
Jean-Yves Marion (Ed.): Second Workshop on
Developments in Implicit Computational Complexity (DICE 2011)
EPTCS 75, 2012, pp. 1–14, doi:10.4204/EPTCS.75.1

Implicit complexity for coinductive data:
a characterization of corecurrence

Daniel Leivant
Indiana University and Loria Nancy

leivant@indiana.edu

Ramyaa Ramyaa
Indiana University and Universitat Munchen

ramyaa@indiana.edu

We propose a framework for reasoning about programs that manipulate coinductive data as well
as inductive data. Our approach is based on using equationalprograms, which support a seamless
combination of computation and reasoning, and using productivity (fairness) as the fundamental
assertion, rather than bi-simulation. The latter is expressible in terms of the former.

As an application to this framework, we give an implicit characterization of corecurrence: a
function is definable using corecurrence iff its productivity is provable using coinduction for formulas
in which data-predicates do not occur negatively. This is ananalog, albeit in weaker form, of a
characterization of recurrence (i.e. primitive recursion) in [13].

1 Introduction

Coinductive data has been recognized for nearly two decadesas a powerful framework for dealing with
infinite objects of evolving and computational nature, suchas streams, and — more generally — the
behavior of unbounded processes and dynamic systems.

We consider computation over “data-systems”, in which data-types may be defined both inductively
and co-inductively. As our main computation model we use equational programs, since these have im-
mediate kinship with formal theories: a program’s equations can be viewed as axioms, and computations
are simply derivations in equational logic. In the first partof this paper we develop some building blocks
for this project. We consider theglobalsemantics of programsP over a data-system, that is their behavior
as “uninterpreted programs” over all structures for the vocabulary of the data-system. This approach was
developed forinductivedata in [12]; here we extend it to data-systems in general, including coinductive
constructions. It is orthogonal to category theoretical methods in the study of coinduction, which seek to
characterize the intended (canonical) model.

An important benefit of streamlined proof systems for reasoning about programs is their use for
characterizing major computational complexity classes. Such characterizations fall within the realm of
implicit computational complexity,where one delineates complexity classes without referenceto compu-
tational resources such as time and space. In particular, there are illuminating characterizations of com-
plexity classes in terms of the strength of proof methods needed to prove termination (see e.g. [3, 10, 13]).
Such results lend insight into the significance of complexity classes, provide natural frameworks for
programming within given complexity boundaries, and yieldstatic analysis tools for guaranteeing com-
plexity. Implicit characterizations have further potential benefit for coinductive data, because they might
clarify complexity notions that are dual to traditional notions of computational complexity such as Poly-
nomial Time.

The primitive recursive functions over the setN of natural numbers were characterized proof theo-
retically already by Parsons [18], who proved that a function is primitive recursive iff it is provable in
Peano’s Arithmetic with induction restricted to existential formulas.

http://dx.doi.org/10.4204/EPTCS.75.1

2 Implicit corecurrence

In [11, 12] we developedintrinsic theories,a generic framework for reasoning about equational com-
puting over inductive data, and in [13] we used it to characterize the primitive recursive functions in terms
of induction for a particular class of formulas. Call a formula unipolar if it does not use data-predicates
(i.e. references to data) in both positive and negative position; an example are thepositiveformulas, in
which data-predicates do not occur in a negative position. In [13] we proved that a computable function
is primitive recursive iff it is provably correct in the intrinsic theory forN with induction restricted to
unipolar formulas. In fact we proved more. The forward implication can refer to a very weak formalism,
namely, every primitive recursive function is provable, using minimal logic, by induction for formulas
in which data-predicates appear only strictly-positively.1 On the other hand, for the backwards implica-
tion we proved that if a computable function is provable, using classical logic, by induction on unipolar
formulas, then it is primitive recursive.

We establish here a dual characterization for coinductive data, but where both implication refer to a
weak deductive calculus: a computable function over boolean streams is primitive corecursive (i.e. defin-
able using explicit definitions and corecurrence) iff it is provable using minimal logic, by coinduction for
formulas built from only conjunction, disjunction, and existential quantification. At present we do not
know whether this result can be strengthen to show that everyequational program over streams which is
provable, usingclassicallogic andunipolar coinduction is primitive-corecursive.

2 Equational programs over data systems

2.1 Equational programs

We describe a generic framework for data-types that are defined using induction, coinduction, or a mix
thereof. Such frameworks are well-known for typed lambda calculi, with operatorsµ for smallest fixpoint
andν for greatest fixpoint. Our present approach is to express computational behavior of programs via
global semantics, thereby dispensing with partial functions; and to define types semantically, via first
order axiomatics, dispensing with explicit fixpoint operators.

A constructor-vocabularyis a finite setC of function identifiers, referred to asconstructors,each
assigned anarity ≥ 0 (as usual, constructors of arity 0 areobject-identifiers). We posit an infinite set
X of variables,and an infinite setF of function-identifiers, dubbedprogram-functions,and assigned
arities≥ 0 as well. The setsC , X andF are, of course, disjoint.

If E is a set consisting of function-identifiers and (possibly) variables, we writēE for the set of terms
containingE and closed under application: ifg ∈ E is a function-identifier of arityr, andt1 . . . tr are
terms, then so isgt1 · · · tr . We use informally the parenthesized notationg(t1, . . . , tr), when convenient.2

We refer to elements of̄C , C ∪X and C ∪X ∪F as data-terms, base-terms,and program-terms,
respectively.3

As in [11, 12], we use an equational computation model, in thestyle of Herbrand-Gödel, famil-
iar from the extensive literature on algebraic semantics ofprograms. There are easy inter-translations
between equational programs and program-terms such as those of FLR0 [14]. We prefer to focus on
equational programs because they integrate easily into logical calculi, and are naturally construed as
mathematical theories (with each equation as an axiom). Codifying equations by terms is, in fact, a

1Recall thatϕ is a strictly-positive subformula ofψ if ϕ is not in the scope of a negation or the negative scope of an
implication.

2In particular, wheng is of arity 0, it is itself a term, whereas with parentheses wehaveg() (with r = 0 arguments) as a term.
3Data-terms are often referred to asvalues, and base-terms aspatterns.

Leivant and Ramyaa 3

conceptual detour, since the computational behavior of such terms is itself spelled out using equations or
rewrite-rules.

A program-equationis an equation of the formf(t1 . . .tk) = q, wheref is a program-function of arity
k ≥ 0, t1 . . .tk are base-terms, andq is a program-term. The left-hand side of a program equation is its
definiendum.Two program-equations arecompatibleif their definiendums cannot be unified. Aprogram-
body is a finite set of pairwise-compatible program-equations. Aprogram(P, f) (of arity k) consists of
a program-bodyP and a program-functionf (of arity k) dubbed the program’sprincipal-function. We
identify each program with its program-body when in no danger of confusion.

We posit that every program over a given constructor-vocabulary has equations for destructors, as
well as a discriminator. That is, if the given vocabulary’s constructors arec1 . . .ck, with m the maximal
arity, then the program-functions include the unary identifiers π i,m (i = 1..m) andδ k, and the program
contains the equations (forc anr-ary constructor)

π i,m(c(x1, . . . ,xr) = xi (i = 1..r)
π i,m(c(x1, . . . ,xr)) = c(x1, . . . ,xr) (i = r+1..m)

δ k(ci(~t),x1, . . . ,xk) = xi i = 1..k

Thusδ k is a definition-by-cases operation, depending on the main constructor of the first argument. We
call a composition ofn destructors(n≥ 0) adeep destructor.

It is easy to define the denotational semantics of an equational program for the canonical interpreta-
tion of inductive data. If(P, f) is a program for a unary function overN, say, then it computes the partial
function f : N⇀ N where f (p) = q just in case the equationf(p̄) = q̄ is derivable fromP in equational
logic. (We writen̄ for then’th numeral, i.e. the data-termss · · ·s0 with n s’s.

The partiality of computable functions is most commonly addressed by either allowing partial struc-
tures [9, 1, 16], or by referring to domains, in which an object ⊥ denotes divergence. Yet another
approach, adopted here, is based on the “global” behavior ofprograms in all (usual, non-partial) struc-
tures. For example, consider the programP over the constructors0,s consisting of the two equations4

f(0) = 0 andf(ssx) = f(sssx). ThusP provides no instructions for input 1, and diverges for input≥ 2.
The latter conditions are captured by the statement that there are structures which model the equations
P, and where the termsf(s0) andf(ss0) are not equal to any numeral.

2.2 Global semantics

The concept ofglobal relations,which was present implicitly in mathematical logic for long, came to
prominence in Finite Model Theory in the 1980s. LetC be a collection of structures. Aglobal relation
(of arity r) over C is a mappingP that assigns to each structureS in C an r-ary relation over the
universe|S | of S . For example, ifC is the collection of all structures over a given vocabularyV, then a
first-orderV-formulaϕ , with free variables amongx1 . . .xr , defines the predicateλx1 . . .xrϕ that to each
V-structureS assigns the relations

{〈a1 . . .ar〉 | S , [~x :=~a] |= ϕ}

The notion that a formula delineates uniformly subsets of structures is implicit in [24] and [2]. Alterna-
tive phrases used includegeneralized relations, data base queries, global relations, global predicates,
uniformly defined relations, predicates over oracles, andpredicates.)

4We omit some parentheses for readability.

4 Implicit corecurrence

A global r-ary functionoverC is defined analogously. For example, each typedλ -term of typeo→o,
with identifiers inV as primitives, defines a global function over the class ofV-structures. E.g., ifc, f and
g areV-identifiers for functions of arity 0,1 and 2 respectively, then the termλx,1 ,x2 g(f(x1),g(x2,c))
defines the global function that to eachV-structureS assigns the mapping〈x1,x2〉 7→ g(f (x1),g(x2,c)),
wherec, f andg are the interpretations inS of the identifiersc,f andg.

The starting point of Descriptive Computational Complexity [7] is that programs used as acceptors
define global relations. When those global relations can be defined also by certain logical formulas, one
obtains machine-independent characterizations of computational complexity classes. For instance, Fagin
[6] and Jones & Selman [8] proved that a predicateP over finite structures is defined by a program
running in nondeterministic polynomial time (NP) iff it is defined by a purely existential second order
formula.

Programs of arity 0 can be used to define objects. For example,the singleton programT consisting of
the equationt= sss0 defines 3, in the sense that in every modelS of T (over a vocabulary witht as an
identifier), the interpretation of the identifiert is the same as that of the numeral for 3. Consider instead
a 0-ary program defining an infinite term (i.e. essentially a stream), for instance the singleton programI
consisting ofind= s(ind). This does not have any solution in the free algebra of the unary numerals,
that is: the free algebra cannot be expanded into the richer vocabulary withind as a new identifier, so as
to satisfy the equationI .5 But I is modeled in any structure wheres is interpreted as identity, andind
as any structure element. Thus the interpretation ofind is not unique. For a more interesting example,
consider the structure consisting of countable ordinals, with s interpreted as the functionλx.1+x. Then
I holds wheneverind is interpreted as an infinite ordinal.

It follows that in our context bi-simulation, while guaranteeing true equality for the canonical model,
implies in general only equivalent computational behavior. Indeed, in the global semantic context bi-
simulation is not a sound inference rule, since for example two distinct objects can unfold to exactly the
same stream of digits (i.e. be observationally equivalent). However, bi-simulation leads to an equivalence
relation, which can be captured by a functionbsm. Consider the program consisting of the two equations
b(0 : x,0 : y) = 0 :b(x,y) andb(1 : x,1 : y) = 1 :b(x,y). If P also defines constant identifiersa andb as
some streams, then we haveP |= S(a)∧S(b)→ S(b(a,b)) just in case there is a bi-simulation between
the streams denoted bya andb, i.e. they are equal as elements of the coalgebra of boolean streams. If the
equalitya = b is provable using the traditional coinduction rule for bi-simulation then the implication
(P)→ S(b(a,b)) is provable in our deductive calculus below. Thus our framework supports all common
forms of reasoning about coinductive data.

2.3 Semantics of programs

The global semantic approach to equational programs, considered for inductive data in [12], is of interest
as an alternative alternative to the “canonical-structure” approach. Under the global semantics approach
the notion ofcorrectnessof programs is simple, direct, and informative. Here a program over inductive
data is said to becorrect if it maps, in every structure, inductive data to inductive data. This turns out
to be equivalent to the program termination (for all input) in the intended structure (e.g.N when the
constructors are0 ands). For programs over co-inductive data, which we address here, correctness will
turn out to be equivalent toproductivity (sometimes dubbedfairness): if the input is a stream, then the
program will have a stream as output, without stalling.

The semantics of equational programs for inductive data, such as the natural numbers, is straightfor-

5As usual, when a structure is an expansion of another they have the same universe.

Leivant and Ramyaa 5

ward. Given a structureS (for a vocabulary including the constructors in hand), a program(P, f) (unary
say) computes the partial functiong : N⇀ N given by: g(n) = m iff P⊢ f(n̄) = m̄, i.e. the equation is
deducible fromP in equational logic. (We write ¯n for then’th unary numerals[n](0).)

Let S be a structure whose vocabulary contains at least the constructors in hand. Consider fresh
0-ary identifiersva, one for eacha ∈ |S | (i.e. element of the universe ofS). In keeping with the
terminology of Model Theory, we define thediagramof S to be the theory6

Diag(S) = {va = c(vb1 · · ·vbr) |
a= cS (b1 · · ·br) c anr-ary constructor}

In the presence of coinductive data-types, data may be infinite, and so the operational semantics of
equational programs must compute the output piecemeal fromfinite information about the input. IfΓ
is any set of equations, andt andt′ are terms, we writeΓ ⊢ω t = t′ if for all deep-destructorsΠ we
have (in equational logic)Γ, Diag⊢ δ ((Π(t),~x) = δ ((Π(t′)). That is, one can establish equationally the
observational equivalence oft andt′, i.e. the stepwise equality of finite approximations of the two terms.

If t′ is a data term, thenΓ ⊢ω t = t′ is clearly equivalent (by discourse-level induction on|t′|) to
Γ, Diag⊢ t= t′.

We say that ak-ary program(P, f) computes overS the partial-function
f : |S |k ⇀ |S | when for every~a,b∈ |S | we havef (~a) = b just in caseP∪Diag(S) ⊢ω f(va) = vb.

Examples.Consider as constructors two unary functions (“successors”) 0 and1. Let S be the structure
of theω-words over{0,1}, with the obvious interpretation of the constructors. Writing a for (01)ω and
b for (10)ω , the diagram ofS includes the equationsva = 0vb, andvb = 1va. In this simple case these
equations could be used to definea andb, but if c andd are the binary expansions ofπ/4 and(π −2)/2,
then the equationvc = 1vd is also in the diagram, with not much to say about whatc andd really are.

The unary program consisting of the two equationsf(0w) = 1f(w), f(1w) = 0f(w) defines the func-
tion flip : |S | → |S |. We haveflip((01)ω) = (10)ω , because we can easily see that

P, va = 0vb, vb = 1va ⊢
ω flip(va) = vb

We also have fore= the digitwise flip ofc above that

P, Diag(S) ⊢ω flip(c) = e

However, as we take deeper destructors for the two terms, theequational proof needed here will use
increasingly large (albeit finite) portions of Diag(S).

2.4 Data systems

So far we have considered abstract structures, with noa priori restriction on the behavior of constructor-
identifiers. We now proceed to define data-types, needed to reflect the intended computational behavior
of programs. We use reserved relation-identifiers (i.e. predicate symbols) for data-types, and convey
their defining properties by axioms (closure conditions) rather than viaµ andν fixpoint operators. This
allows us to incorporate data types seamlessly into the (first order) deductive machinery.

Descriptive and deductive tools for inductive and coinductive data are not new, of course. For in-
stance, the Common Algebraic Specification Language CASL has been used as a unifying standard in

6We writecS for the interpretation of the identifierc in the structureS .

6 Implicit corecurrence

the algebraic specification community, and extended to coalgebraic data [20, 21, 15, 22]. Several frame-
works combining inductive and coinductive data, such as [17], strive to be comprehensive, including
various syntactic distinctions and categories, whereas our approach is minimalist. Such minimalism is
made possible by combining the global semantic approach with a semantic (i.e. Curry-style) view of
types, by which types indicate semantic properties of pre-existing objects, as opposed to the ontological
(Church-style) view, by which types precede objects, with each object coming with a pre-assigned type.

Let C = {c1, . . . ,ck} be a set of constructors as above, whereci is of arity r i = arity (ci). A data-
systemoverC consists of

1. A list D1 . . .Dk (the order matters) of unary relation-identifiers, where each Dn is designated as
either aninductive-predicateor acoinductive-predicate,and associated a setC n ⊆ C of construc-
tors.

2. For each constructorc, of arity r say, a non-empty finite set offunctional typesτ, each of the form
E1×· · ·×Er → E0, where eachEi is one of theD j ’s. Here we require that noEi comes afterE0 in
the given listing of the predicatesDi. We say then thatc has typeτ .

The data-systems defined above do not accommodate simultaneous inductive or coinductive definitions,
but a straightforward generalization does.

Example. Let C consist of the identifiers0,1, [],s,t, andc, of arities 0,0,0,1,1, and 2, respectively.
Consider the following (ordered) list of predicates: inductive predicateB (for booleans) andN (natural
numbers), coinductive predicatesJ (infinite s/t-words) andS (streams of natural numbers), and an
inductive predicateL (lists of such streams).

The association of types to constructors is as follows.

0 : B 0 : N
1 : B
[] : L
s : N→N s : J→J
t : J→J
c : N×S→S
c : S×L→L

Note that constructors are being reused for different data-types. This is in agreement with our un-
typed, generic approach, where the intended type information is conveyed by the data-predicates. In other
words, data-types are explicitly conveyed in the formalism’s syntax as semantic (Curry style) rather than
onthological (Church style) properties. ✷

The canonical modelA = [[D]] of a data-systemD consists of interpretations[[Dn]] (n = 1..k) of
the data-predicates as sets of finite and infinite terms, obtained by discourse-level recurrence, as follows.
If Dn is inductive, then[[Dn]] is the set of terms obtained from[[D1]] . . . [[Dn−1]] by a finite number of
application of the constructors inC n; dually, if Dn is coinductive, then[[Dn]] is the set of finite and
infinite terms obtained from[[D1]] . . . [[Dn−1]] by such applications. These terms are trees labeled by
constructors, where any node labeled by a constructor of arity r hasr children. Note that if the (non-
empty) setC n of constructors associated withDn has no 0-ary constructors, then for an inductiveDn the
set[[Dn]] is empty, whereas for a coinductiveDn it is a nonempty set of infinite terms.

2.5 Adequacy of Global semantics

Leivant and Ramyaa 7

Herbrand famously proposed to define the computable functions (overN) as those that are unique
solutions of equational programs. That definition yields infact all the hyper-arithmetical functions, a far
larger class. But Herbrand was not far off: he only needed to adopt a global approach, rather than restrict
attention to the standard structure of the natural numbers.Indeed, in [12] we observed the following. We
say that a structure isdata-correct forN if it interprets the identifierN as the set of numeral denotations.

THEOREM 1 (Semantic Adequacy Theorem for Inductive Data)An equational program(P, f) overN
computes a total function iff the formulaN(x)→ N(f(x)) is true in every model ofP which is data-correct
for N.

The proof in [12] of the nontrivial direction of Theorem 1 proceeds by constructing a “test-model”
for the programP. One starts with an extended term model, using the program-functions inP as well the
constructors, and takes the quotient of that term model overthe equivalence relation of equality-derived-
from P.

3 Intrinsic Theories

Intrinsic theories, introduced in [11, 12] for inductive data, are skeletal first-order theories whose interest
lies in a natural and streamlined formalization of reasoning about equational computing. For example,
the intrinsic theory for the natural numbers is suited for incorporating equational programs as axioms,
and while it has the same provably computable functions as Peano’s Arithmetic, it has a more immediate
formalization of the notion of provable computability. Forbackground, rationale, and examples, we refer
to [12].

The intrinsic theoryfor a data-systemD , IT (D), has

• The rules ofD ;

• Injectiveness axiomsstating that the constructors are injective, i.e. for eachc ∈ C , of arity r,

∀x1 . . .xr , y1 . . .yr c(~x) = c(~y)→
∧

i

xi = yi

• Separation axiomsstating that the constructors have disjoint images:

∀~x,~y c~x 6= d~y

for each distinct constructorsc,d; and

• For each constructorc, and typeE1 × · · · ×Er → E0 for c, with E0 an inductive predicate, the
corresponding clause in the inductive definition ofE0. That is, thedata-introductionrule

E1(x1) · · · Er(xr)

E0(cx1 · · ·xr)

These rules delineate the intended meaning ofE0 from below.

• For each constructorc, and typeE1× · · ·×Er → E0 for c, with E0 a co-inductivepredicate, the
corresponding clause in the co-inductive definition ofE0. That is, thedata-eliminationrule

E0(cx1 · · ·xr)

Ei(xi)

These rules delineate the intended meaning of a coinductiveE0 from above.

8 Implicit corecurrence

• For each inductive data-predicateDn as above, a data-elimination (i.e. Induction) rule: for each
formula7 ϕ ≡ ϕ[z], the rule

Dn(t) Cmpn[ϕ]

ϕ[t]

where

Cmpn[ϕ] ≡
Dn(t) {

{Eϕ
1 (x1)} · · · {Eϕ

r (xr)}
·
·
·

ϕ[c(x1 · · ·xr)] }c:E1×···×Er→Dn

ϕ[t]

HereEϕ
i (u) is ϕ[u] if Ei is Dn, and isEi(u) otherwise. (These open assumptions are closed by the

inference.)

That is, ifϕ [u] has the same closure properties under the constructors asDn, thenDn(t)→ϕ[t].
• For each coinductive data-predicateDn, a data-introduction (i.e. coinduction) rule: for each for-

mulaϕ[z],
ϕ[t] Dcmn[ϕ]

Dn(t) (1)

where

Dcmn[ϕ] ≡

{ϕ[x]}
·
·
·∨

{ ∃z1 . . .zr .(∧iE
ϕ
i (zi)) ∧ x= c(~z) | c : E1×·· · ×Er → Dn}

(HereQϕ
i is defined as for the induction template above.)

That is, ifϕ has the same closure properties under data decomposition (i.e. the destructors) asDn,
thenϕ[t]→ Dn(t).

Note. Since our approach here is generic to all structures, the bounding condition in the statement of
Coinduction is necessary. Consider for example the coinductive dataW∞ of infinite 0-1 words, i.e. the
coinductive data predicate built from unary function identifiers 0 and1, considered above. Taking the
eigen formulaϕ of Coinduction to bex = x, we would get, absent the bounding condition,∀x W∞(x),
which is not valid in models of the intrinsic theory forW.

From the injectiveness and separation axioms it follows that it is innocuous to use identifiers for
destructors and discriminator functions, as above.

Theorem 1 justifies a concept ofprovablecorrectness of programs:(P, f) is provably correct in a
given formal theory if the formula above is not merely true inall data-correct models ofP, but is indeed
provable in the intrinsic theoryIT (D) from (the universal closure of)P, as an axiom.

4 Corecurrence and strictly-positive coinduction

4.1 Functions definition by corecurrence

A function definition by recurrence uses its input by eager evaluation: it consumes the top constructor of
the input to select the definition-case, and proceeds to consume that constructor’s arguments. That is, for

7We use the bracket notationϕ[t] to stand for the correct substitution inϕ of t for the free occurrences of some fixed variable
z.

Leivant and Ramyaa 9

each constructorc, one has a clause

f (c(x1 . . .xr),~y) = gc(e1 . . .er ,~y) r = arity(c) ei =df f (xi ,~y) (2)

Here eachgc is a previously defined function of appropriate arity. Usinga discriminatorcasefunction,
the template above can be summarized as

f (x,~y) = case(x,e1 . . .ek)

ei =df f (π i(x),~x)

(Recall thatπ i is thei’th destructor.)
Dually, a definition bycorecurrencebuilds up the output: it produces the top constructor of the

output, and proceeds to produce that constructor’s arguments:

f (~x) = ch(~x,e1 . . .er)
r = arity(h(~x))
ei =df f (~gi(~x))

(3)

This template can be summarized by

f (~x) = cocase(h(~x),e1 . . .ek) ei =df f (~gi(~x))

wherecocase(u,~v) returns the main constructorc of u, of arity r say, applied to the firstr of the remaining
arguments~v.

More generally, we use corecurrence to define as above not a single function f , but a vector~f =
〈 f1 . . . fk〉 of functions:

f j(~x) = cocase(h j(~x),e1 . . .ek) ei =df fℓi (~gi j (~x))

The distinction in (2) between the recurrence argument and the parameters~ydisappears in (3) because
the focus of the definition shifts to the output, which plays arole analogous to the recurrence argument
of the recurrence schema.

When we have just one constructor, e.g. a binary functioncons, the output’s main constructor need
not be specified, and (3) can be conveyed by applying destructors to the output:

π i(f (~x)) = f (~gi(~x)) i = 0,1 (4)

Such use of destructors is common in presentations of corecurrence, but it fails to capture corecurrence
for arbitrary coinductive data. Of course, each case can be coded using streams, just as all inductive data
can be coded using the natural numbers.

In our untyped setting the valuesf (~g0(~x)) and f (~g1(~x)) have the same standing. Streams over a finite
base setA can be construed as a restricted form of (3), with eacha ∈ A taken as a nullary constructor,
and requiring the first argument ofconsto be one of these constructors.

A function over the given data-system isprimitive corecursiveif it is generated from the constructors
and destructors by composition and corecurrence.

Example. Boolean streams form a simple data system of the kind mentioned above:CONS is the unique
non-constant constructor, which we denote by an infixed colon. The remaining constructs are the nullary
0and1, and the data-predicates are the inductive (and finite)B (booleans) and the coinductiveS(streams).
The rules are

B(0) B(1)
S(x : y)

B(x)

S(x : y)

S(y)

10 Implicit corecurrence

The constructorconshas the the two destructorshd : S→ B andtl : S→ S.
Since there is a single non-constant constructor here, corecursion can be formulated using the de-

structors, as in the template:

hd(f (x,~y)) = g0(x,~y)

tl(f (x,~y)) = f (g1(x,~y),~y)

For example, we can define by corecurrence a functioneven:

hd(even(x)) = hd(x); tl(even(x)) = even(tl(tl(x))).

The functionevenis productive (i.e. fair, see [23, 5]), in the sense that it maps streams to streams.
More precisely, in every modelS of the data-system, expanded to interpretevenwhile satisfying its

equational definition, ifS(x) holds forx bound to an elementa of S ’s universe, thenS(even(x)).
The generic coinduction rule (1) specializes for boolean streams to the following.

ϕ[t]

{ϕ [x]}

·
·
·

∃z0,z1.(B(z0)∧ϕ[z1]∧x= z0 : z1

S(t)

(5)

While corecurrence is dual to recurrence, it is computationally weaker in some ways. Recurrence
allows coding of computation traces, so that cumulative (course-of-value) recurrence is implementable
using simple recurrence. In contrast, a cumulative variantof corecursion, using at any given point the
output stream so far, is not captured by standard corecurrence. For example, the definition of the Morse-
Thue sequence,x= 1 : merge(x,not(x)), is not a legal corecurrence.

4.2 Strictly-positive coinduction captures corecurrence

Consider the intrinsic theory for a coinductive datatype, such as the boolean streams. We call a formula
strongly positiveif built using conjunction, disjunction, and∃ as the only logical operations. A formula
is unipolar if it does not have both positive and negative occurrences ofdata-predicates. As mentioned
in the Introduction above, we know that a function overN is primitive recursive iff it is provably correct,
using classical logic, in the intrinsic theory forN with induction restricted to unipolar formulas; and also
iff it is provably correct, using minimal logic, in the intrinsic theory forN with induction restricted to
strongly-positive formulas.

Here we prove for the primitive corecursive functions an analog of the latter characterization. For
concreteness and expository economy, we focus on the data-systemS m consisting of just streams of
booleans as data-type, and refer to the intrinsic theory forit, based on minimal logic. We writeIT + for
that theory, with coinduction restricted to strictly-positive formulas.

PROPOSITION2 If a k-ary f is defined by corecursion from functions provable inIT +, then f is provable
in IT +.

Proof. Suppose thatf is defined by

f (x) = g0(x) : f (g1(x))

Leivant and Ramyaa 11

Let (P0,g0) and(P1,g1) be programs (with no common function-identifiers) that are provable inIT +,
with D0 a derivation ofB(g0(u)) from S(u) andP0, andD1 derivingS(g1(u)) from S(u) andP1. Consider
(P, f) whereP is P0∪P1 augmented with the corecursive definition off from g0 andg1. ThenS(f (x)) is
derived fromS(x) andP, as follows.

Let ϕ [z] be the strictly-positive formula∃yS(y)∧ f (y) = z. ThenS(f (x)) is derived from assumptions
S(x) andP by coinduction onϕ, since the premises of coinduction follow from these assumptions:

• FromS(x) we haveS(x)∧ f (x) = f (x), and soϕ [f (x)].

• Assumingϕ[x] we haveS(y)∧ f (y) = x for somey, i.e.g0(y) : g1(y) = x. ButS(y) impliesB(g0(y))
by D0, andS(g1(y)) by D1. UsingD0 andD1 for u= g1(y), we get fromS(g1(y)) thatϕ[g1(y)].

Takingz0 = g0(y) andz1 = g1(y), we thus havef (x) = z0 : z1∧B(z0)∧ϕ [z1], concluding the other
premise of the coinduction.

✷

4.3 From coinduction to corecurrence

We proceed to show the converse of Proposition 2, namely thatcorecurrence captures strongly-positive
coinduction. IfP is an equational program, let us writeIT +(P) for the natural deduction calculus for
IT +, augmented with the programP in the guise of an inference rule:8 If t= t′ is an equation inP, then

α [t′]

α [t]
and

α [t]

α [t′]

are inferences, whereα is any atomic formula. Clearly, a formulaϕ is derivable inIT +(P) from as-
sumptions~ψ iff ϕ is derivable inIT + from ~ψ plus (the universal closure of)P.

A basic observation is the following, where we refer to the usual notion of logical detours in natural
deduction derivations [19]. Recall that a logical detour arises when the major premise of an elimination
rule (for a logical operator) is derived by an introduction rule.

LEMMA 3 1. Every derivation ofIT +(P) can be converted to a derivation without logical detours.

2. If D is a derivation ofIT +(P) without logical detours, proving a strongly-positive formula from
strongly-positive assumptions, then every formula inD is strongly-positive.

Proof. Part (1) is proved as for first-order logic [19]. Part (2) follows by a straightforward structural
induction, using the fact that coinduction is restricted tostrongly-positive formulas, and that the logic is
minimal. ✷

We define a relationS , η , σ ϕ , i.e. the streamσ realizes the formulaϕ in the interpretation
(S ,η) consisting of a model ofIT + and ofP, and an environmentη in it. The definition is by induction
on ϕ. This relation is defined by structural recurrence on the formula ϕ. For a streamσ we define the
streamsσ i i ≥ 0 inductively, jointly with the streamsσ ′

i. The intent is thatσ0 consists of the even-
positioned entries ofσ , σ1 of the even-positioned entries of the remaining entries, etc. σ0 = even(σ),
σ ′

0 = odd(σ), σ i+1 = even(σ ′
i), σ ′

i+1 = odd(σ ′
i).

• S , η , σ S(t) iff σ = [[t]]S ,ηX andσ ∈ SS .

8This deductive style has been used in research on the Curry-Howard morphism for higher-order logic, e.g. [10]; it was
dubbed “deduction modulo” in [4] and subsequent works.

12 Implicit corecurrence

• S , η , σ t= t′ iff σ = [[t]]S ,η X = [[t′]]S ,ηX.

• S , η , σ ϕ0∧ϕ1 iff σ i S ,η Xϕ i , i = 0,1.

• S η, σ ϕ0∨ϕ1 iff S < η , tlσ ϕhdσ .

• S , η , σ ∃xϕ iff S , η [x := σ0], σ1 ϕ .

LEMMA 4 j SupposeIT +(P) ⊢ ∧i ψ i[~x]→ϕ[~x]. Then there is a primitive corecursive functionf0 such
that for all modelsS of P, and for all streams~τ andσ i , if

S , [~x :=~τ], σ i ψ i,

then
S , [~x :=~τ], f0(~τ ,~σ) ϕ .

More precisely, there is a primitive corecursive programP0 (which computesf above), such that
every model ofP can be expanded to a model ofP0, where f0 has the property above.

Proof. Let D be a derivation ofψ [~x]→ϕ[~x] in IT +(P). By Lemma 3 we may assume thatD is detour-
free, and with all formulas strongly-positive. The Lemma isproved by structural induction onD . For
the base casesf is the identity. The cases where the main inference ofD is a logical rule are immediate
from the definition of. The cases of Data-elimination rule (decomposition) are immediate since the
destructors functions are initial primitive corecursive functions. The case of the rewrite rules based onP
is assured by the fact thatS is assumed to be a model ofP.

The case of interest is where the main inference rule ofD is Coinduction (for strongly-positive
formulas):

ϕ[t]

{ϕ [x]}
· · ·

∃z0,z1.(B(z0)∧ϕ[z1]∧x= z0 : z1

S(t)

(6)

By IH applied to the left sub-derivation, there is a primitive corecursive functiong(~u,~v)) yielding a stream
σ realizingϕ[t], from an environment~u and realizers~v for the open assumptions. By IH applied to the
right sub-derivation, there is a primitive corecursive function h(~u,u′,~v,v′) yielding a stream realizing

ϕ ′[x] :≡ ∃z0,z1.(B(z0)∧ϕ[z1]∧x= z0 : z1)

from an environment~u, a streamu′ assigned tox, realizers~v for the open assumptions, and a realizerv′

for ϕ[x] in the environment(~v,v′). Let j and j ′ be the functions that extract from a realizer forϕ ′ (in a
given environment) the booleanz0 = hd(x), and the realizer ofz1 = tl(x), respectively.

If ~u are the variables free inD , define by corecurrence

r(~u,~v,w) = j(w) : r(~u,~v, j ′(h(~u,~v,w)))

Thus, if~u are streams, and~v are realizers for the open assumptions ofD for the environment~u, then

r(~u,~v,g(~u,~v))

is the value oft, and therefore a realizer ofS(t), i.e. the conclusion of 5. ✷

Leivant and Ramyaa 13

THEOREM 5 A function over streams is primitive corecursive iff it is computable by some equational
program which is provable inIT +.

Proof. If a function is primitive corecursive then its primitive corecursive definition is provable inIT +,
by Proposition 2.

Conversely, supposef is a function computable by some equational programs(P, f)which is provable
in IT +, i.e. there is a derivation ofIT +(P) of the formulaS(x)→ S(f(x)). From Lemma 4 it follows that
there is a primitive corecursive program(P0, f0) such that in all modelsS of P, a realizer ofS(σ), i.e.σ
itself, is mapped byf0 to a realizer ofS(f(x)), i.e. the value off(x) in the structure. Sincef is computed
by P in the canonical structure, the above holds there too, i.e.f is primitive-corecursive in the canonical
structure. ✷

References

[1] Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Peter D. Mosses, Donald Sannella
& Andrzej Tarlecki (2002):CASL: the Common Algebraic Specification Language. Theor. Comput. Sci.
286(2), pp. 153–196.

[2] Jon Barwise & Yanis Moschovakis (1978):Global inductive definability. Journal of Symbolic Logic43, pp.
521–534.

[3] Samuel Buss (1986):Bounded Arithmetic. Bibliopolis, Naples.

[4] Gilles Dowek, Thérèse Hardin & Claude Kirchner (2003): Theorem Proving Modulo. J. Autom. Reasoning
31(1), pp. 33–72.

[5] Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks,Ariya Isihara & Jan Willem Klop (2007):Productivity
of Stream Definitions. In Erzsébet Csuhaj-Varjú & ZoltáńEsik, editors:FCT, Lecture Notes in Computer
Science4639, Springer, pp. 274–287, doi:10.1007/978-3-540-74240-1_24.

[6] Ronald Fagin (1974):Generalized first order spectra and polynomial time recognizable sets. In R. Karp,
editor:Complexity of Computation, SIAM-AMS, pp. 43–73.

[7] Neil Immerman (1989):Descriptive and Computational Complexity. In: FCT, pp. 244–245.

[8] N.G. Jones & A.L. Selman (1974):Turing machines and the spectra of first-order formulas. Journal of
Symbolic Logic39, pp. 139–150.

[9] Stephen C. Kleene (1969):Formalized Recursive Functions and Formalized Realizability. Memoirs of the
AMS 89, American Mathematical Society, Providence.

[10] Daniel Leivant (1994):A foundational delineation of poly-time. Information and Computation110, pp.
391–420.

[11] Daniel Leivant (1995):Intrinsic theories and computational complexity. In D. Leivant, editor:Logic and
Computational Complexity, LNCS, Springer-Verlag, Berlin, pp. 177–194.

[12] Daniel Leivant (2002):Intrinsic reasoning about functional programs I: First order theories. Annals of Pure
and Applied Logic114, pp. 117–153, doi:10.1016/S0168-0072(01)00078-1.

[13] Daniel Leivant (2004):Intrinsic reasoning about functional programs II: unipolar induction and primitive-
recursion. Theor. Comput. Sci.318(1-2), pp. 181–196, doi:10.1016/j.tcs.2003.11.002.

[14] Yiannis N. Moschovakis (1989):The Formal Language of Recursion. J. Symb. Log.54(4), pp. 1216–1252,
doi:10.2307/2274814.

[15] Till Mossakowski, Lutz Schröder, Markus Roggenbach &Horst Reichel (2006):Algebraic-coalgebraic spec-
ification in CoCasl. J. Log. Algebr. Program.67(1-2), pp. 146–197, doi:10.1016/j.jlap.2005.09.006.
Available athttp://dx.doi.org/10.1016/j.jlap.2005.09.006.

http://dx.doi.org/10.1007/978-3-540-74240-1_24
http://dx.doi.org/10.1016/S0168-0072(01)00078-1
http://dx.doi.org/10.1016/j.tcs.2003.11.002
http://dx.doi.org/10.2307/2274814
http://dx.doi.org/10.1016/j.jlap.2005.09.006
http://dx.doi.org/10.1016/j.jlap.2005.09.006

14 Implicit corecurrence

[16] Peter D. Mosses (2004):CASL Reference Manual, The Complete Documentation of the Common Algebraic
Specification Language. Lecture Notes in Computer Science2960, Springer, doi:10.1007/b96103.

[17] Peter Padawitz (2000):Swinging types=functions+relations+transition systems. Theor. Comput. Sci.243(1-
2), pp. 93–165, doi:10.1016/S0304-3975(00)00171-7.

[18] Charles Parsons (1970):On a number-theoretic choice schema and its relation to induction. In A. Kino,
J. Myhill & R. Vesley, editors:Intuitionism and Proof Theory, North-Holland, Amsterdam, pp. 459–473,
doi:10.1016/S0049-237X(08)70771-7.

[19] D. Prawitz (1965):Natural Deduction. Almqvist and Wiksell, Uppsala.

[20] Horst Reichel (1999):A Uniform Model Theory for the Specification of Data and Process Types. In Didier
Bert, Christine Choppy & Peter D. Mosses, editors:WADT, Lecture Notes in Computer Science1827,
Springer, pp. 348–365, doi:10.1007/978-3-540-44616-3_20.

[21] Jan Rothe, Hendrik Tews & Bart Jacobs (2001):The Coalgebraic Class Specification Language CCSL.
J. UCS7(2), pp. 175–193. Available athttp://www.jucs.org/jucs_7_2/the_coalgebraic_class_
specification.

[22] Lutz Schröder (2008):Bootstrapping Inductive and Coinductive Types in HasCASL. Logical Methods in
Computer Science4(4), doi:10.2168/LMCS-4(4:17)2008. Available athttp://dx.doi.org/10.2168/
LMCS-4(4:17)2008.

[23] Ben A. Sijtsma (1989):On the Productivity of Recursive List Definitions. ACM Trans. Program. Lang. Syst.
11(4), pp. 633–649, doi:10.1145/69558.69563.

[24] Alfred Tarski (1952):Some notions and methods on the borderline of algebra and metamathematics. In:
Proceedings of the International Congress of Mathematicians I, American Mathematical Society, Providence,
RI, pp. 705–720.

http://dx.doi.org/10.1007/b96103
http://dx.doi.org/10.1016/S0304-3975(00)00171-7
http://dx.doi.org/10.1016/S0049-237X(08)70771-7
http://dx.doi.org/10.1007/978-3-540-44616-3_20
http://www.jucs.org/jucs_7_2/the_coalgebraic_class_specification
http://www.jucs.org/jucs_7_2/the_coalgebraic_class_specification
http://dx.doi.org/10.2168/LMCS-4(4:17)2008
http://dx.doi.org/10.2168/LMCS-4(4:17)2008
http://dx.doi.org/10.2168/LMCS-4(4:17)2008
http://dx.doi.org/10.1145/69558.69563

	1 Introduction
	2 Equational programs over data systems
	2.1 Equational programs
	2.2 Global semantics
	2.3 Semantics of programs
	2.4 Data systems

	3 Intrinsic Theories
	4 Corecurrence and strictly-positive coinduction
	4.1 Functions definition by corecurrence
	4.2 Strictly-positive coinduction captures corecurrence
	4.3 From coinduction to corecurrence

