
C.A. Muñoz and J. A. Pérez (Eds.) :
Developments in Computational Models
EPTCS 204, 2016, pp. 31–45, doi:10.4204/EPTCS.204.4

c© M. Amani, A. Nowzari-Dalini
This work is licensed under the
Creative Commons Attribution License.

Generation, Ranking and Unranking of Ordered Trees with
Degree Bounds

Mahdi Amani
Dipartimento di Informatica
Università di Pisa, Pisa, Italy.
m amani@di.unipi.it

Abbas Nowzari-Dalini
School of Mathematics, Statistics, and Computer Science
Colleague of Science, University of Tehran, Tehran, Iran.

nowzari@ut.ac.ir

We study the problem of generating, ranking and unranking of unlabeled ordered trees whose nodes
have maximum degree of ∆. This class of trees represents a generalization of chemical trees. A
chemical tree is an unlabeled tree in which no node has degree greater than 4. By allowing up to ∆

children for each node of chemical tree instead of 4, we will have a generalization of chemical trees.
Here, we introduce a new encoding over an alphabet of size 4 for representing unlabeled ordered
trees with maximum degree of ∆. We use this encoding for generating these trees in A-order with
constant average time and O(n) worst case time. Due to the given encoding, with a precomputation
of size and time O(n2) (assuming ∆ is constant), both ranking and unranking algorithms are also
designed taking O(n) and O(n logn) time complexities.

1 Introduction

A labeled tree is a tree in which each node is given a unique label. A rooted tree is a tree in which
one of the nodes is distinguished from the others as the root. An ordered tree or plane tree is a rooted
tree for which an ordering is specified for the children of each node. Studying combinatorial proper-
ties of restricted graphs or graphs with configurations has many applications in various fields such as
machine learning and chemoinformatics. Studying combinatorial properties of restricted trees and outer-
planar graphs (e.g. ordered trees with bounded degrees) can be used for many purposes including virtual
exploration of chemical universe, reconstruction of molecular structures from their signatures, and the
inference of structures of chemical compounds [5, 11, 14, 15, 29, 12, 40]. In this paper we study the gen-
eration of unlabeled ordered trees whose nodes have maximum degree of ∆ and for the sake of simplicity,
we denote it by T ∆ tree, also we use T ∆

n to denote the class of T ∆ trees with n nodes.
Chemical trees are the most similar trees to T ∆ trees. Chemical trees are the graph representations

of alkanes, or more precisely, the carbon atom skeleton of the molecules of alkanes [8, 9, 13, 14, 20,
12]. The alkane molecular family is partitioned into classes of homologous molecules, that is molecules
with the same numbers of carbonium and hydrogen atoms; the nth class of alkane molecular family is
characterized by the formula CnH2n+2, n= 1,2, ... [5] with the same numbers of carbonium and hydrogen
atoms. They are usually represented by indicating the carbonium atoms and their links, omitting to
represent hydrogen atoms [5]; therefore, all the nodes would have the same label; carbon (i.e., the tree is
unlabeled), as shown in Figure 1 for n= 3 and n= 4. A chemical tree is defined as a tree in which no node
has degree greater than 4 [12, 14, 13, 9, 8, 20], chemical trees are also considered to be unlabeled [13, 9,
8, 20]. Therefore, T ∆ tree can be considered as a generalization of chemical trees to unlabeled ordered
trees whose nodes have maximum degree of ∆ instead of 4.

Generation, ranking and unranking of trees are very basic problems in computer science and discrete
mathematics [39]. In general, for any combinatorial object of size n, we can define a variety of orderings.

http://dx.doi.org/10.4204/EPTCS.204.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

32 Generation, Ranking and Unranking of Ordered Trees with Degree Bounds

Figure 1: Left: C3H8 propane, middle and right: C4H10 butanes.

Since we study trees, let’s consider an arbitrary class of trees of size n (n nodes) showed by Tn (e.g. semi-
chemical trees of size n), the elements of this set (Tn) can be listed based on any defined ordering. Two
such orderings for the trees are A-order and B-order, which will be explained in the next section. By
having Tn and an ordering (e.g. A-order or B-order), next, rank, and unrank functions are defined as
follows.

For a given tree T ∈ Tn, the next function gives the successor tree of T with respect to the defined or-
dering, the ‘position’ of tree T in Tn is called rank, the rank function determines the rank of T ; the inverse
operation of ranking is unranking, for a position r, the unrank function gives the tree T corresponding to
this position. A generation algorithm, generates all the elements in Tn with respect to the given ordering
(starting from the first tree, then repeating the next function until producing the last tree) [39].

In most of the tree generation algorithms, a tree is represented by an integer or an alphabet sequence
called codeword, hence all possible sequences of this representation are generated. This operation is
called tree encoding. Basically, the uniqueness of the encoding, the length of the encoding, and the
capability of constructing the tree from its representation, which is called decoding, are essential consid-
erations in the design of the tree encoding schema [39].

Many papers have been published earlier in the literature for generating different classes of trees. For
example we can mention the generation of binary trees in [26, 22, 30, 2, 3, 4, 36], k-ary trees in [27, 10,
31, 19, 37, 18, 17, 1, 35], rooted trees in [7, 32], trees with n nodes and m leaves in [24, 28], neuronal
trees in [25], and AVL trees in [21]. On the other hand, many papers have thoroughly investigated basic
combinatorial features of chemical trees [12, 14, 13, 9, 8, 20, 33].

More related to our work, in [15] a coding for chemical trees without the generation algorithm, and
in [5] the enumeration of chemical trees and in [11, 29] the enumeration of tree-like chemical graphs
have been presented. Hendrickson and Parks in [16] investigated the enumeration and the generation
of carbon skeletons which can have cycles and are not necessarily trees. The work most related to our
paper is an algorithm for the generation of certain classes of trees such as chemical trees in [6] with no
ranking or unranking algorithm. In that paper, all chemical trees with n nodes are generated from the
complete set of chemical trees with n−1 nodes, the redundant generations are possible and they needed
to minimize the possible redundancy.

The problem of enumeration of ordered trees were also studied in [38] and the generation of different
ordered trees (with no bounds on the degrees of the nodes) were studied in [39]. In [40], a generation
algorithm with constant average delay time but with no ranking or unranking algorithms was given for
all unrooted trees of n nodes and a diameter at least d such that the degree of each node with distance k
from the center of the tree is bounded by a given function. In [34] all unrooted unlabeled trees have been
generated in constant average time with no ranking or unranking algorithms. Nakano and Uno in [23]
gave an algorithm to generate all rooted unordered trees with exactly n nodes and diameter d in constant
delay time. Up to now, to our knowledge, no efficient generation, ranking or unranking algorithms are
known for either ‘chemical trees’ or ‘ordered trees with bounded degrees’.

M. Amani, A. Nowzari-Dalini 33

Figure 2: A T ∆ tree with 13 nodes.

The remaining of the paper is organized as follows. Section 2 introduces the definitions and notions
that are used further. Our new encoding for T ∆

n trees is presented in Section 3. The size of our encoding
is n while the alphabet size is always 4. Based on the presented encoding, a new generation algorithm
with constant average time and O(n) worst case time is given Section 4. In this algorithm, T ∆

n trees
are generated in A-order. Ranking and unranking algorithms are also designed in Section 5 with O(n)
and O(n logn) time complexities, respectively. The presented ranking and unranking algorithms need a
precomputation of size and time O(n2) (assuming ∆ is constant).

2 Definition

As mentioned before, the nth class of alkane molecular family is characterized by the formula
CnH2n+2, n = 1,2, ... [5] with the same numbers of carbonium and hydrogen atoms. They are usually
represented by indicating the carbonium atoms and their links, omitting to represent hydrogen atoms.
Therefore, a chemical tree is a tree in which no node has degree greater than 4 [12, 8, 20]. We study the
class of ordered trees whose nodes have maximum degree of ∆ and for the sake of simplicity, we denote
it by T ∆. T ∆ can be considered as a generalized version of chemical trees.

Formally, a T ∆ tree T is defined as a finite set of nodes such that T has a root r, and if T has more
than one node, r is connected to j ≤ ∆ subtrees T1,T2, . . . ,Tj which each one of them is also recursively
a T ∆ tree and by T ∆

n we represent the class of T ∆ trees with n nodes. An example of a T ∆ tree is shown
in Figure 2.

As mentioned earlier, in most of the tree generation algorithms, a tree is represented by an integer or
an alphabet sequence called codeword, hence, all possible sequences of this representation are generated.
In general, on any class of trees, we can define a variety of ordering for the set of trees. Classical orderings
on trees are A-order and B-order which are defined as follows [30, 39].

Definition 1 Let T and T ′ be two trees in T ∆ and k = max{deg(T),deg(T ′)}, we say that T is less than
T ′ in A-order (T ≺A T ′), iff

• |T |< |T ′|, or

• |T |= |T ′| and for some 1≤ i≤ k, Tj =A T ′j for all j = 1,2, . . . , i−1 and Ti ≺A T ′i ;

where |T | is the number of nodes in the tree T and deg(T) is the degree of the root of T .

Definition 2 Let T and T ′ be two trees in T ∆ and k = max{deg(T),deg(T ′)}, we say that T is less than
T ′ in B-order (T ≺B T ′), iff

• deg(T)< deg(T ′), or

34 Generation, Ranking and Unranking of Ordered Trees with Degree Bounds

Figure 3: An example of a tree T ∈ T ∆
n (for ∆≥ 4). Its codeword is “s`s`rmsr`msmr”.

• deg(T) = deg(T ′) and for some 1≤ i≤ k, Tj =B T ′j for all j = 1,2, . . . , i−1 and Ti ≺B T ′i .

Our generation algorithm, which is given in the Section 4, produces the sequences corresponding
to T ∆

n trees in A-order. For a given tree T ∈ T ∆
n , the generation algorithm generates all the successor

trees of T in T ∆
n ; the position of tree T in T ∆

n is called rank, the rank function determines the rank of
T ; the inverse operation of ranking is unranking. These functions can be also employed in any random
generation of T ∆

n trees, for example.

3 The encoding schema

The main point in generating trees is to choose a suitable encoding to represent them, and generate their
corresponding codewords. Regarding the properties of T ∆

n , we present our new encoding. For any tree
T ∈ T ∆

n , the encoding over 4 letters {s, `,m,r} is defined as follows. The root of T is labeled by s, and
for any internal node, if it has only one child, that child is labeled by s, otherwise the leftmost child
is labeled by `, and the rightmost child is labeled by r, and the children between the leftmost and the
rightmost children (if exist) are all labeled by m. Nodes are labeled in the same way for any internal
node in each level recursively, and by a pre-order traversal of T , the codeword will be obtained (one
can say the labels ` and r operate as left and right parenthesis to define the fingerprint of a subtree in
the codewords, and s is used when the left and right bounds are the same). This labeling is illustrated
in Figure 3. Using this encoding, the 4-letters alphabet codeword corresponding to the first and last
T ∆

n trees in A-order are respectively “s`m∆−2r`m∆−2r . . . `m(n mod ∆)−2r” and “sn” which are shown in
the Figure 4-a and Figure 4-b. Now, we prove the validity of this encoding for T ∆

n trees (one-to-one
correspondence).

Definition 3 Suppose that {s, `,m,r}∗ is the set of all sequences with alphabet of s,m, `,r and let A be a
proper subset of {s, `,m,r}∗, then we call the set A a CodeSet∆ iff A satisfies the following properties:

1. ε ∈ A (ε is a string of length 0),

2. ∀x ∈ A : sx ∈ A,

3. ∀ x1,x2, . . . ,xi ∈ A, and 2≤ i≤ ∆: `x1mx2mx3 . . .mxi−1rxi ∈ A.

Now we show that a valid codeword is obtained by the concatenation of the character s and each element
of CodeSet∆.

Theorem 1 Let A be the “CodeSet∆” and δ ∈ A. Let C be a codeword obtained by the concatenation of
character s and δ (denoted by sδ). There is a one-to-one correspondence between C and a T ∆ tree.

M. Amani, A. Nowzari-Dalini 35

Figure 4: a) The first T ∆
n tree in A-order. b) The last T ∆

n tree in A-order.

Figure 5: T ∆ trees encoded by C = sx and C = s`x1mx2 . . .mx j−1rx j.

Proof. It can be proved by induction on the length of C. Initially for a codeword of length equal to
1, the proof is trivial. Assume that any codeword obtained in the above manner with length less than n
encodes a unique T ∆ tree. For a given codeword with length n, because of that concatenation of s and δ ,
we have:

1. C = sx, such that x ∈ A, or

2. C = s`x1mx2 . . .mx j−1rx j, such that xi ∈ A, ∀1≤ i≤ j ≤ ∆.
For the first case by induction hypothesis, x is a valid codeword of a T ∆ tree T ; therefore, sx is another

codeword corresponding to another T ∆ tree by adding a new root to the top of T . This tree is unique and
shown in Figure 5-a. For the second case, by induction hypothesis and that concatenation of s and δ ,
each sxi for 1 ≤ i ≤ j is a valid codeword for a T ∆ tree; therefore, with replacement of ‘s with ` in sx1’
and ‘s with m in sxi for 2≤ i≤ j−1’ and finally ‘s with r in sx j’, we can produce `x1,mx2, . . .mx j−1,rx j

codewords. Now they all are subtrees of a T ∆ tree whose codeword is C = s`x1mx2 . . .mx j−1rx j (add a
new root and connect it to each one of them). This tree is unique and shown in Figure 5-b. �

For a T ∆
n tree, this encoding needs only 4 alphabet letters and has length n. This encoding is simple

and powerful, so it can be used for many other applications besides the generation algorithm. In the next
section, we use it to generate T ∆ trees in A-order.

4 The generation algorithm

In this section, we present an algorithm that generates the successor sequence of a given codeword of a
T ∆

n tree in A-order. For generating the successor of a given codeword C corresponding to a T ∆
n tree T ,

36 Generation, Ranking and Unranking of Ordered Trees with Degree Bounds

the codeword C is scanned from right to left. Scanning the codeword C from right to left, corresponds
to a reverse pre-order traversal of T . First we describe how this algorithm works directly on T , then we
present the pseudocode of the algorithm. For generating the successor of a given T ∆

n tree T we traverse
the tree in reverse pre-order as follows.

1. Let v be the last node of T in pre-order traversal.

2. If v doesn’t have any brothers, then

• repeat {v = parent of v.}
until v has at least one brother or v be the root of tree T .
• If v = root, then the tree is the last tree in A-order and there is no successor.

3. If v has at least one brother (obviously it has to be a left brother), delete one node from the subtree
of v and insert this node into its left brother’s subtree, then rebuild both subtrees (each one as a
first tree with corresponding nodes in A-order).

The pseudo code of this algorithm for codewords corresponding to T ∆
n trees is presented in Figure 6.

In this algorithm, the codeword is stored in a global array C so it is used both as the input and the output
codewords (this will be useful to generate all the codewords in constant average time); therefore, when
the algorithms stops, C is updated to the successor codeword. In this algorithm, n shows the size of the
codeword (the number of nodes of the tree corresponded to C), ST size is a variable contains the size
of the subtree rooted by node corresponded to C[i] and SNum holds the number of consecutive visited
s characters. This algorithm also calls two functions updateChildren(i,ChNum) presented in Figure 7,
and updateBrothers(i,ChNum) presented in Figure 8.

The procedure updateChildren(i,ChNum) regenerates the codeword corresponding to the children of
an updated node and the procedure updateBrothers(i,ChNum) regenerates the codeword corresponding
to the brothers of a node with regard to the maximum degree ∆ for each node. In these algorithms, C is
the global array of characters storing the codeword, i is the position of the current node in the array C.
In updateChildren(i,ChNum), ChNum is the number of children of C[i] to regenerate the corresponding
codeword and in updateBrothers(i,ChNum), ChNum is the number of its brothers, instead. Each node
has at most ∆ children, so NChild is a global array which NChild[i] stores the number of children of
the parent of the current node (current node is the node corresponding to C[i]) so it wont exceed ∆, i.e.,
NChild[i] holds the number of left brothers of the node corresponding to C[i] including itself.

Theorem 2 The algorithm Next presented in Figure 6 has a worst case time complexity of O(n) and an
average time complexity of O(1).

Proof. In the algorithm given in Figure 6, we scan the sequence from right to left (corresponding to
the reverse pre-order traversal of the corresponding tree as discussed before). Inside or after every loop
of the algorithm, the variable Current (which keeps track of the node we currently process), decreases
equivalently to the number of iterations, and it can not be decreased more than n times; therefore, the
worst case time complexity of the algorithm is O(n). For computing the average time, it should be noted
that during the scanning process, every time we visit the characters s, m or `, the algorithm terminates,
so we define Sn,∆

i as the number of codewords of T ∆
n trees whose last character s, m or ` has distance i

from the end, and Sn,∆ as the total number of T ∆
n trees. Obviously we have:

Sn,∆ =
n

∑
i=1

Sn,∆
i . (1)

We define Hn as the average time of generating all codewords of T ∆
n trees,

M. Amani, A. Nowzari-Dalini 37

Function AOrder-Next(n : integer);
var i,Current,ST size,SNum: integer; f inished,RDeleted: boolean;
begin

Current := n; ST Size := 0; RDeleted := false; f inished := false;
while ((C[Current] = ′s′) & (Current ≥ 1)) do

ST Size++; Current−−;
if (Current = 0) then return (no successor);
while (not f inished) do begin

ST Size++;
switch C[Current] of

case′r′:
i :=Current−1; SNum := 0;
while (C[i] = ′s′) do

SNum := SNum+1; i−−;
if (C[i] = ′r′) then begin

updateBrothers (Current , ST Size);
Current := i; ST Size := SNum;

end;
if ((C[i] = ′m′) or (C[i] = ′`′)) then begin

if (ST Size = 1) then RDeleted := true;
if (ST Size > 1) then begin

ST Size−−; updateBrothers(Current +1,ST Size);
Current := i; ST Size := SNum+1;

end;
end;

case ′m′:
if (RDeleted = true) then C[Current] := ′r′;
updateChildren(Current +1,ST Size−1); f inished:= true;

case ′`′:
if (RDeleted = true) then C[Current] := ′s′;
updateChildren(Current +1,ST Size−1); f inished := true;

end;
end;

Figure 6: Algorithm for generating the successor codeword for T ∆
n trees in A-order.

Hn ≤ (k/Sn,∆)∑
n
i=1 iSn,∆

i ,
≤ (k/Sn,∆)∑

n
j=1 ∑

n
i= j Sn,∆

i .

Where k is a constant value. On the other hand, consider that for Sn+1,∆
j we have two cases, in the first

case, the last character s, m or ` is a leaf and in the second one, it is not. Therefore, Sn+1,∆
j is greater than

or equal to just the first case, and in that case by removing the node corresponding to the ‘last character
s, m or ` of the codeword’, the remaining tree will have a corresponding codeword belongs to exactly
one of Sn,∆

k cases, for j ≤ k ≤ n. By substituting k and i we have:

Sn+1,∆
j ≥ ∑

n
i= j Sn,∆

i .
Therefore, for Hn we have:

38 Generation, Ranking and Unranking of Ordered Trees with Degree Bounds

procedure updateChildren(i,ChNum: integer);
begin

while (ChNum > 0) do begin
if ChNum = 1 then begin

C[i] := ′s′; NChild[i] := 1; i++; ChNum−−;
end;
if ChNum > 1 then begin

C[i] := ′`′; NChild[i] := 1; i++; ChNum−−;
while ((NChild[i]< (∆−1)) & (ChNum > 1)) do begin

C[i] := ′m′; NChild[i] := NChild[i−1]+1; i++; ChNum−−;
end;
C[i] := ′r′; NChild[i] := NChild[i−1]+1; i++; ChNum−−;

end
end;

end;

Figure 7: Algorithm for updating the children.

Procedure updateBrothers(i,ChNum: integer);
begin

if ChNum = 1 then begin
C[i] := ′r′; NChild[i] := NChild[i−1]; ChNum−−;

end;
if ChNum > 1 then begin

C[i] := ′m′; ChNum−−; i++;
while ((NChild[i]< (∆−1)) & (ChNum > 1)) do begin

C[i] := ′m′; NChild[i] := NChild[i−1]+1; i++; ChNum−−;
end;
C[i] := ′r′; NChild[i] := NChild[i−1]+1;
i++; ChNum−−; updateChildren(i,ChNum);

end;
end;

Figure 8: Algorithm for updating the neighbors.

Hn ≤ (k/Sn,∆)∑
n
j=1 Sn+1,∆

j ,

then by using Equation (1),

Hn ≤ kSn+1,∆/Sn,∆.

Finally from [39] we know that the total number of ordered trees is growing same as Catalan number,
while T ∆

n is a subset of ordered trees can not grow faster than that, this guarantees that for large enough
values of n, Sn+1,∆/Sn,∆ = O(1). Therefore, Hn ≤ kO(1) = O(1). �

It should be mentioned that this constant average time complexity is without considering the input or the
output time.

M. Amani, A. Nowzari-Dalini 39

Figure 9: T ∆
n tree whose first subtree has exactly m nodes and its root has maximum degree of d.

5 Ranking and Unranking algorithms

By designing a generation algorithm in a specific order, the ranking of algorithm is desired. In this sec-
tion, ranking and unranking algorithms for these trees in A-order will be given. Ranking and unranking
algorithms usually use a precomputed table of the number of a subclass of given trees with some speci-
fied properties to achieve efficient time complexities; these precomputations will be done only once and
stored in a table for further use. Let Sn,∆ be the number of T ∆

n trees, Sn,∆
m,d be the number of T ∆

n trees whose

first subtree has exactly m nodes and its root has maximum degree of d, and Dn,∆
m,d be the number of T ∆

n
trees whose first subtree has at most m nodes and its root has maximum degree of d.

Theorem 3

• Dn,∆
m,d = ∑

m
i=1 Sn,∆

i,d ,

• Sn,∆ = ∑
n−1
i=1 Sn,∆

i,∆ .

Proof. The proof is trivial. �

Theorem 4

Sn,∆
m,d = Sm+1,∆

m,1 ×
n−m−1

∑
i=1

(Sn−m,∆
i,d−1).

Proof. Let T be a T ∆
n tree whose first subtree has exactly m nodes and its root has maximum degree of

d; by the definition and as shown in the Figure 9, the number of the possible cases for the first subtree is
Sm+1,∆

m,1 and the number of cases for the other parts of the tree is ∑
n−m−1
i=1 (Sn−m,∆

i,d−1) (by removing the first
subtree from T). Therefore, we have:

Sn,∆
m,d = Sm+1,∆

m,1 ×
n−m−1

∑
i=1

(Sn−m,∆
i,d−1).

�

Now, let T be a T ∆
n tree whose subtrees are defined by T1,T2, . . . ,Tk and for 1≤ i≤ k ≤ ∆ : |Ti|= ni

and ∑
k
i=1 ni = n−1. One way to compute the rank of tree T is to enumerate the number of trees generated

40 Generation, Ranking and Unranking of Ordered Trees with Degree Bounds

before T . Let Rank(T,n) be the rank of T . The number of T ∆ trees whose first subtree is smaller than T1
is equal to:

n1−1

∑
i=1

Sn,∆
i,∆ +(Rank(T1,n1)−1)×

n−n1

∑
i=1

Sn−n1,∆
i,∆−1 ,

and the number of T ∆ trees whose first subtree is equal to T1 but the second subtree is smaller than T2 is
equal to:

n2−1

∑
i=1

Sn−n1,∆
i,∆−1 +(Rank(T2,n2)−1)×

n−n1−n2

∑
i=1

Sn−n1−n2,∆
i,∆−2 .

Similarly, the number of T ∆ trees whose first (j− 1) subtrees are equal to T1,T2, . . . ,Tj−1 and the jth

subtree is smaller than Tj is equal to:

n j−1

∑
i=1

S(n−∑
j−1
`=1 n`),∆

i,∆− j+1 +(Rank(Tj,n j)−1)×
n−∑

j
`=1 n`

∑
i=1

Sn−∑
j
`=1 n`,∆

i,∆− j .

Therefore, regarding enumerations explained above, for given tree T ∈ T ∆
n whose subtrees are defined by

T1,T2, . . . ,Tk , we can write:

Rank(T,1) = 1,

Rank(T,n) = 1+
k

∑
j=1

(
n j−1

∑
i=1

S(n−∑
j−1
`=1 n`),∆

i,∆− j+1 +(Rank(Tj,n j)−1)
n−∑

j
`=1 n`

∑
i=1

S(n−∑
j
`=1 n`),∆

i,∆− j).

Hence, from Theorem 3, by using Dn,∆
m,d = ∑

m
i=1 Sn,∆

i,d , we have:

Rank(T,1) = 1,

Rank(T,n) = 1+
k

∑
j=1

(D(n−∑
j−1
`=1 n`),∆

(n j−1),(∆− j+1)+(Rank(Tj,n j)−1)D(n−∑
j
`=1 n`),∆

(n−∑
j
`=1 n`),(∆− j)

).

To achieve the most efficient time for ranking and unranking algorithms, we need to precompute
Dn,∆

m,d and store it for further use. Assuming ∆ is constant, to store Dn,∆
m,d values, a 3-dimensional table

denoted by D[n,m,d] is enough, this table will have a size of O(n×n×∆) = O(n2) and can be computed
using Theorems 3 and 4 with time complexity of O(n×n×∆) = O(n2).

To compute the rank of a codeword stored in array C, we also need an auxiliary array N[i] which
keeps the number of nodes in the subtree whose root is labeled by C[i] and corresponds to ni in the above
formula. This array can be computed by a pre-order traversal or a level first search (DFS) algorithm just
once before we call the ranking algorithm.

The pseudo code for ranking algorithm is given in Figure 10. In this algorithm, Beg is the variable
that shows the positions of the first character in the array C whose rank is being computed (Beg is initially
set to 1), and Fin is the variable that returns the position of the last character of C.

Now the time complexity of this algorithm is discussed. Obviously computing the array N[i] takes
O(n). Hence we discuss the complexity of ranking algorithm which was given in Figure 10.

Theorem 5 The ranking algorithm has the time complexity of O(n).

M. Amani, A. Nowzari-Dalini 41

Function Rank(Beg : integer; var Fin: integer) ;
Var R, Point, PointFin, j, Nodes, n: integer;
begin

n := N[Beg];
if (n = 1) then begin

Fin := Beg; return(1) end;
else begin

Point := Beg+1; R := 0; Nodes := 0; j := 1;
while (Nodes < n) do begin

R := R+D[n−Nodes,N[Point]−1,∆− j+1]+
(Rank(Point,PointFin)−1)×
D[(n−Nodes−N[Point]),(n−Nodes−N[Point]),∆− j];

Nodes := Nodes+N[Point]; j:=j+1;
Point := PointFin+1;

end;
Fin := Point−1;
return(R+1);

end;
end

Figure 10: Ranking algorithm for T ∆
n trees.

Proof. Let T be a T ∆
n tree whose subtrees are defined by T1, T2, . . ., Tk and for 1≤ i≤ k ≤ ∆ : |Ti|= ni

and ∑
k
i=1 ni = n−1, and let T (n) be the time complexity of the ranking algorithm, then we can write:

T (n) = T (n1)+T (n2)+ . . .+T (nk)+αk,

where α is a constant and αk is the time complexity of the non-recursive parts of the algorithm. By using
a simple induction, we prove that if β is a value greater than α then T (n)≤ βn. We have T (1)≤ β . We
assume T (m)≤ β (m−1) for each m < n; therefore,

T (n)≤ β (n1−1)+β (n2−1)+ . . .+β (nk−1)+αk,
T (n)≤ β (n1 + . . .+nk− k)+αk,
T (n)≤ βn−βk+αk ≤ βn,

So the induction is complete and T (n)≤ βn = O(n). �

If a and b are integer numbers, let (a div b) and (a mod b) denote integer division and remainder
of the division of a and b, respectively (a = (a div b)× b+(a mod b)). Before giving the description
of the unranking algorithm, we have to define two new operators, namely (a div+ b) and (a mod+ b) as
follows.

• If b | a, then (a div+ b) = (a div b)−1, and (a mod+ b) = b.

• If b - a, then (a div+ b) = (a div b), and (a mod+ b) = (a mod b).

For unranking algorithm, we also need the values of Sn,∆, these values can be stored in an array of size
n, denoted by S[n] (we assume ∆ is constant). The unranking algorithm is the reverse manner of ranking
algorithm, this algorithm is given in Figure 11. In this algorithm, the rank R is the main input, Beg is

42 Generation, Ranking and Unranking of Ordered Trees with Degree Bounds

Function UnRank (R,Beg,n: integer; Root: char);
var Point, i, t, ChildNum: integer;
begin

if ((n = 0) or (R = 0)) then return(Beg−1)
else begin

if (n = 1) then begin
C[Beg] := Root; return(Beg);

end;
else begin

C[Beg] := Root; Point := Beg+1;
Root := ′`′; ChildNum := 0;
while (n > 0) do begin

ChildNum++;
find the smallest i that D[n, i,∆−ChildNum+1]≥ R;
R := R−D[n, i−1,∆−ChildNum+1];
if (n− i)= 1 then

if (ChildNum = 1) then Root := ′s′;
else Root := ′r′;

t := S[n];
Point := UnRank((div+(R, t))+1,Point, i,Root) +1;
R := mod+(R, t);
n := n− i; Root := ′m′;

end;
return(Point−1);

end;
end;

end

Figure 11: Unranking algorithm for T ∆
n trees.

the variable to show the position of the first character in the global array C and initially is set to 1. The
generated codeword will be stored in global array C. The variable n is the number of nodes and Root
stores the character corresponding to the node we consider for the unranking procedure. For the next
character, we have two possibilities. If the root is r or s, then the next character, if exists, will be ` or s
(based on the number of root’s children). If the root is m or `, we have again two possible cases: if all
the nodes of the current tree are not produced, then the next character is m, otherwise, the next character
will be r.

Theorem 6 The time complexity of the unranking algorithm is O(n logn).

Proof. Let T be a T ∆
n tree whose subtrees are defined by T1, T2, . . ., Tk and for 1≤ i≤ k ≤ ∆ : |Ti|= ni

and ∑
k
i=1 ni = n−1, and let T (n) be the time complexity of the unranking algorithm. With regards to the

unranking algorithm, the time complexity of finding j such that D[n, j,∆−ChildNum+1]≥ R for each
Ti of T is O(logni); therefore,

T (n) = O(logn1 + logn2 + . . .+ lognk)+T (n1)+T (n2)+ . . .+T (nk).

We want to prove that T (n) = O(n logn). In order to obtain an upper bound for T (n) we do as

M. Amani, A. Nowzari-Dalini 43

follows. First we prove this assumption for k = 2 then we generalize it. For k = 2 we have T (n) =
O(log(n1)+ log(n2))+T (n1)+T (n2). Let n1 = x then we can write the above formula as

T (n) = T (x)+T (n−x)+O(log(x)+ log(n−x)) = T (x)+T (n−x)+C′ log(n).
For proving that T (n) = O(n log(n)), we use an induction on n. We assume T (m) ≤Cm log(m) for all
m≤ n, thus in T (n) we can substitute

T (n)≤C× x log(x)+C× (n− x) log(n− x)+C′ log(n).
Let f (x) = C× x log(x) +C× (n− x) log(n− x), now the maximum value of f (x) with respect to x
and by considering n as a constant value can be obtained by evaluating the derivation of f (x) which is
f ′(x) = C× log(x)−C× log(n− x). Thus if f ′(x) = 0 we get x = (n− 1)/2 and by computing f (1),
f (n−2) and f ((n−1)/2) we have:

f (1) = f (n−2) =C× (n−2) log(n−2),
f ((n−1)/2) = 2C× ((n−1)/2)× log((n−1)/2) <C× (n−2) log(n−2),

so the maximum value of f (x) is equal to C× (n−2) log(n−2); therefore,
T (n)≤C× (n−2) log(n−2)+C′× log(n).

It is enough to assume C =C′, then T (n)≤C× (n−2) log(n)+C× log(n) ≤C×n log(n).
Now, for generalizing the above proof and proving T (n) = O(n logn), we should find the maximum

of the function f (n1,n2, . . . ,nk) = ∏
k
i=1 ni. By the Lagrange method we prove that the maximum value

of f (n1,n2, . . . ,nk) is equal to (n
k)

k. Then δ f
δk = (n

k)
k(ln(n

k)−1) = 0, and
ln(n

k)−1 = 0,
n
k = e⇒ k = n

e ,
so the maximum value of f (n1,n2, . . . ,nk) is equal to e

n
e . We know that:

T (n) = O(logn1 + logn2 + . . .+ lognk)+T (n1)+T (n2)+ . . .+T (nk),

T (n) = O(log(∏k
i=1 ni)+∑

k
i=1 T (ni),

T (n)< O(log(n
n
e))+∑

k
i=1 T (ni),

T (n)< O(n
e loge) = O(n)+∑

k
i=1 T (ni).

Finally, by using induction, we assume that for any m < n we have T (m)< βm logm, therefore:
T (n) = O(n)+∑

k
i=1 T (ni),

T (n)< O(n)+∑
k
i=1 βO(ni logni),

T (n)< O(n)+β log(∏k
i=1(n

ni
i)),

T (n)< O(n)+O(log(nn)),
T (n) = O(n logn).

Hence, the proof is complete. �

6 Conclusion

In this paper, we studied the problem of generation, ranking and unranking of ordered trees of size n and
maximum degree ∆ which are a generalization of chemical trees; we presented an efficient algorithm for
the generation of these trees in A-order with an encoding over 4 letters and size n. Also two efficient
ranking and unranking algorithms were designed for this encoding. The generation algorithm has O(n)
time complexity in worst case and O(1) in average case. The ranking and unranking algorithms have
O(n) and O(n logn) time complexity, respectively. The presented ranking and unranking algorithms use
a precomputed table of size O(n2) (assuming ∆ is constant). All presented algorithms at this paper are
also implemented. For the future works, generating this class of trees in B-order and minimal change
ordering, and finding some explicit relations for counting them, are major unresolved problems.

44 Generation, Ranking and Unranking of Ordered Trees with Degree Bounds

References

[1] A. Ahmadi-Adl, A. Nowzari-Dalini & H. Ahrabian (2011): Ranking and unranking algorithms for loopless
generation of t-ary trees. Logic Journal of IGPL 19(1), pp. 33–43, doi:10.1093/jigpal/jzp097.

[2] H. Ahrabian & A. Nowzari-Dalini (1998): On the generation of binary trees from (0–1) codes. International
journal of computer mathematics 69(3-4), pp. 243–251, doi:10.1080/00207169808804721.

[3] H. Ahrabian & A. Nowzari-Dalini (1999): On the generation of binary trees in A-order. International journal
of computer mathematics 71(3), pp. 351–357, doi:10.1080/00207169908804813.

[4] H. Ahrabian & A. Nowzari-Dalini (2005): Parallel generation of binary trees in A-order. Parallel Computing
31(8), pp. 948–955, doi:10.1016/j.parco.2005.06.002.

[5] R. Aringhieri, P. Hansen & F. Malucelli (2003): Chemical trees enumeration algorithms. Quarterly Journal
of the Belgian, French and Italian Operations Research Societies 1(1), pp. 67–83, doi:10.1007/s10288-002-
0008-9.

[6] T. S. Balaban, P. A. Filip & O. Ivanciuc (1992): Computer generation of acyclic graphs based on local vertex
invariants and topological indices. Derived canonical labelling and coding of trees and alkanes. Journal of
Mathematical Chemistry 11(1), pp. 79–105, doi:10.1007/BF01164196.

[7] T. Beyer & S. M. Hedetniemi (1980): Constant time generation of rooted trees. SIAM Journal on Computing
9(4), pp. 706–712, doi:10.1137/0209055.

[8] G. Caporossi, I. Gutman & P. Hansen (1999): Variable Neighborhood Search for Extremal Graphs:
IV: Chemical Trees with Extremal Connectivity Index. Computers & Chemistry 23(5), pp. 469–477,
doi:10.1016/S0097-8485(99)00031-5.

[9] A. A. Dobrynin & I. Gutman (1999): The Average Wiener Index of Trees and Chemical Trees. Journal of
Chemical Information and Computer Sciences 39(4), pp. 679–683, doi:10.1021/ci980158r.

[10] M. C. Er (1992): Efficient generation of k-ary trees in natural order. The Computer Journal 35(3), pp.
306–308, doi:10.1093/comjnl/35.3.306.

[11] H. Fujiwara, J. Wang, L. Zhao, H. Nagamochi & T. Akutsu (2008): Enumerating Treelike Chemical
Graphs with Given Path Frequency. Journal of Chemical Information and Modeling 48(7), pp. 1345–1357,
doi:10.1021/ci700385a.

[12] I. Gutman (1987): Graphs and graph polynomials of interest in chemistry, pp. 177–187. Springer Berlin
Heidelberg, doi:10.1007/3-540-17218-1.

[13] I. Gutman, P. Hansen & H. Mélot (2005): Variable Neighborhood Search for Extremal Graphs. 10. Compar-
ison of Irregularity Indices for Chemical Trees. Journal of Chemical Information and Modeling 45(2), pp.
222–230, doi:10.1021/ci0342775.

[14] I. Gutman & O. E. Polansky (1986): Mathematical concepts in organic chemistry. Springer Berlin Heidel-
berg, doi:10.1007/978-3-642-70982-1.

[15] P. Hansen, B. Jaumard, C. Lebatteux & M. Zheng (1994): Coding Chemical Trees with the Cen-
tered N-tuple Code. Journal of Chemical Information and Computer Sciences 34(4), pp. 782–790,
doi:10.1021/ci00020a010.

[16] J. B. Hendrickson & C. A. Parks (1991): Generation and enumeration of carbon skeletons. Journal of
Chemical Information and Computer Sciences 31(1), pp. 101–107, doi:10.1021/ci00001a018.

[17] S. Heubach, N. Y. Li & T. Mansour (2008): Staircase tilings and k-Catalan structures. Discrete Mathematics
308(24), pp. 5954–5964, doi:10.1016/j.disc.2007.11.012.

[18] J. F Korsh (2005): Generating t-ary trees in linked representation. The Computer Journal 48(4), pp. 488–497,
doi:10.1093/comjnl/bxh110.

[19] J. F. Korsh & P. LaFollette (1999): Loopless generation of Gray codes for k-ary trees. Information processing
letters 70(1), pp. 7–11, doi:10.1016/S0020-0190(99)00035-6.

http://dx.doi.org/10.1093/jigpal/jzp097
http://dx.doi.org/10.1080/00207169808804721
http://dx.doi.org/10.1080/00207169908804813
http://dx.doi.org/10.1016/j.parco.2005.06.002
http://dx.doi.org/10.1007/s10288-002-0008-9
http://dx.doi.org/10.1007/s10288-002-0008-9
http://dx.doi.org/10.1007/BF01164196
http://dx.doi.org/10.1137/0209055
http://dx.doi.org/10.1016/S0097-8485(99)00031-5
http://dx.doi.org/10.1021/ci980158r
http://dx.doi.org/10.1093/comjnl/35.3.306
http://dx.doi.org/10.1021/ci700385a
http://dx.doi.org/10.1007/3-540-17218-1
http://dx.doi.org/10.1021/ci0342775
http://dx.doi.org/10.1007/978-3-642-70982-1
http://dx.doi.org/10.1021/ci00020a010
http://dx.doi.org/10.1021/ci00001a018
http://dx.doi.org/10.1016/j.disc.2007.11.012
http://dx.doi.org/10.1093/comjnl/bxh110
http://dx.doi.org/10.1016/S0020-0190(99)00035-6

M. Amani, A. Nowzari-Dalini 45

[20] M. Lepovic & I. Gutman (1998): A collective property of trees and chemical trees. Journal of chemical
information and computer sciences 38(5), pp. 823–826, doi:10.1021/ci980004b.

[21] L. Li (1986): Ranking and unranking of AVL-trees. SIAM Journal on Computing 15(4), pp. 1025–1035,
doi:10.1137/0215073.

[22] J. M. Lucas, D. R. Vanbaronaigien & F. Ruskey (1993): On rotations and the generation of binary trees.
Journal of Algorithms 15(3), pp. 343–366, doi:10.1006/jagm.1993.1045.

[23] S. Nakano & T. Uno (2005): Constant time generation of trees with specified diameter. In: 30th International
Workshop on Graph-Theoretic Concepts in Computer Science, Springer, pp. 33–45, doi:10.1007/978-3-540-
30559-03.

[24] J. M. Pallo (1987): Generating trees with n nodes and m leaves. International journal of computer mathe-
matics 21(2), pp. 133–144, doi:10.1080/00207168708803562.

[25] J. M. Pallo (1990): A simple algorithm for generating neuronal dendritic trees. Computer methods and
programs in biomedicine 33(3), pp. 165–169, doi:10.1016/0169-2607(90)90038-B.

[26] J. M. Pallo & R. Racca (1985): A note on generating binary trees in A-order and B-order. International
Journal of Computer Mathematics 18(1), pp. 27–39, doi:10.1080/00207168508803477.

[27] F. Ruskey (1978): Generating t-ary trees lexicographically. SIAM Journal on Computing 7(4), pp. 424–439,
doi:10.1137/0207034.

[28] E. Seyedi-Tabari, H. Ahrabian & A. Nowzari-Dalini (2010): A new algorithm for generation of
different types of RNA. International Journal of Computer Mathematics 87(6), pp. 1197–1207,
doi:10.1080/00207160802140049.

[29] M. Shimizu, H. Nagamochi & T. Akutsu (2011): Enumerating tree-like chemical graphs with given upper
and lower bounds on path frequencies. BMC Bioinformatics 12(14), pp. 1–9, doi:10.1186/1471-2105-12-
S14-S3.

[30] V. Vajnovszki & J. M. Pallo (1994): Generating binary trees in A-order from codewords defined
on a four-letter alphabet. Journal of Information and Optimization Sciences 15(3), pp. 345–357,
doi:10.1080/02522667.1994.10699193.

[31] V. Vajnovszki & J. M. Pallo (1997): Ranking and unranking k-ary trees with a 4 k-4 letter alphabet. Journal
of Information and Optimization Sciences 18(2), pp. 271–279, doi:10.1080/02522667.1997.10699333.

[32] H. S. Wilf & N. A. Yoshimura (1989): Ranking rooted trees, and a graceful application. Annals of the New
York Academy of Sciences 576(1), pp. 633–640, doi:10.1111/j.1749-6632.1989.tb16444.x.

[33] P. Willett, J. M. Barnard & G. M. Downs (1998): Chemical similarity searching. Journal of chemical infor-
mation and computer sciences 38(6), pp. 983–996, doi:10.1021/ci9800211.

[34] R. A. Wright, B. Richmond, A. Odlyzko & B. D. McKay (1986): Constant time generation of free trees.
SIAM Journal on Computing 15(2), pp. 540–548, doi:10.1137/0215039.

[35] R. Wu, J. Chang & C. Chang (2011): Ranking and unranking of non-regular trees with a prescribed branching
sequence. Mathematical and Computer Modelling 53(5), pp. 1331–1335, doi:10.1016/j.mcm.2010.12.019.

[36] R. Wu, J. Chang & Y. Wang (2006): A linear time algorithm for binary tree sequences transfor-
mation using left-arm and right-arm rotations. Theoretical Computer Science 355(3), pp. 303–314,
doi:10.1016/j.tcs.2006.01.022.

[37] L. Xiang, K. Ushijima & C. Tang (2001): On generating k-ary trees in computer representation. Information
processing letters 77(5), pp. 231–238, doi:10.1016/S0020-0190(00)00155-1.

[38] K. Yamanaka, Y. Otachi & S. Nakano (2009): Efficient enumeration of ordered trees with k leaves. In:
WALCOM: Algorithms and Computation, Springer, pp. 141–150, doi:10.1016/j.tcs.2011.01.017.

[39] S. Zaks (1980): Lexicographic generation of ordered trees. Theoretical Computer Science 10(1), pp. 63–82,
doi:10.1016/0304-3975(80)90073-0.

[40] B. Zhuang & H. Nagamochi (2010): Constant Time Generation of Trees with Degree Bounds. In: 9th
International Symposium on Operations Research and Its Applications, pp. 183–194, doi:10.1.1.385.6436.

http://dx.doi.org/10.1021/ci980004b
http://dx.doi.org/10.1137/0215073
http://dx.doi.org/10.1006/jagm.1993.1045
http://dx.doi.org/10.1007/978-3-540-30559-03
http://dx.doi.org/10.1007/978-3-540-30559-03
http://dx.doi.org/10.1080/00207168708803562
http://dx.doi.org/10.1016/0169-2607(90)90038-B
http://dx.doi.org/10.1080/00207168508803477
http://dx.doi.org/10.1137/0207034
http://dx.doi.org/10.1080/00207160802140049
http://dx.doi.org/10.1186/1471-2105-12-S14-S3
http://dx.doi.org/10.1186/1471-2105-12-S14-S3
http://dx.doi.org/10.1080/02522667.1994.10699193
http://dx.doi.org/10.1080/02522667.1997.10699333
http://dx.doi.org/10.1111/j.1749-6632.1989.tb16444.x
http://dx.doi.org/10.1021/ci9800211
http://dx.doi.org/10.1137/0215039
http://dx.doi.org/10.1016/j.mcm.2010.12.019
http://dx.doi.org/10.1016/j.tcs.2006.01.022
http://dx.doi.org/10.1016/S0020-0190(00)00155-1
http://dx.doi.org/10.1016/j.tcs.2011.01.017
http://dx.doi.org/10.1016/0304-3975(80)90073-0
http://dx.doi.org/10.1.1.385.6436

	1 Introduction
	2 Definition
	3 The encoding schema
	4 The generation algorithm
	5 Ranking and Unranking algorithms
	6 Conclusion

