |x| denotes the size of input value x.
For example, let TΦ (x) be the number of time-steps that elapse, and SΦ (x) the number of tape-

cells written to, during the computation performed by Turing machine Φ given input value x; then TΦ

and SΦ are the standard resources of time and space, and T ∗
Φ

and S∗
Φ

the corresponding complexity
functions. More generally than this, however, the model-independent complexity framework allows Φ to
be a computational device other than a Turing machine, and one may consider resources other than time

E. Blakey 35

and space.
See [5] for further discussion of resources, and, more fundamentally, of interpretations of the term

‘resource’ itself.

1.1.6 Dominance

Having introduced into our framework arbitrary resources, we have solved the difficulty of overlooking
relevant complexity measures such as precision, only to face a new problem: quantifying computers’
overall complexity.

In the Turing-machine case—in which the only resources are time and space, of which the former
is always consumed in the greater quantity—, time complexity gives an adequate measure of overall
complexity; hence, computers’ relative efficiency may be ascertained by considering their respective
time- (i.e., overall-) complexity functions within the preordering ‘.’, where ‘ f . g’ denotes ‘ f ∈O (g)’.

However, in the case of general computation, where, in line with the discussion above, one may
consider many different resources—time, space, precision, and so on—, it is no longer clear how to
abstract a measure of overall complexity, whence to compare computers’ efficiency.

We recall from [3, 4], to which we defer further detail, that, relative to a fixed, finite, non-empty
set R of resources consumed by computer Φ, a resource AΦ ∈ R is said to be dominant for Φ if it
is maximal in the preordering (R,.); i.e., if AΦ . BΦ ⇒ BΦ . AΦ for all BΦ ∈ R. Then we define
the overall complexity B∗R,Φ of a computer Φ, again relative to R and again with detail deferred to
[3, 4], to be the sum of all complexity functions corresponding to dominant resources: B∗R,Φ (n) :=
∑AΦ is R-dominant A∗

Φ
(n).

1.2 Ray-tracing problem

We describe now the situation to which we apply the framework recapped above.
Reference [9] discusses a paradigm of optical computation that sees the values with which com-

putation is performed, including intermediate values analogous to a Turing machine’s mid-computation
tape contents, encoded as spatial coordinates of rays of light, and sees the operations applied to these
values implemented using reflection/refraction by surfaces. The ray-tracing problem—see [9] for more
detail—asks, given the set-up of an optical system conforming to this paradigm and given the initial
position and direction of a ray of light, whether the ray ever reaches a given point. The problem, which
is, in a sense, naturally and efficiently solved by such an optical system, is nonetheless shown in [9] to be
undecidable by Turing machine (further, [9] demonstrates that this undecidability may persist even if the
objects forming the optical system are finitely expressible, e.g., via rational quadratic/linear equations),
which suggests of the abstract optical model super-Turing power. (Reference [9] focuses on issues of the
Turing-computability—or lack thereof—and Turing-complexity of the ray-tracing problem, in particular
without considering the non-Turing, optical systems as a serious alternative, more powerful computing
paradigm. Nonetheless, the findings of that paper prompt such consideration, which we accordingly
make here.)

1.3 Motivation

Prompted by the above suggestion that, at least as mathematical abstractions if not as real-world imple-
mentations, certain optical computers boast super-Turing power, we formalize in Section 2 certain issues,
notably those pertaining to precision, surrounding the ray-tracing problem and the optical devices of [9].

36 Ray tracing—computing the incomputable?

We note at this juncture in defence of the authors of [9] that they are clear from the outset that
they deal with a theoretical model that is based upon the assumption that optics works in an idealized,
geometric way, with no wave phenomena, etc. For example, one reads in their description of the ray-
tracing problem that

“[r]ays are assumed to have infinitesimal wavelength and are treated as lines with zero width.
This implies that there is no diffraction caused by the wave nature of light. All surfaces are
perfectly smooth and do not cause the scattering of rays upon reflection or refraction”.

Later, one reads of the computational paradigm under consideration that,

“[t]heoretically, these optical systems can be viewed as general optical computing machines,
if our constructions could be carried out with infinite precision, or perfect accuracy. How-
ever, these systems are not practical, since the above assumptions do not hold in the physical
world. Specifically, since the wavelength of light is finite, the wave property of light, namely
diffraction, makes the theory of geometrical optics fail at the wavelength level of distances”.

This context justifies the lack in [9] of consideration of the precision issues inherent in these optical
systems. When, however, such issues are considered—when the distinction is drawn between mathemat-
ical model and implemented computer—, one may expect that the problem actually being solved by the
system, as impaired by its physically imposed limitations, is no longer (Turing-) undecidable; formaliza-
tion within our complexity framework of the situation allows us to demonstrate in Section 2 that this is
indeed the case.

2 Precision and the ray-tracing problem

We recap above the constituent concepts—resource, dominance, overall complexity, etc.—of our model-
independent framework of complexity theory [4], and recall from [9] the ray-tracing problem and sugges-
tions of its computability by optical systems, Turing-uncomputability notwithstanding. In this section,
we apply the notions of the framework to the specific case study of these optical computers and their
approach to the ray-tracing problem, so as to formalize the role of precision in this context.

2.1 Precision complexity of storage/retrieval of a value

The ray-tracing methods described in [9] make use of encodings whereby entire tape contents are en-
coded as the angle1 of a single ray of light, with one bit of precision in this angle being used to convey
the contents of each tape cell to which is written. (That the encodings are of tape contents implies that
computations via these ray-tracing methods are instantiations of intermediate Turing-machine imple-
mentations; this imbues the optical model with universality in the Turing sense, but may increase the
complexity of some problems—recall from [11] Susan Stepney’s thesis that it is more desirable to let
computers function ‘naturally’ than to coerce them into instantiating logic gates, or in this case Turing
machines, or similar.)

We consider now the precision complexity of this process in the simple case where one merely stores
as an angle an n-bit value—which one may identify with n cells’ contents—, only to retrieve it again.
Suppose that the system is two-dimensional, and, in particular, that the angle that encodes the value is

1In fact, this angle is an intermediate encoding, later converted into an encoding as a spatial position. For the purposes of
the present discussion, consideration of either encoding—angle or position—is adequate (notably, one encoding imposes an
exponential precision requirement if and only if the other encoding does); we arbitrarily chose the former.

E. Blakey 37

a plane angle in the range [0,2π), where the unit is the radian, and where we deem the interval to be
‘circular’ in that 0 and 2π are coincident, and, more generally, arithmetic is performed modulo 2π .

The intention is that the n-bit input (i.e., stored) value x = ∑
n
i=1 2−ibi ∈ [0,1), where the bi ∈ {0,1}

are bits, be encoded as angle θx := 2π
(
x+2−n−1

)
—this is central in the range of angles 2πy such that

x and y agree in the first n bits after the binary point. (In order to store and retrieve an arbitrary n-bit
value, one needs sufficient precision to distinguish 2n different states; the pigeon-hole principle dictates,
then, that at fewest one such state is represented under the chosen encoding—whereby angles encode
states—by a set of angles of measure at most 2π2−n = 21−nπ . This bound is attained by our chosen
scheme whereby each n-bit value x ∈ [0,1) is encoded as θx, which is central in [2πx,2π (x+2−n)), an
interval of measure 21−nπ disjoint with the analogous intervals corresponding to n-bit values other than
x.)

Suppose now that the process is hampered by an additive input error of ε1: an intended input
value x ∈ [0,1) is encoded as an arbitrary implemented angle θ ′x ∈ [θx− ε1,θx + ε1). Suppose, sim-
ilarly, that there is an additive output error of ε2: angle θ ′x is measured as an arbitrary angle in the
interval [θ ′x− ε2,θ

′
x + ε2). Measurement of an encoding of x, then, will yield an arbitrary value θ ′′ ∈

[θx− ε,θx + ε), where ε = ε1 + ε2; this is decoded via θ ′′ 7→ θ ′′

2π
−2−n−1 as x′′ ∈

[
x− ε

2π
,x+ ε

2π

)
.

In order that true value x and stored, retrieved value x′′ agree to n bits—and given that x is encoded
centrally in its range, as described above—, it is necessary that x′′ ∈

[
x−2−n−1,x+2−n−1

)
, which entails

that ε

2π
≤ 2−n−1, i.e., that ε ≤ 2−nπ (for then the interval

[
x− ε

2π
,x+ ε

2π

)
in which x′′ is known to lie is a

subset of the interval
[
x−2−n−1,x+2−n−1

)
of values in agreement to n bits with x). Hence, the region

of corrigible error pairs (ε1,ε2)—recall Section 1.1.4—is{
(ε1,ε2) ∈ R2 ∣∣ ε1,ε2 ≥ 0∧ ε1 + ε2 ≤ 2−n

π
}

, (1)

a triangle of measure 2−2n−1π2, whence the required precision of this store-and-retrieve system Φ given
n-bit input x is PΦ (x) = 22n+1π−2.

Thus, the precision complexity P∗
Φ

of the process of merely storing and retrieving a value is ex-
ponential in the number n of tape cells written to by an intermediate Turing-machine implementation:
P∗

Φ
(n) = 22n+1π−2.

2.2 The ‘finite-precision ray-tracing problem’ is not incomputable

This increasing, let alone exponentially increasing, precision complexity has the following consequence:
if the precision available to a user of such a system as described in [9] is a priori bounded, e.g., by
technological factors—which, in practice, it necessarily will be—, then the size, too, of problem instances
that can be processed by the system is bounded. The system solves, therefore, not the undecidable ray-
tracing problem in its entirety, but rather a proper subproblem, admitting only bounded input instances
and concerning only physically realizable optical configurations rather than those with coordinates drawn
arbitrarily from the continuum of real numbers or even from the countable infinity of rational numbers.
This subproblem, we claim, is computable by Turing machine; this is because the effective discretization
of positions, angles, etc. of an optical system’s constituent parts brought about by the imposition of fixed,
finite precision renders merely countably many the distinguishable such systems. The corresponding ray-
tracing problem restricted to these countably many systems is then computable by Turing machine, e.g.,
by simulation of the optical system for only as long as is required to achieve sufficient precision. Thus,
the findings of [9] are not in fact in conflict with the Church-Turing thesis.
Aside. A more striking and sadly lacking resolution of the apparent conflict between [9] and the Church-
Turing thesis would see required precision shown to be infinite, not merely in the limit, but also for

38 Ray tracing—computing the incomputable?

some finite input size; this is simply not the case, however (at least, not for the ‘commodity’ resource
of precision—the ‘manufacturing’ resource is a different matter; see Section 2.3). Whereas an exponen-
tially increasing precision is required to implement the methods described in [9], it is at least a finite
precision—the method is precluded not in principle, but only technologically (say), by issues concern-
ing precision. We recall in particular that [9] discusses the computation of the incomputable via such
methods; one might, given the Church-Turing thesis, therefore expect preclusion in principle, which, as
explained, is not the case.

The above aside notwithstanding, however, we reiterate that, concretely and technologically, preci-
sion bounds the system’s processable input sizes; additionally we note that, abstractly and fundamentally,
precision—and, in particular, its increasing—renders problematic certain seemingly innocuous assump-
tions (that diffraction is not present, etc.) when input values become sufficiently large. The idealized
model of optical computation does indeed seem capable, for what it is worth, of computing the incom-
putable, but real-life implementations necessarily suffer because of the supposedly subtle differences,
which become less subtle for large input, between the theoretical and practical models—differences that
arise due to apparently harmless assumptions that quickly become problematic in the presence of expo-
nential precision complexity. The Church-Turing thesis is not, we suggest, violated: the proposed optical
paradigm is, by virtue of unrealistic assumptions regarding precision, not a valid, real-world computa-
tional model.

This is brought into even starker focus upon consideration of the precision requirements when man-
ufacturing the optical systems, as we now explain.

2.3 Infinite manufacturing precision

In line with Section 1.1.5, we consider in Sects. 2.1 and 2.2 the role of precision as a ‘commodity’
resource [5], i.e., as being required in some quantity during computation. However, the systems of [9]
also incur a significant ‘manufacturing’ precision cost, a precision requirement not at run-time but rather
during the construction of the apparatus; see [5] for detailed discussion of the notions of commodity and
manufacturing resource.

For example, Theorem 5.7 of [9]—which is not a direct prerequisite of, but certainly presents issues
similar to those encountered by, optical systems that solve the ray-tracing problem—relies on the intro-
duction to an optical system of irrational numbers, which introduction is achieved via precise construc-
tion of lenses/mirrors with specific, irrational focal lengths, a rational approximation of which, however
accurate, not having the desired effect. Explicitly, the physical implementation of such systems incurs an
infinite manufacturing precision cost (regardless of the size of the input value with which one computes).
Although the analysis above of commodity resources fails to capture the impossibility of such systems’
use, we have more fundamentally that manufacturing resources preclude the construction to sufficient
precision of these devices. This suggests that the computational difficulty giving rise to the ray-tracing
problem’s Turing-incomputability is in fact deferred from the optical devices’ run-time to their manu-
facturing stage; this gives the devices, once they have been brought into existence, the appearance of
having super-Turing power, but the still-present computational difficulty manifests itself instead in the
impossibility of constructing these systems to sufficient precision in the first place. Thus, the systems,
unimplementable as they are, do not violate the Church-Turing thesis.

We emphasize that it is not the aim of the authors of [9] to assess practically implemented instances of
their systems; by their own admission, the authors are working relative to explicitly stated assumptions,
and their findings are, in that context, perfectly correct. What we formalize here is that these assump-
tions, by virtue of their precision implications, render the considered systems unsuitable as real-world

E. Blakey 39

computers, and consequently render the findings of [9] irrelevant to the question of whether hypercom-
putation is possible in any real sense. In particular, the findings do not contravene the Church-Turing
thesis.

3 Conclusion

We see above that the apparently super-Turing optical systems of [9] are in fact plagued by (a) exponen-
tially increasing commodity precision complexity and (b) infinite manufacturing precision complexity.

Even in the absence of (b), (a) alone would have as a consequence an upper bound on the size of
input values that the systems could successfully process—recall Section 2.2. Given such a practical limit
on commodity precision (this limit may, for example, be imposed by technological constraints, or by re-
quired precision’s becoming sufficiently great that effects—wave phenomena, for example—‘abstracted
out’ of a physical situation during its mathematical modelling cease to be negligible; we compare this
comment with the observation of [7] that Newtonian physics admits idealized systems that apparently
violate the Church-Turing thesis, but that the unrealistic simplifications implicitly made when adopting
Newtonian physics are necessary for such violation), the problem actually solved by the system ceases
to be undecidable, and the controversy, for practically implemented systems, is dispelled—only from
a theoretical and abstract point of view do the systems demonstrate, for what it is worth, that the opti-
cal model, including unrealizable and often tacit assumptions about available precision, is strictly more
powerful than the Turing machine. (In fact, in order for such an optical system to achieve super-Turing
power, one must assume not only unimplementable degrees of commodity and manufacturing precision,
but also infinitely quickly propagating rays: the sense in which the device ‘solves’ the ray-tracing prob-
lem is that one observes whether or not the ray arrives at the destination point under consideration; even
granted perfectly precise construction and functioning of the system, however, this observation process
is, due to the finiteness of the speed of light, no more guaranteed to terminate than is a Turing-machine
simulation of the path of the ray. Thus further dwindles the device’s suitability for implementation.)

The preceding paragraph aside, (b) encapsulates the true difficulty—in fact, impossibility—of the
ray-tracing problem as tackled by the optical systems of [9]. The devices, however powerful they may be
in principle, cannot be physically realized with sufficient precision to function as claimed. The Church-
Turing thesis says nothing of one’s ability to posit impracticable super-Turing systems, and in particular
those of [9] do not contravene the thesis.

3.1 Extent of resolution

As a final note, we consider the extent to which the controversial claim of optical computers’ super-
Turing power is resolved by the discussion in the present paper.

We outline above a framework in which certain of the relevant issues may be, and above are, formal-
ized; this enables pertinent questions—ultimately, we hope, ‘is the claim of super-Turing power true or
not?’—to be formulated more precisely and answered more confidently. However, it must be noted that
the question actually answered is, ‘is the claim true or not according to the framework and the assump-
tions implicit in its definition?’; it is trivial, moreover, to posit some framework that merely deems the
claim to be valid, or to be invalid.

The important factor, then, is the success with which our formal framework of resources, complexity,
dominance, etc. captures one’s intuitive understanding of computational resource and related notions.
The question of the extent of this success is not susceptible to rigorous proof, being, much like the

40 Ray tracing—computing the incomputable?

Church-Turing thesis, a question of equivalence between a formal and an intuitive notion; rather, the
equivalence must be borne out by evidently sensible choice, and sustained successful use, of the frame-
work’s definitions—or else the equivalence fails. The former test has hopefully been shown, in the
discussion and justification of our definitions—see [4] for more—, to have been passed (for now. . .); the
latter is necessarily ongoing, with the present paper representing a step in the right direction.

Acknowledgements

We thank Bob Coecke and Joël Ouaknine for their supervision of the project from which this work stems,
as well as conference participants, collaborators and colleagues—and the associated thesis’s examiners
Peter Jeavons and John Tucker—who have helped to shape and direct this research. We thank the anony-
mous DCM 2012 referees for their detailed and useful comments, and participants of that conference for
their encouraging feedback and interesting discussion. We acknowledge the generous financial support
of both the EPSRC (this work forms part of grant EP/G003017/1) and the Leverhulme Trust (which funds
the author’s current position).

References
[1] S. Aaronson: Complexity Zoo website. Available at http://complexityzoo.uwaterloo.ca/

Complexity_Zoo.
[2] E. Blakey (2008): Factorizing RSA Keys, an Improved Analogue Solution. New Generation Computing 27(2),

pp. 159–176, doi:10.1007/s00354-008-0059-3.
[3] E. Blakey (2010): Beyond Blum: What is a Resource? International Journal of Unconventional Computing

6(3-4), pp. 223–238.
[4] E. Blakey (2010): A Model-Independent Theory of Computational Complexity: From Patience to Precision

and Beyond. Ph.D. thesis, University of Oxford.
[5] E. Blakey (2011): Unconventional Complexity Measures for Unconventional Computers. Natural Computing

10(4), pp. 1245–1259, doi:10.1007/s11047-010-9226-9.
[6] A. Church (1936): An Unsolvable Problem of Elementary Number Theory. American Journal of Mathematics

58, pp. 345–363, doi:10.2307/2371045.
[7] R. Gandy (1980): Church’s Thesis and Principles of Mechanism. In J. Barwise, H. J. Keisler & K. Kunen,

editors: The Kleene Symposium, Studies in Logic and the Foundations of Mathematics 101, North-Holland,
pp. 123–148, doi:10.1016/S0049-237X(08)71257-6.

[8] C. Papadimitriou (1995): Computational Complexity. Addison-Wesley.
[9] J. Reif, J. Tygar & Akitoshi Y. (1994): Computability and Complexity of Ray Tracing. Discrete and Compu-

tational Geometry 11(1), pp. 265–288, doi:10.1007/BF02574009.
[10] M. Sipser (1997): Introduction to the Theory of Computation. PWS.
[11] S. Stepney (2008): The Neglected Pillar of Material Computation. Physica D: Nonlinear Phenomena 237(9),

pp. 1157–1164, doi:10.1016/j.physd.2008.01.028.
[12] A. Turing (1937): On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings

of the London Mathematical Society s2-42(1), pp. 230–265, doi:10.1112/plms/s2-42.1.230.

http://complexityzoo.uwaterloo.ca/Complexity_Zoo
http://complexityzoo.uwaterloo.ca/Complexity_Zoo
http://dx.doi.org/10.1007/s00354-008-0059-3
http://dx.doi.org/10.1007/s11047-010-9226-9
http://dx.doi.org/10.2307/2371045
http://dx.doi.org/10.1016/S0049-237X(08)71257-6
http://dx.doi.org/10.1007/BF02574009
http://dx.doi.org/10.1016/j.physd.2008.01.028
http://dx.doi.org/10.1112/plms/s2-42.1.230

	1 Introduction
	1.1 Model-independent complexity theory
	1.1.1 Complexity theory
	1.1.2 Turing machines
	1.1.3 Unconventional computers
	1.1.4 Precision
	1.1.5 Resource
	1.1.6 Dominance

	1.2 Ray-tracing problem
	1.3 Motivation

	2 Precision and the ray-tracing problem
	2.1 Precision complexity of storage/retrieval of a value
	2.2 The `finite-precision ray-tracing problem' is not incomputable
	2.3 Infinite manufacturing precision

	3 Conclusion
	3.1 Extent of resolution

