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A type system for PSPACE derived from light linear logic

Lucien Capdevielle ∗

ENS de Lyon

We present a polymorphic type system for lambda calculus ensuring that well-typed programs can
be executed in polynomial space: dual light affine logic with booleans (DLALB). To build DLALB we
start from DLAL (which has a simple type language with a linear and an intuitionistic type arrow, as
well as one modality) which characterizes FPTIME functions. In order to extend its expressiveness
we add two boolean constants and a conditional constructor in the same way as with the system STAB
in [7].

We show that the value of a well-typed term can be computed by an alternating machine in
polynomial time, thus such a term represents a program of PSPACE (given that PSPACE = APTIME
([5])).

We also prove that all polynomial space decision functions can be represented in DLALB.
Therefore DLALB characterizes PSPACE predicates.

1 Introduction

The topic of this paper is Implicit Computational Complexity which is the field of study of calculi and
languages with intrisic complexity-theoretical properties. One of the main issues of this field is to design
programing languages with bounded computational complexity. Historically, there have been various
approaches:

• restriction of recursive schemes ([4], [12])

• interpretation methods for first order interpretational languages ([13], [9])

• variations of linear logic and proofs-as-programs Curry-Howard correspondence ([8], [1] and [11])

The latest approach has led to the design of type systems for λ -calculus such that the set of all
well-typed terms corresponds to the class PTIME.

In this paper, we will present a type assignment system which guarantees that a program of the
language is PSPACE and that all predicates of PSPACE can be encoded in this language.

Coming back to the approach of linear logic, it is based on the observation that the duplication rule
is controlled by the logical connective ”!”. Moreover, the power of duplication is responsible for the
complexity of normalization. Thus, by replacing the ”!” with a weaker connective, one obtains systems
with controlled duplications, and where normalization offers a complexity bound. Light Linear Logic
(LLL, [8]) and Soft Linear Logic (SLL, [11]) are two examples of such systems.

First, the system DLAL ([2] and [3]) has been derived from LLL and then the system STA ([6]) from
SLL. These systems are both characterizing PTIME. Then, in order to characterize PSPACE predicates,
Gaboardi and al. have designed the system STAB ([7]) by adding two boolean constants and a conditional
constructor to the system STA. The goal of this paper is to see if it is possible to adapt this method in
order to obtain a system characterizing PSPACE by modifying the system DLAL.

It is straightforward to define DLALB starting from DLAL in an analogous way of STAB is defined
from STA. However, proving that the complexity bound of this system is polynomial is not obvious. In
∗Partially supported by the project ANR-08-BLANC-0211-01 ”COMPLICE”.
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fact, one difficulty is that the complexity bound of LLL and DLAL is proved by using a specific reduction
strategy (level-by-level strategy) which is not compatible with the conditional we add to the language.
Thus we will introduce an abstract alternating machine and a measure on the terms in order to prove the
PSPACE bound. Thus we use the fact that PSPACE = APTIME ([5]) both in the completeness and the
soundness parts of the proof (contrary to the proof that STAB characterizes the predicates of PSPACE
where PSPACE = APTIME is only used for the completeness).

The paper is organized as follows. We first give the definition of the system DLALB and some
properties of this system in Section 2. Then in Section 3 we give the proof that any well-typed term
represents a predicate of APTIME. Finally, in Section 4 we prove that any predicate of APTIME is
represented by a well-typed term.

2 λ -calculus with booleans and type assignment

In this section, we will first define DLALB, then we will give some classical properties which are true for
terms well-typed in DLALB.

2.1 Definition of ΛB and DLALB

We start from the λ -calculus of DLAL and will extend it with booleans and a conditional constructor in
order to obtain DLALB (analogous to [7]).

The language LDLALB of DLALB types is given by:

A,B ::= α | A ( B | A⇒ B | §A | ∀α.A | Bool.

DLALB can be seen as a refinement of System F ensuring some complexity properties.
The language ΛB of λ -terms with booleans is given by:

t,u,v ::= x | F | T | λx.t | t u | i f t then u else v.

The terms of ΛB admit another type of reduction than the β -reduction, the δ -reduction which is the
contextual closure of:

(i f T then u else v) δ−→ u
and

(i f F then u else v) δ−→ v.

Definition 1 A term t of ΛB can be written in a unique way as M = N0 N1 ... Nm with m ∈N and (N0 = x
or N0 = λx.t or N0 = i f M0 then M1 else M2).
The terms Ni are called elements of the canonical composition.

In order to prove the complexity bound, we have to adapt the classical notion of number of occurences
in such a way that it is compatible with the additive rule (B e) of DLALB (defined in Figure 1).

Definition 2 The number of occurences of a variable in a term is inductively defined on the structure
of the terms as follows: no(x,x) = 1, no(x,y) = 0, no(x,F) = 0, no(x,T ) = 0, no(x,λy.t) = no(x, t),
no(x,λx.t) = no(x, t), no(x, t u) = no(x, t)+no(x,u), no(x, i f t0 then t1 else t2) = max

i
no(x, ti).
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;x : A ` x : A
(Id)

Γ;∆,x : A ` t : B
Γ;∆ ` λx.t : A ( B

(( i) Γ1;∆1 ` t : A ( B Γ2;∆2 ` u : A
Γ1,Γ2;∆1,∆2 ` t u : B

(( e)

Γ,x : A;∆ ` t : B
Γ;∆ ` λx.t : A⇒ B

(⇒ i) Γ;∆ ` t : A⇒ B ;z : C ` u : A
Γ,z : C;∆ ` t u : B

(⇒ e)

Γ1;∆1 ` t : A
Γ1,Γ2;∆1,∆2 ` t : A

(Weak)
x1 : A,x2 : A,Γ;∆ ` t : B

x : A,Γ;∆ ` t[x/x1,x/x2] : B
(Cntr)

;Γ,∆ ` t : A
Γ;§∆ ` t : §A

(§ i)
Γ1;∆1 ` u : §A Γ2;x : §A,∆2 ` t : B

Γ1,Γ2;∆1,∆2 ` t[u/x] : B
(§ e)

Γ;∆ ` t : A
Γ;∆ ` t : ∀α.A

(∀ i) (*)
Γ;∆ ` t : ∀α.A

Γ;∆ ` t : A[B/α]
(∀ e)

;` F : Bool
(B0 i)

;` T : Bool
(B1 i)

Γ;∆ `M0 : §nBool Γ;∆ `M1 : A Γ;∆ `M2 : A n ∈ N
Γ;∆ ` i f M0 then M1 else M2 : A

(B e)

Figure 1: Natural deduction system for DLALB

Examples: no(x,(i f x then x else x y) y) = 1
no(y,(i f x then x else x y) y) = 2.

For DLALB typing we will handle judgements of the form Γ;∆ ` t : A (and Γ `F t : A for System
F). The intended meaning is that variables in ∆ are (affine) linear, that is to say that they have at most
one occurrence in the term, while variables in Γ are non-linear. We give the typing rules as a natural
deduction system: see Figure 1 (the rules of DLALB are those of DLAL plus (B0 i), (B1 i) and (B e)).

We have:

• for (∀ i): (*) α does not appear free in Γ,∆.

• in the (⇒ e) rule the r.h.s. premise can also be of the form ;` u : A (u has no free variable).

Definition 3 The depth of a DLALB derivation D is the maximal number of premises of (§i) and r.h.s.
premises of (⇒ e) in a branch of D .

Definition 4 The l.h.s. premises of (( e), (⇒ e) and (§e) as well as the unique premise of (∀e) are
called major premises. A DLALBderivation is ∀§-normal if:

• no conclusion of a (∀i) rule is the premise of a (∀e) rule;

• no conclusion of a (§i) rule is the major premise of a (§e) rule;

• no conclusion of (Weak), (Cntr) and (§e) is the major premise of elimination rules: (( e), (⇒ e),
(§e) and (∀e).

Definition 5 Let δ̄ -reduction be the reduction defined by:
Let t0 be a closed term.
Let C be a context.
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C[i f t0 then t1 else t2]
δ̄−→ t0

C[i f t0 then t1 else t2]
δ̄−→C[t1]

C[i f t0 then t1 else t2]
δ̄−→C[t2]

Examples:

(λx.(i f (λ z.z F) then (x u) else y) v) δ̄−→ (λ z.z F)

(λx.(i f (λ z.z F) then (x u) else y) v) δ̄−→ ((λx.(x u)) v)

(λx.(i f (λ z.z F) then (x u) else y) v) δ̄−→ ((λx.y) v).

2.2 Properties of DLALB

The contraction rule (Cntr) is used only on variables on the l.h.s. of the semi-colon. It is then straightfor-
ward to check the following statements:

Lemma 1 (Free Variable Lemma)

• If Γ;∆ ` t : A then FV (t)⊂ dom(Γ)∪dom(∆)

• If Γ;∆ ` t : A, ∆′ ⊂ ∆, Γ′ ⊂ Γ and FV (t)⊂ dom(Γ′)∪dom(∆′) then Γ′;∆′ ` t : A

• If Γ;∆ ` t : A and x ∈ ∆ then we have no(x, t)6 1

We can make the following remarks on DLALB rules:

• Initially the variables are linear (rule (Id)); to convert a linear variable into a non-linear one we can
use the (§ i) rule. Note that it adds a § to the type of the result and that the variables that remain
linear get a § type too.

• the (( i) (resp. (⇒ i)) rule corresponds to abstraction on a linear variable (resp. non-linear
variable);

• observe (⇒ e): a term of type A⇒ B can only be applied to a term u with at most one occurrence
of free variable.

Theorem 1 (Subject Reduction)

Let
δβ−→= (

β−→∪ δ−→)

If Γ;∆ ` t : A is derivable and t
δβ−→ v, then Γ;∆ ` v : A.

If Γ;∆ ` t : A is derivable and t
δ̄ β−→ v, then Γ;∆ ` v : A or Γ;∆ ` v : §nBool.

Proof.
Almost the same as in [2].

In order to prove the strong normalisation of the terms well-typed in DLALB, we will prove that such
terms can be translated into terms of System F (which has the property of strong normalisation).

Definition 6 The translation ()* of a DLALB type in a type of System F is inductively defined on the
structure of the types as follows: (α)∗ = α , (A ( B)∗ = (A)∗→ (B)∗, (A⇒ B)∗ = (A)∗→ (B)∗, (§A)∗ =
(A)∗, (∀α.A)∗ = ∀α.(A)∗, (Bool)∗ = ∀α.α → α → α .

Definition 7 The translation ()* of a term of ΛB in a term of Λ is inductively defined on the structure of
the terms as follows: (x)∗ = x, (F)∗ = λx.λy.y, (T )∗ = λx.λy.x, (λx.t)∗ = λx.(t)∗, (t u)∗ = (t)∗ (u)∗,
(i f t then u else v)∗ = (t)∗ (u)∗ (v)∗.
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Lemma 2 If Γ;∆ ` t : A then (Γ)∗,(∆)∗ `F (t)∗ : (A)∗.

Proof. By induction on the structure of the type derivation of t.

Lemma 3 Let t and t ′ be two terms of ΛB such that Γ;∆` t : A and t
δβ−→ t ′ then: (t)∗

β−→ (t ′)∗, (Γ)∗,(∆)∗ `F

(t)∗ : (A)∗ and (Γ)∗,(∆)∗ `F (t ′)∗ : (A)∗.

Proof. By the definition of the translation of the terms, Lemma 2 and Theorem 1.

Theorem 2 (Strong Normalisation)
Let t be a term of ΛB, if Γ;∆ ` t : A then t is strongly normalizable.

Proof. By Lemma 3 and the property of strong normalization of terms typeable in System F.

Theorem 3 (Confluence)
The δβ -reduction is confluent on the terms of ΛB typeable in DLALB.

Proof. By Theorem 2 and the local confluence of the δβ -reduction on ΛB.

Theorem 4 (Normal Form)
Let t be a term of ΛB, if Γ;∆ ` t : A then t has a unique normal form (denoted Norm(t)).

Proof. By Theorems 2 and 3.

Lemma 4 If ;` t : §nBool then:

1. t is not an abstraction

2. if t is normal for the βδ -reduction then t = T or t = F.

Proof.

1. By induction on the structure of derivations.

2. By induction on the structure of terms and (i).

2.3 Stratified terms

We have to describe the size of a term in detail in order to better control it during β - and δ -reduction.

Definition 8 A stratified term is a term with each abstraction symbol λ annotated by a natural number
k (called its depth) and also possibly by symbol !, and with applications possibly annotated by !.

Thus an abstraction looks like λ kx.t or λ k!x.t and an application like t u or t ! u. When t is a stratified
term, t[+1] denotes t with the depths of all abstraction subterms increased by 1. The type assignment
rules for stratified terms are obtained by modifying some of the rules of DLALB as follows:

Γ;∆,x : A ` t : B
Γ;∆ ` λ 0x.t : A ( B

(( i)
Γ,x : A;∆ ` t : B

Γ;∆ ` λ 0!x.t : A⇒ B
(⇒ i)

Γ;∆ ` t : A⇒ B ;z : C ` u : A
Γ,z : C;∆ ` t ! u[+1] : B

(⇒ e)
;Γ,∆ ` t : A

Γ;§∆ ` t[+1] : §A
(§ i)

The depth of a term is the maximal depth of all the abstractions it contains.

Lemma 5 Given a DLALB derivation D of Γ;∆ ` t : A of depth d, t can be decorated as a stratified term
t ′ of depth d such that Γ;∆ ` t ′ : A.
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Proof. By induction on the structure of the derivation D .
We can see that ∀§-Normalisation Lemma, Abstraction Property Lemma, Paragraph Property Lemma

and Subject Reduction Theorem hold for stratified terms as well (as in [2]).

Definition 9 The number of occurences of symbols λ at depth k in a stratified term is inductively defined
on the structure of the terms as follows: no(k,x) = 0, no(k,F) = 0, no(k,T ) = 0, no(k,λ kx.t) = no(k, t)+
1, no(k,λ px.t) = no(k, t), no(k, t u) = no(k, t)+no(k,u), no(k, i f t0 then t1 else t2) = max

i
no(k, ti). The

definition of the number of occurences of i f in a term t, no(i f , t), is similar.

Lemma 6 Let t be a stratified term such that Γ;∆ ` t : A is derivable. If (v ! u) is a subterm of t then:

• (FV (u) = /0)
or
(FV (u) = {x} and (x ∈ Dom(Γ) or x is bound in t by a λ annotated by !) and
no(x,u) = 1)

• if v = λ k!x.r then ∀p≤ k, no(p,u) = 0

Proof. By induction on the structure of the derivation and Lemma 1.
We can now define, with the notations on a stratified term, a vector of integers which characterizes

the size of the term.

Definition 10 Let t be a stratified term,
we define vectd(t) = (no(0, t), ..., no(d, t), no(i f , t)).

Definition 11 Let a and b be two vectors of Zp, we define:

• a≤ b if and only if ∀k ≤ p, ak ≤ bk;

• a < b if and only if a≤ b and a 6= b.

Lemma 7 If t and u are two stratified terms such that
r = no(x, t), a = vectd(t) and b = vectd(u), then
vectd(t[u/x])≤ a+ r ∗b = (a0 + r ∗b0, ..., ad+1 + r ∗bd+1).

Proof. By induction on the structure of the term t.

3 APTIME Soundness

Usually, a complexity bound for LLL and related systems like DLAL is obtained from a specific reduction
strategy: the level by level strategy. Such strategy consists to reduce first redexes at level 0 then redexes at
level 1 and so on. However, it is not possible to apply such strategy in the λ -calculus with the conditional
constructor without breaking the polynomial bound. This is why like Gaboardi and al. we consider a λ -
calculus machine to reduce the terms. A delicate point however is that previous work on LLL and DLAL
does not provide complexity bounds on λ -calculus machines. Thus, we need to introduce a suitable
measure in order to prove this complexity bound.
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3.1 Definitions

Definition 12 (Programs)
A program is a term t of ΛB such that ;` t : §nBool.
We define the relation← by:

• If (Norm(t) = F) then (no← t);

• If (Norm(t) = T ) then (yes← t).

Definition 13 (Contexts)

• A context A is a sequence of variable assignments of the shape xi := ti where all variables xi are
distinct. The set of contexts is denoted by Ctx.

• The cardinality of a context A , denoted by #(A ), is the number of variable assignments in A .

• The empty context is denoted by /0.

• Let A = [x1 := t1, ..., xn := tn] be a context. Then ()A : ΛB→ ΛB is the map that associates the
term t[tn/xn]...[t1/x1] to each term t.

Definition 14 (Configurations)
There is 4 types of configurations:

• a rejecting configuration: J(Re jecting)K;

• an accepting configuration: J(Accepting)K;

• an existensial configuration: J(∃) A | {b; t}K with A a context, t a term and b ∈ {yes;no};
• a universal configuration: J(∀) A | {b; t} {b′; t ′}K with A a context, t and t ′ two terms and

b,b′ ∈ {yes;no};

Definition 15 The Abstract Alternating Machine KB (which is similar to the Krivine machine ([10])
when restricted to the λ -calculus) is a machine that takes as input a program t, starts with the initial
configuration J(∃) /0 | {yes; t}K and reduces t using the two transition functions described in Figure 2. It
accepts the program t if its normal form is true and rejects it if its normal form is false (as will be shown
below).

The base cases are obvious. The (β ) transition applies when the head of the subject is a β -redex.
Then the association between the bound variable and the argument is remembered in context A . The (h)
transition replaces the head occurence of the head variable by the term associated with it in the context.
The (i f ) transitions, always followed by the (i f ′) transitions, perform the δ̄ reductions (following the
intuition that: i f t0 then t1 else t2 = (t0∧ t1)∨ (¬t0∧ t2)).

Definition 16 (Computations)
The computation of the Abstract alternating machine KB is the tree obtained by applying the rules given
in figure 2 starting from the initial configuration. The definition of a configuration accepted by KB and
of a computation accepted by KB is the same as those of the Alternating Turing Machine.

From here until the end of the subsection 3.3, we will fix a program M. Note that:

• m = |M| (with |M| the size of M);

• D is a derivation of ;`M : §nBool;

• d is the depth of D ;
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J(∃) A | {b; λx.N N1 ... Np}K
1/2−−→
(β )

J(∃) A @(x′ := N1) | {b; N[x′/x] N2 ... Np}K(∗)

J(∃) A 1@(x := N)@A 2 | {b; x N1 ... Np}K
1/2−−→
(h)

J(∃) A 1@(x := N)@A 2 | {b; N N1 ... Np}K

J(∃) A | {b; (i f M0 then M1 else M2) N1 ... Np}K
1−−→

(i f )
J(∀) A | {yes; M0} {b; M1 N1 ... Np}K

J(∃) A | {b; (i f M0 then M1 else M2) N1 ... Np}K
2−−→

(i f )
J(∀) A | {no; M0} {b; M2 N1 ... Np}K

J(∀) A | {a; M0} {b; N}K
1−−→

(i f ′)
J(∃) A | {a; M0}K

J(∀) A | {a; M0} {b; N}K
2−−→

(i f ′)
J(∃) A | {b; N}K

base J(∃) A | {yes; T}K 1/2−−→ J(Accepting)K J(∃) A | {no; F}K 1/2−−→ J(Accepting)K

cases J(∃) A | {no; T}K 1/2−−→ J(Re jecting)K J(∃) A | {yes; F}K 1/2−−→ J(Re jecting)K

(*) x’ is a fresh variable. 1/2 means 1 or 2.

Figure 2: The Rules of the Abstract Alternating Machine KB

• M′ is the stratified term of depth d associated with the term M;

• r = max
x

no(x,M) (with r < m by definition).

Definition 17 Let tk, uk, vk : Zd+2→ Zd+2 such that:

• tk(a) = (a0, ..., ak−1, ak−1, ak+1 + r(bk+1 +m), ..., ad+1 + r(bd+1 +m));

• uk(a) = (a0, ..., ak−1, ak−1, ak+1, ..., ad+1);

• vk(b) = (b0, ..., bk, bk+1 +m, ..., bd+1 +m).

We want to establish a complexity bound on the machine. For that, we define a measure on the
vectors characterizing the size of terms such that this measure will decrease with β - and δ -reduction.

Definition 18 Let measure(i) : Zi+2×Zi+2→ Z such that:

• measure(−1)(a0, b0) = a0

• measure(i+1)((a0, ..., ai+2), (b0, ..., bi+2)) =
measure(i)((a1 +(r+1)(b1 +a0 ∗m)a0, ..., ai+2 +(r+1)(bi+2 +a0 ∗m)a0),
(b1 +a0 ∗m, ..., bi+2 +a0 ∗m)).

Lemma 8 ∀k ≥−1, ∀a,b,a′,b′ ∈ Nk+2,
i f a′ ≤ a and b′ ≤ b then measure(k)(a′, b′)≤ measure(k)(a, b);
i f a′ ≤ a, b′ ≤ b and a′ 6= a then measure(k)(a′, b′)< measure(k)(a, b).

Proof. By definition of measure.

Lemma 9 Let a,b ∈ Nd+2.

• ∀k ∈ J0; dK, i f tk(a),vk(b) ∈ Nd+2 then 0≤ measure(d)(tk(a), vk(b))< measure(d)(a, b);

• ∀k ∈ J0; d +1K, i f uk(a) ∈ Nd+2 then 0≤ measure(d)(uk(a), b)< measure(d)(a, b).

Proof. By Lemma 8 and definitions of measure, t, u and v.
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J(i+1) (A @(x!
i := N1) | N[x!

i/x] N2 ... Np) (tk(a), vk(b))K

J(i) (A | (λ k!x.N ! N1) ... Np) (a, b)K
(β !)

J(i+1) (A @(xi := N1) | N[xi/x] N2 ... Np) (uk(a), b)K

J(i) (A | λ kx.N N1 ... Np) (a, b)K
(β )

J(i) (A 1@(x := N)@A 2 | N N1 ... Np) (a, b)K

J(i) (A 1@(x := N)@A 2 | x N1 ... Np) (a, b)K
(h)

J(i) (A |M0) (ud+1(a), b)K J(i) (A |M1 N1 ... Np) (ud+1(a), b)K J(i) (A |M2 N1 ... Np) (ud+1(a), b)K

J(i) (A | (i f M0 then M1 else M2) N1 ... Np) (a, b)K
(if)

J(0) ( /0 |M′) ((m, ..., m), (0, ..., 0))K
(root)

Figure 3: The Rules of the Transformation Tree of M: T (M)

Definition 19 The Transformation Tree of M, T (M), describes the computation tree of KB on the input
M and contains nodes which are elements of the set N× (Ctx×ΛB)× (Nd+2 ×Nd+2). This tree is
inductively defined by the rules given in Figure 3. Note that the terms in this tree are decorated (these
terms are stratified terms).

T (M) will be used to bound the time of computation of KB on M.

3.2 APTIME soundness of KB

Lemma 10 Let J( j), (A |t), (a, b)K be a node of T (M).

1. f or each (x!
i := ti) ∈A , vectd((ti)A )≤ b.

2. vectd((t)A )≤ a.

Proof.

1. By induction on the structure of the tree using Lemmas 6 and 7.

2. By induction on the structure of the tree using (1) and Lemma 7
(given that all the elements of the canonical composition of t and all the terms of A are subterms
of M).

Lemma 11 Let n = J( j), (A |t), (a, b)K and n′ = J( j′), (A ′|t ′), (a′, b′)K be two nodes of T (M). If n′

is a son of n linked by a rule (β !), (β ) or (i f ), then 0≤ measure(d)(a′, b′)< measure(d)(a, b).

Proof. By Lemma 10 we have a,b,a′,b′ ∈ Nd+2, thus by Lemma 9 we have 0≤ measure(d)(a′, b′)<
measure(d)(a, b).

Definition 20 Let n be a node of T (M).

• #β !(n) denotes the number of applications of the (β !) rule in the path between the root of T (M)
and n.

• #β (n) denotes the number of applications of the (β ) rule in the path between the root of T (M)
and n.
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• #h(n) denotes the number of applications of the (h) rule in the path between the root of T (M) and
n.

• #i f (n) denotes the number of applications of the (i f ) rule in the path between the root of T (M)
and n.

Lemma 12 Let n be a node of T (M).

1. #β !(n)+#β (n)+#i f (n)≤ measure(d)((m, ..., m), (0, ..., 0))

2. #h(n)≤ (measure(d)((m, ..., m), (0, ..., 0)))2

Proof.

1. By Lemma 11.

2. Let n′ and n′′ two nodes of T (M) such that there is a path of applications of the (h) rule from n′

to n′′.
#h(n′′)−#h(n′)≤ #(A n′) = #β !(n′)+#β (n′).
Thus #h(n)≤ (#β !(n)+#β (n))∗ (#β !(n)+#β (n)+#i f (n)).

Lemma 13 ∀i ∈ J1; d +1K,
measure(d)((m, ...,m), (0, ...,0))≤ measure(d−i)((m3i+1

, ...,m3i+1
), (m3i+1, ...,m3i+1)).

Proof. By induction on i using Lemma 8.

Theorem 5 The machine KB on the input M is computing in a time bounded by m3d+3
.

Proof. By Lemma 13, measure(d)((m, ..., m), (0, ..., 0))≤ m3d+2
.

Furthermore by Lemma 12, let n be a node of T (M),
let k = measure(d)((m, ..., m), (0, ..., 0)) and let pn = #β !(n)+#β (n)+#i f (n)+#h(n),
pn ≤ k+ k2.
Thus Time(KB(M))≤ 2∗Depth(T (M))+1 = 2∗ (max

n
pn)+1≤ 2∗ (m3d+2

+m2∗3d+2
)+1.

Note that the measure we have defined can be applied in the restricted case of DLAL programs: in
this case the machine is deterministic and our measure gives a new proof that DLAL terms of boolean
type can be evaluated in polynomial time where the degree of the polynomial depends on the depth of
the term.

3.3 Correctness of KB

Now, we need to prove that the alternating λ -calculus machine computes the right value.

Lemma 14 If J(∃) A | {b; t}K (resp. J(∀) A | {b; t} {b′; t ′}K) is a configuration of the computation of
KB on M then ;` (t)A : §nBool (resp. ;` (t)A : §nBool and ;` (t ′)A : §n′Bool).

Proof. By induction on the structure of the tree using Theorem 1.

Lemma 15 If c = J(∃) A | {b; t}K (resp. J(∀) A | {b; t} {b′; t ′}K) is a configuration of the computation
of KB on M then KB is accepting c if and only if b← (t)A (resp. b← (t)A and b′← (t ′)A ).

Proof. By induction on the tree, starting from the leafs and using Lemmas 14 and 4.

Theorem 6 The machine KB is accepting M if and only if Norm(M) = T .
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Γ1;∆1 ` t1 : A1 Γ2;∆2 ` t2 : A2
Γ1,Γ2;∆1,∆2 ` t1⊗ t2 : A1⊗A2

(⊗ i)

Γ1;∆1 ` u : A1⊗A2 Γ2;x1 : A1,x2 : A2,∆2 ` t : B
Γ1,Γ2;∆1,∆2 ` let u be x1⊗ x2 in t : B

(⊗ e)

Figure 4: Derived rules

Proof. By Lemma 15.
If t is a closed term of type W⇒ §nBool, we define L (t) as the set of words accepted by t. Finally,

we obtain the desired result:

Theorem 7 (APTIME soundness of DLALB) Let t be a term of ΛB such that ;` t : W⇒ §nBool or
;` t : W ( §nBool has a derivation of depth d.
Let M be the Alternating Turing Machine which, on the input i represented by the λ -term w, simulates
the machine KB on the input (t w).
Then M decides the language represented by t and M is computing in time O(m3d+4

).
Thus L (t) ∈ APT IME.

Proof. By Theorems 6 and 5.

4 APTIME Completeness

This section presents the second part of the proof that DLALB characterizes the predicates of PSPACE
and is simply using classical ideas of the literature (see [3] and [7]).

We have the following data types for unary integers and binary words in DLALB:

N = ∀α.(α ( α)⇒ §(α ( α),

W = ∀α.(α ( α)⇒ (α ( α)⇒ §(α ( α).

The inhabitants of types N and W are the familiar Church codings of integers and words:

n = λ f .λx. f ( f . . .( f︸ ︷︷ ︸
n

x) . . .),

w = λ f0.λ f1.λx. fi1( fi2 . . .( finx) . . .),

with i ∈ {0,1}, n ∈ N and w = i1i2 · · · in ∈ {0,1}∗.
It can be useful in practice to use a type A⊗B. It can be defined anyway, thanks to full weakening:

A⊗B = ∀α.((A ( B ( α)( α).

We use as syntactic sugar the following new constructions on terms with the typing rules of Figure
4:

t1⊗ t2 = λx.xt1t2,
let u be x1⊗ x2 in t = u(λx1.λx2.t).
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Theorem 8 (APTIME completeness of DLALB) If a function f : {0,1}?→{0,1} is computable in time
n2d

by a one-tape alternating Turing machine for some d, then there exists a term M of ΛB such that
;`M : W⇒ §2d+2Bool and M represents f .

Proof (Sketch). Let M be an ATM with 2 symbols, 1 tape, k classical states and four characteristic
states. The four characteristic states: Accepting, Rejecting, Universal and Existential, are represented
respectively by A = F ⊗ T , R = F ⊗ F , ∧ = T ⊗ F and ∨ = T ⊗ T of type Bool2.

Following the idea of [1], let Conf be the DLALB-type

∀α.(α−◦α)⇒ (α−◦α)⇒ §((α−◦α)2⊗ (Boolk⊗Bool2)),

which serves as a type for the configurations of the ATM.
We will proceed in the same way as Gaboardi et al.:

• show that all polynomials can be represented in the system;

• define a function Step which answers recursively if a configuration will be accepted or not by the
ATM, it will be given the type:
(Conf ( Bool2)( (Conf ( Bool2);

• define a term which decides if a given configuration is accepted, by iterating Step a polynomial
number of times.

We have the following DLALB-terms:

• trans1 (resp. trans2) : Conf ( Conf for one-step of the first (resp. the second) function of transi-
tion of the ATM (similar to trans in [2]);

• Kind : Conf ( Bool2 for the projection from a configuration to its characteristic state;

• P : N ( §2dN for the polynomial n 7→ n2d
(same as P in [2]).

The term Step (of type (Conf ( Bool2)( (Conf ( Bool2)) is defined in a way analogous to Step
in [7]:

• Term3 = i f π2 (h (trans1 c)) then F⊗ (π2 (h (trans2 c))) else R;

• Term2 = i f π2 (h (trans1 c)) then A else F⊗ (π2 (h (trans2 c)));

• Term1 = i f π2 (Kind c) then Term2 else Term3;

• Step= λh.λc.i f π1 (Kind c) then Term1 else Kind c.

Step term operation:

• If Step receives as argument a configuration c and a function of characterization h of type Conf (
Bool2 such that h (trans1 c) (resp. h (trans2 c) returns A if trans1 c is accepted by the ATM and
R if it is rejected (resp. A if trans2 c is accepted by the ATM and R if it is rejected) then Step h c
returns A if c is accepted by the ATM and R if it is rejected;

• Term1 represents the case where the characteristic state of c is neither Accepting nor Rejecting (in
which cases it is sufficient to return Kind c);

• Term2 (resp. Term3) represents the case where the characteristic state of c is Existential (resp.
Universal).

We also have the following DLALB-terms:

• init : W ( Conf for initialization (similar to init in [2]);
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Let ∆ = h : Conf ( Bool2,c : Conf

;` π2 : ∀α.∀β .(α⊗β )( β

;` π2 : ∀β .(Bool⊗β )( β
(∀ e)

;` π2 : Bool2 ( Bool
(∀ e)

;h : Conf ( Bool2 ` h : Conf ( Bool2
(Id)

;` trans1 : Conf ( Conf ;c : Conf ` c : Conf
(Id)

;c : Conf ` trans1 c : Conf
(( e)

;∆ ` (h (trans1 c)) : Bool2
(( e)

;∆ ` π2 (h (trans1 c)) : Bool
(( e)

;` F : Bool (B0 i)
;∆ ` π2 (h (trans2 c)) : Bool

;∆ ` F⊗ (π2 (h (trans2 c))) : Bool2
(⊗ i)

;∆ ` π2 (h (trans1 c)) : Bool ;∆ ` A : Bool2 ;∆ ` F⊗ (π2 (h (trans2 c))) : Bool2

;∆ ` i f π2 (h (trans1 c)) then A else F⊗ (π2 (h (trans2 c))) : Bool2
(B e)

Figure 5: Type derivation for the term Term2

• length : W ( N for the length map (similar to length in [2]);

• coer : W ( §2dW for an identity function (usefull for the typing and similar to coer in [2]).

Finally we have M : W( §2d+2Bool which is the term representing the ATM M : M= λw.(π2 (P (length w) Step Kind (init (coer w)))).
M term operation:

• init (coer w)) is a term which represents the initial configuration of the ATM.

• Step calls itself recursively n2d
times (with n, represented by length w, the length of the word

w) -thanks to the term P (length w)- so that it calls Kind only on configurations which have a
characteristic state Accepting or Rejecting. Thus the term P (length w) Step Kind (init (coer w))
returns A if w is accepted by the ATM and R if it is rejected.

• Therefore π2 (P (length w) Step Kind (init (coer w))) returns T (true) if w is accepted by the ATM
and F (false) if it is rejected. Thus M represents M .

5 Conclusion and perspectives

We have presented a polymorphic type system for lambda calculus with booleans which guarantees
that all well-typed terms are representing APTIME predicates and that all predicates of APTIME are
represented by well-typed terms. Thus this system is characterizing PSPACE (given that PSPACE =
APTIME).
Otherwise, if we were to consider terms of type W⇒ §nW instead of terms of type W⇒ §nBool we
believe that we would obtain a characterization of FPSPACE without changing the type assignment
system and with the same data type in input and output (which is a property not shared by STAB).
Now, it would be interesting to see if system DLALB could be modified in order to characterize the
polynomial hierarchy (PH). We think that such study would be facilitated by the use of APTIME Abstract
Machine in the Soundness part of the proof of this paper. Thus this proof could be reused to prove the
PH soundness of the modified system of DLALB.
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