
A. Banerjee, O. Danvy, K.-G. Doh, J. Hatcliff (Eds):
David A. Schmidt’s 60th Birthday Festschrift
EPTCS 129, 2013, pp. 211–228, doi:10.4204/EPTCS.129.13

c© D. Giannakopoulou and C. S. Păsăreanu
This work is licensed under the
Creative Commons Attribution License.

Abstraction and Learning for Infinite-State
Compositional Verification

Dimitra Giannakopoulou
NASA Ames

Moffett Field, CA, USA
dimitra.giannakopoulou@nasa.gov

Corina S. Păsăreanu
CMU/NASA Ames

Moffett Field, CA, USA
corina.s.pasareanu@nasa.gov

Despite many advances that enable the application of model checking techniques to the verification
of large systems, the state-explosion problem remains the main challenge for scalability. Composi-
tional verification addresses this challenge by decomposing the verification of a large system into the
verification of its components. Recent techniques use learning-based approaches to automate com-
positional verification based on the assume-guarantee style reasoning. However, these techniques are
only applicable to finite-state systems. In this work, we propose a new framework that interleaves
abstraction and learning to perform automated compositional verification of infinite-state systems.
We also discuss the role of learning and abstraction in the related context of interface generation for
infinite-state components.

1 Introduction

Despite several breakthroughs that enable the application of model checking to the verification of real-
istic systems, the essential challenge in model checking remains the well-known state-space explosion
problem: the size of a concurrent reactive system to be verified is the product of the sizes of its constituent
components. Thus the cost of exhaustive verification as done in model checking grows exponentially in
the number of state variables.

Compositional techniques attempt to tame this problem by applying verification to individual compo-
nents and merging the results without analyzing the whole system. In checking components individually,
it is often necessary to incorporate some knowledge of the context in which each component is expected
to operate correctly. Assume-guarantee reasoning [21, 25] addresses this issue by using assumptions that
capture the expectations that a component makes about its environment. The simplest such rule checks
if a system composed of components M1 and M2 satisfies a property P by checking that M1 under as-
sumption A satisfies P (Premise 1) and discharging A on the environment M2 (Premise 2). For safety
properties, Premise 2 amounts to checking that A is a conservative abstraction of M2, i.e., an abstraction
that preserves all of M2’s execution paths. This rule is also represented as follows, where the notation is
described in more detail in Section 2.

1 : 〈A〉M1 〈P〉
2 : 〈true〉M2 〈A〉
〈true〉M1 ‖M2 〈P〉

Assumptions have traditionally been developed manually, a limiting factor to the practical impact
of assume-guarantee reasoning. In this article, we review learning-based frameworks that automate the
application of assume-guarantee reasoning [8, 28]. These frameworks use the L* automata learning algo-
rithm [2] to generate and refine assumptions, based on results obtained from model checking individual
components separately. Other related approaches followed (see e.g. articles in journal issue [14]).

http://dx.doi.org/10.4204/EPTCS.129.13
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

212 Infinite-State Compositional Verification

These prior approaches were performed in the context of finite-state components. In contrast, the
focus of the present work is on compositional verification in the context of infinite-state (or very large)
components, where the verification of individual components itself is intractable. We introduce com-
ponent abstractions for this task, and explain how component abstraction refinement interacts with as-
sumption generation. This article contributes a framework for automated assume-guarantee reasoning of
infinite-state systems. A related problem that we studied in the past in the context of infinite-state systems
is component interface generation [30]. We explain here the differences between the two approaches, in
particular the different types of abstractions that are needed in each.

2 Formalisms

2.1 Component Models and Properties

2.1.1 Communicating State Machines

We model software components as (possibly infinite) communicating state machines. Note that typically
components have implicit finite representations (e.g. a program) and only their semantics are given as
infinite state machines.

Let A ct be the universal set of observable actions and let τ denote a local action unobservable to a
component’s environment.

A CSM M is a four-tuple 〈Q,αM,δ ,q0〉 where:

• Q is a non-empty set of states.

• αM ⊆A ct is a set of observable actions called the alphabet of M.

• δ ⊆ Q× (αM∪{τ})×Q is a transition relation

• q0 ∈ Q is the initial state

We write q a−→ q′ for (q,a,q′) ∈ δ . A trace t of a CSM M is a finite sequence of observable actions
that label the transitions that M can perform starting at its initial state (ignoring the τ-transitions). The
language of M, denoted L (M) is the set of all traces of M.

Note that we assume that the state set Q may be infinite but the alphabet αM is finite; the actions in
the alphabet can be seen as modeling e.g. sending and receiving of messages or method calls and returns
for software components. Method parameters are not treated here (see [3, 16] for approaches that handle
parameters).

We sometimes abuse the notation and denote by t both a trace and its trace CSM. For a trace t of
length n, its trace CSM consists of n+1 states, where there is a transition between states m and m+1 on
the mth action in the trace t. For Σ ⊆ A ct, we use t ↑ Σ to denote the trace obtained by removing from
t all occurrences of actions a /∈ Σ. Furthermore, M ↑ Σ is defined to be a CSM over alphabet Σ which is
obtained from M by renaming to τ all the transitions labeled with actions that are not in Σ. Let t, t ′ be
two traces and Σ, Σ′ be the sets of actions occurring in t, t ′, respectively. By the symmetric difference of
t and t ′ we mean the symmetric difference of the sets Σ and Σ′.

A CSM M = 〈Q,αM,δ ,q0〉 is non-deterministic if any of these two conditions holds: 1) it contains
τ-transitions or 2) if there exists (q,a,q′),(q,a,q′′) ∈ δ such that q′ 6= q′′. Otherwise, M is deterministic.

D. Giannakopoulou and C. S. Păsăreanu 213

2.1.2 Parallel Composition of CSMs

Let M1 = 〈Q1,αM1,δ
1,q1

0〉 and M2 = 〈Q2,αM2,δ
2,q2

0〉 be two CSMs. The parallel composition operator
‖ is a commutative and associative operator that combines the behavior of two components by synchro-
nizing the actions common to their alphabets and interleaving the remaining actions. Formally, M1 ‖M2
is a CSM M = 〈Q,αM,δ ,q0〉, where Q = Q1×Q2, q0 = (q1

0,q
2
0), αM = αM1∪αM2, and δ is defined

as follows, where q1,q′1 ∈ Q1 and q2,q′2 ∈ Q2:

q1
a−→ q′1, a /∈ αM2

(q1,q2)
a−→ (q′1,q2)

q2
a−→ q′2, a /∈ αM1

(q1,q2)
a−→ (q1,q′2)

q1
a−→ q′1, q2

a−→ q′2, a 6= τ

(q1,q2)
a−→ (q′1,q

′
2)

The language of M1 ‖M2 is L (M1 ‖M2) = {t | t ↑ αM1 ∈L (M1)∧t ↑ αM2 ∈L (M2)∧t ∈ (αM1∪
αM2)

∗}

2.1.3 Properties

In this paper, we address assume-guarantee reasoning in the context of checking safety properties. For
the context of our presentation, a safety property is modeled as a deterministic CSM P, whose language
L (P) defines the set of acceptable behaviors over αP. For CSMs M and P where αP⊆ αM, M |= P if
and only if

∀t ∈L (M) : t ↑ αP ∈L (P).

Checking properties reduces to reachability checks: M |= P holds iff a special error state is unreach-
able in M ‖ Perr, where Perr is the complement of P and is obtained by completing P such that each
missing transition on αP becomes a transition to the error state.

2.2 Assume-guarantee Reasoning

In the assume-guarantee paradigm a formula is a triple 〈A〉M 〈P〉, where M is a component, P is a
property, and A is an assumption about M’s environment. The formula is true if whenever M is part of
a system satisfying A, then the system must also guarantee P, i.e., ∀E, E ‖M |= A implies E ‖M |= P.
Note that when αP⊆ αA∪αM, this is equivalent to A ‖M |= P.

Let M be a finite-state component with Σ being the set of its interaction points with the environment,
i.e. the set of actions which will participate in the composition of M with another component from the
environment. Furthermore, let P be a safety property. Then there is a natural notion of the weakest
assumption Aw for M with respect to P, with αAw = Σ. Aw is characterized by two properties:

• Safety: 〈Aw〉M 〈P〉 holds.

• Permisiveness: Aw characterizes all the possible environments E under which P holds, i.e.∀E : M ‖
E |= P⇒ E |= Aw.

These two conditions essentially ensure that ∀E : M ‖ E |= P iff E |= Aw. It has been shown that, for
any finite-state component M, the weakest assumption Aw exists, and can be constructed algorithmically.
The weakest assumption is associated with a similar notion of precision defined in the literature for “tem-
poral” component interfaces [20], i.e., interfaces that capture ordering relationships between invocations

214 Infinite-State Compositional Verification

of component methods. For example, an interface may describe the fact that closing a file before opening
it is undesirable because an exception will be thrown. An ideal interface should precisely represent the
component in all its intended usages. It should be safe, meaning that it should exclude all problematic
interactions, and permissive, in that it should include all the good interactions [20].

Similarly, assumption safety is concerned with restricting behaviors to only those that satisfy P.
Permissiveness is concerned with including behaviors, making sure that behaviors are restricted only if
necessary. Permissiveness is desirable, because Aw is then appropriate for deciding whether an environ-
ment E is suitable for M1 (if E does not satisfy Aw, then E ‖M1 does not satisfy P).

The simplest assume-guarantee rule is for checking a safety property P on a system with two com-
ponents M1 and M2.

Rule ASYM

1 : 〈A〉M1 〈P〉
2 : 〈true〉M2 〈A〉
〈true〉M1 ‖M2 〈P〉

In this rule, A denotes an assumption about the environment of M1. Note that the rule is not sym-
metric in its use of the two components, and does not support circular reasoning. Despite its simplicity,
experience has shown it to be quite useful in the context of checking safety properties.

2.2.1 Soundness and Completeness

Soundness of an assume-guarantee rule means that whenever its premises hold, its conclusion holds as
well. Without soundness, we cannot rely on the correctness of conclusions reached by applications of the
rule, making the rule useless for verification. Completeness states that whenever the conclusion of the
rule is correct, the rule is applicable, i.e., there exist suitable assumptions such that the premises of the
rule hold. Completeness is not needed to ensure correctness, but it is an important measure for the us-
ability of the rule. Rule ASYM is both sound and complete. To show soundness, note that 〈true〉M2 〈A〉
implies 〈true〉M1 ‖M2 〈A〉. Then, since 〈A〉M1 〈P〉 also holds, it follows that 〈true〉M1 ‖M2 〈P〉 holds
as well (from the definition of assume-guarantee triples). Completeness holds trivially, by substituting
M2 for A.

For the use of rule ASYM to be justified, the assumption should be (much) smaller than M2, but still
reflect M2’s behavior, i.e. A should be an abstraction of M2, according to premise 2. Additionally, an
appropriate assumption for the rule needs to “restrict” M1 enough to satisfy P in premise 1. Coming up
with such assumptions manually is highly non-trivial. In the next sections we describe techniques for
synthesizing assumptions automatically.

2.3 Abstraction

To check properties of infinite-state components, we build may and must abstractions of software compo-
nents. A popular technique uses predicate abstraction – a special instance of abstract interpretation [10]
that maps a potentially infinite state transition system into a finite state transition system via a finite set
of predicates Preds= {p1, . . . , pn} over a program’s variables.

An abstraction function α maps a concrete state q to a set of predicates that hold in q: α(q) = {p ∈
Preds | q |= p}. For a concrete transition we define corresponding may and must transitions. Let qA,q′A
denote abstract states, and q,q′ denote concrete states (in the un-abstracted system):

D. Giannakopoulou and C. S. Păsăreanu 215

• qA
a−→must q′A iff ∀q s.t. α(q) = qA, ∃q′ s.t. α(q′) = q′A and q a−→ q′.

• qA
a−→may q′A iff ∃q s.t. α(q) = qA and ∃q′ such that α(q′) = q′A and q a−→ q′.

Given component with communicating state machine C, the must and may abstractions with respect
to the set of abstract predicates Preds are defined as Cmust

Preds = (2Preds,Σ,α(q0),−→must) and Cmay
Preds =

(2Preds,Σ,α(q0),−→may), respectively. We write Cmust or Cmay when Preds is clear from the context.
The must abstraction consists of behaviors which are guaranteed to be present in the concrete (un-

abstracted) component; it represents an under-approximation as it might miss some concrete behaviors.
The may abstraction represents an over-approximation; it consists of all concrete behaviors of the con-
crete component but it may also contain additional, spurious ones.

Algorithms for computing may and must abstractions with the help of a theorem prover are given
in e.g. [26]. For automated abstraction refinement, we use weakest precondition calculations over coun-
terexample traces [7, 23]. Let φ be a predicate characterizing a set of states. The weakest precondition
of φ with respect to a transition τi is wp(φ ,τi) = {q|(q

τi−→ q′ =⇒ φ(q′))} and it characterizes the largest
set of states whose successors by transition τi satisfy φ .

From the above definitions it follows that the may and must abstractions define simulations between
Cmust and C, and between C and Cmay, respectively. Since simulation implies trace inclusion, we have
the following characterization of under- and over- approximations:

L
(
Cmust)⊆L (C)⊆L (Cmay)

2.4 The L* Algorithm

L* was developed by Angluin [2] and later improved by Rivest and Schapire [29]. L* learns an unknown
regular language U over alphabet Σ and produces a minimal deterministic finite state automaton (DFA)
that accepts it. L* needs to interact with an oracle, called a Minimally Adequate Teacher, that answers
two types of questions from L*. The first type is a membership query asking whether a string σ ∈ Σ∗ is
in U . For the second type, the learning algorithm generates a conjecture A and asks whether L(A) =U . If
L(A) 6=U the Teacher returns a counterexample, which is a string σ in the symmetric difference of L(A)
and U . L* is guaranteed to terminate with a minimal automaton A for U . If A has n states, L* makes at
most n− 1 incorrect conjectures. The number of membership queries made by L* is O(kn2 + n logm),
where k is the size of Σ, n is the number of states in the minimal DFA for U , and m is the length of the
longest counterexample returned when a conjecture is made.

3 Compositional Verification for Finite-State Systems

3.1 Learning Assumptions

From the definition of the weakest assumption Aw, one can observe that for Aw, the premises of Rule
ASYM become necessary, in addition to being sufficient, for the conclusion of the rule to hold. In
other words, (〈Aw〉M1 〈P〉) and (〈true〉M2 〈A〉w) hold, if and only if (〈true〉M1 ‖M2 〈P〉). This is an
advantage for an automated assume-guarantee reasoning framework, since it enables us to also disprove
properties of a system, compositionally.

The framework illustrated in Figure 1, and first presented in [8], provides a learning-based approach
to assume-guarantee reasoning of finite-state components. In this framework, L* targets the computation
of the weakest assumption Aw, and its application to rule ASYM. The set of communicating actions of

216 Infinite-State Compositional Verification

conjecture:	
 Ai	

safe?	

true	

false	
 +	
 cex	
 c	

true	

permissive?	

c	
 ↑αAi	

1.  	
 	
 	
 〈A〉	
 M1	
 	
 〈P〉	

2.  〈true〉	
 M2	
 〈A〉	

〈true〉	
 M1||M2	
 〈P〉	

〈true〉	
 M2	
 〈Ai〉	

false	
 +	
 cex	
 c	

false	
 true	

〈Ai〉	
 M1	
 〈P〉	

query	
 c	
 ↑αAi	

〈true〉M1||M2〈P〉	

holds	

〈true〉M1||M2〈P〉	

does	
 not	
 hold	

query:	
 string	
 s	

〈s〉 M1 〈P〉

true/false	

L*	

Figure 1: Learning Assumptions for Assume-Guarantee Reasoning

component M1 with its environment is defined as: (αM1 ∪αP)∩αM2. We use this set as the alphabet
of the weakest assumption in this context, hence the alphabet over which L* is learning. Note that the
framework uses the knowledge of the actual environment of component M1, namely, component M2,
to make the reasoning more efficient. More specifically, the framework implements a teacher for L*,
meaning that it responds to queries and conjectures, as described in the following.
Queries. L* is first used to repeatedly query M1 to check whether, in the context of strings s, M1 violates
the property. More formally, the query corresponds to checking the triple 〈s〉M1 〈P〉 as illustrated in
Figure 1. Checking 〈s〉M1 〈P〉 corresponds to simulating string s on M1 ‖ P: if an error is reachable, then
the triple is false, otherwise it is true. The query returns true/false if 〈s〉M1 〈P〉 is true/false, respectively.
This is because, as mentioned, Aw allows all behaviors that satisfy the property, and disallows only
violating behaviors.
Conjectures. The automaton Ai conjectured during iteration i, is checked for correctness, which in this
context means checking whether it corresponds to the weakest assumption or not. As discussed earlier,
the weakest assumption is safe and permissive. We therefore reduce equivalence queries to two separate
checks, for safety, and permissiveness of Ai.

The first check is for safety: 〈Ai〉M1 〈P〉; it can be performed by a model checker. If Ai is safe, then
the teacher proceeds to checking permissiveness. If it is unsafe, the model checker returns a counterex-
ample. The resulting counterexample c, projected on the assumption alphabet αAi = αAw, is returned to
L* to refine its conjecture. The projection is necessary because L* needs counterexamples in terms of
the alphabet over which it is learning.

As discussed, permissiveness is concerned with ensuring that the assumption does not exclude cor-
rect behaviors. However, given the fact that the main goal of the framework is to prove or disprove
a property on the system using assume-guarantee reasoning, the framework does not need to generate
a fully permissive assumption. Rather, it uses M2 to add behaviors to over-restrictive assumptions on
demand, and as needed for completion of the verification.

Note that the check for safety coincides with premise 1 of Rule ASYM. It therefore remains to
check premise 2 (〈true〉M2 〈Ai〉). We use premise 2 to drive the permissiveness check and potentially
complete assume-guarantee reasoning in Figure 1 as follows. If 〈true〉M2 〈Ai〉 is true, then we know that
both premises of Rule ASYM hold, and therefore that P holds for M1 ‖M2. If 〈true〉M2 〈Ai〉 is false, the

D. Giannakopoulou and C. S. Păsăreanu 217

Teacher performs some analysis to determine the underlying reason (see Figure 1). The Teacher performs
a query (of the L* type) in order to determine whether the returned counterexample c, projected to the
alphabet of the assumption, belongs to Aw, in which case L* needs to refine the assumption. If the query
returns true, then Ai is not permissive, so c ↑ αAi is returned to L* for refinement of its guess. If, on the
other hand, the answer is false, it means that c is a word that belongs to M2, in the context of which M1
violates the property P. As a consequence, M1 ‖M2 does not satisfy the property P.

Each new assumption marks the beginning of the next iteration cycle. Notice that the answers that the
framework provides to L* are always precise with respect to the targeted weakest assumption. However,
the framework uses M2 to select which missing words to include in the language of the assumption.
The reason is that we restrict our reasoning to a specific context, rather than accounting for all possible
contexts, as required for the computation of Aw. That means, of course, that the assumption obtained
from this framework does not necessarily correspond to Aw. On the other hand, we remind the reader
that the primary goal is to obtain conclusive results from the assume guarantee rule. As soon as we are
able to prove or disprove the property in the system, we stop refining the learned assumption, since we
have achieved our goal. The assumption computed with this framework will be smaller than, or in the
worst case equal to Aw in terms of number of states, as guaranteed by the characteristics of L*. In the
worst case, where Aw itself is computed, the framework is guaranteed to terminate, because Aw is both
necessary and sufficient, and therefore the framework will prove or disprove the property during this
iteration.

3.2 Correctness Arguments.

Framework correctness argument: The framework directly uses the assume-guarantee rule Rule ASYM

to answer conjectures. Soundness of the rule guarantees correctness of the positive answers by the
framework. On the other hand, each counterexample reported is a real counterexample, as discussed
above.

Teacher correctness argument: Correctness of the teacher corresponds to showing that all the answers
returned to L* are consistent with Aw. This was discussed during the presentation of the framework
above.

Termination argument: Since the Teacher implemented in our framework only comes back to L* for
refinement with counterexamples related to Aw, the framework eventually converges to Aw, unless it ter-
minates earlier. As discussed, Aw makes Rule ASYM sound and complete, and therefore our framework
will return a conclusive answer at that iteration.

3.3 Extensions

The framework has been extended to reasoning about more than two components (by applying the frame-
work recursively for Premise 2) and to other circular and symmetric rules [28]. It has been demonstrated
on checking flight software models, where it achieved significant savings in terms of time and memory,
and in some cases it was able to terminate while the monolithic (non-compositional) verification ran out
of time and memory resources.

4 Compositional Verification for Infinite-State Systems

When reasoning about infinite-state components, abstractions need to be used to further reduce the state
spaces of individual components. Figure 2 illustrates a learning-based framework for automating com-

218 Infinite-State Compositional Verification

!!"#$%&'(!!")*!+,-!!
!

#!"#$$!+.!#)/$!

01!

"#$%&2!34%/56!3!

#3$!+,
78&!#9$!

(:5;$(4#%$2!)/!
#)/$!+,!#9$!

<8=3$!

<8=3$>($?!(!

4%#$!!

4%#$!
!

$%%:%!

4%#$!

<8=3$!

#!"#$$!+,!@@!+.!#9$!A:=B3!
4%#$!

<8=3$>($?!(!
3/7#=84$'(*+,-!

4%#$!%$C5$'(-! %$(A$(D!
<8=3$!!

%#$"&'()*+,-

3/7#=84$'(*+,-!
4%#$! %$C5$'(-!

%$(A$(D!

%$C5$!)!'%$7:E$!(!!")-!
! <8=3$!! .$/0-1234&(5(-+--

3/7#=84$'(*+.-!

%$C5$'(-!

%$(A$(D!

<8=3$!

4%#$!
!%$C5$!)!'8BB!(!!")-!

!

.$/0-1234&(5(-6--

Figure 2: Automated Compositional Verification for Infinite-State Systems

positional verification for infinite-state systems.
In this section, we will first present how assume-guarantee reasoning of infinite-state components can

be performed given some assumption A. We will subsequently discuss how such steps are introduced in
creating automated assume-guarantee frameworks using learning for assumption inference.

1 : 〈A〉M1 〈P〉
2 : 〈true〉M2 〈A〉
〈true〉M1 ‖M2 〈P〉

Going back to rule ASYM, let us assume that both M1 and M2 are infinite-state, or too large to
perform the steps involved in the two premises by model checking. A standard approach used in such
cases is to use abstractions of components M1 and M2.

As discussed in Section 2, finite over-approximations, or may abstractions, of a component, are
typically used to guarantee correctness with respect to some property. May abstractions have more
behavior than the system that they abstract. As such, counterexamples that are detected using may
abstractions may be spurious. On the other hand, finite under-approximations, or must abstractions, are
better suited for detecting property violations that are not spurious. Assume-guarantee rules allow us to
infer correctness of a system based on local correctness checks of the system components. In this setting,
it makes sense to use may abstractions of components M1 and M2, since 〈A〉Mmay

1 〈P〉 =⇒ 〈A〉M1 〈P〉
and 〈true〉Mmay

2 〈A〉=⇒ 〈true〉M2 〈A〉.
We can therefore use the may abstractions to check the two premises of the assume-guarantee rule. If

both premises hold for the may abstraction it follows that the premises hold for the original un-abstracted
components, and hence P holds on the composition M1 ‖M2. Let us now analyze the two premises given
Mmay

1 and Mmay
2 .

D. Giannakopoulou and C. S. Păsăreanu 219

• Premise 1: If 〈A〉Mmay
1 〈P〉 holds, then we know that 〈A〉M1 〈P〉 holds, which completes this

check. If 〈A〉Mmay
1 〈P〉 does not hold, then we obtain a counterexample, say c. This counterexam-

ple may be spurious either due to abstraction or due to the approximation introduced by assumption
inference. Similarly to a CEGAR approach, we can determine whether c is spurious due to ab-
straction by checking if it can be simulated to completion on the infinite component M1, using an
operation simulate(c,M1). Since c is finite, simulation is possible. If c is not a valid execution of
M1, it means that it is a spurious counterexample, due to abstraction. If it is a valid execution of
M1, then it means that premise 1 does not hold, and therefore A is too approximate to make premise
1 pass. Below we will describe a new learning framework that is able to use this information to
automatically refine the abstraction Mmay

1 or the assumption A, respectively.

• Premise 2: If 〈true〉Mmay
2 〈A〉 holds, then we know that 〈true〉M2 〈A〉 holds, which completes this

check. If 〈true〉Mmay
2 〈A〉 does not hold, then we obtain a counterexample, say c, which needs to

be analyzed. This time, c may be spurious due to the abstraction of M1 or M2; furthermore, c may
be spurious due to the approximation in the assumption. We therefore simulate c on M2, using
operation simulate(c,M2). If c is not a valid execution of M2, it means that it is a spurious due
to abstraction in M2, and abstraction-refinement is needed for M2. If c is a valid execution of M2,
then it means that premise 2 does not hold, and this may be an indication of a real error or it may
mean that the counterexample is spurious either due to abstraction of M1 or to approximation in A.
Below, we describe how the proposed learning framework uses this information to automatically
refine the component abstractions or the assumption A, as needed.

4.1 Learning for Assumption Inference

Let us now revisit the learning framework for finite-state systems and see how it can be extended for
infinite-state. As discussed, L* needs a teacher that can answer membership queries and conjectures.

• Membership queries: A membership query needs to check if a finite word s over the alphabet
αAw should be included in the language of Aw. Similar to the finite-state case (see Figure 1) we
are interested in finding out whether in the context of s, M1 violates P or not. We first check
〈s〉Mmay

1 〈P〉. If it leads to no error, it means this is true for M1 as well (since the abstraction is
conservative) and true is returned to L*. If an error is detected, the reported counterexample c is
checked to see if it corresponds to a real trace in M1. This amounts to symbolically simulating c
on M1, denoted by simulate(c,M1). Since s is finite, c is finite too so the simulation is possible
and will terminate. If the result of simulation is that this is a real trace, indicating a real error in
M1, false is returned to L*. However, if this is not a real error, the spurious counterexample c is
used to refine Mmay

1 and the membership check is repeated. The abstraction-refinement denoted by
re f ine(c) is described in more detail below.

When L* produces an assumption Ai, then the new framework needs to check whether Ai can be used
to complete the assume-guarantee reasoning of the system. In other words, it needs to check Premises 1
and 2. For these checks, the framework uses Mmay

1 and Mmay
2 , respectively, as described above.

When the safety check associated with premise 1 passes, then the framework proceeds with the
permissiveness check involving M2. If, however, a counterexample c is obtained, then c needs to be
analyzed as described below (see Figure 2).

• Counterexample Analysis 1: If the result of simulate(c,M1) is that c is a violating execution of M1
then Ai must be refined; c ↑ αAi is returned to L*, and L* will work on creating a new approxima-

220 Infinite-State Compositional Verification

tion of the assumption. If c is not violating in M1 then Mmay
1 must be refined, using re f ine(c) and

the safety check is performed again with the new abstraction.

The permissiveness check consists of applying premise 2 using Mmay
2 as described above. If the check

passes, we can conclude that 〈true〉M1 ‖M2 〈P〉 holds. If not, we analyze the returned counterexample
c as described below (see Figure 2).

• Counterexample Analysis 2: If the result of simulate(c,M2) shows that c is not a real counterex-
ample, then Mmay

2 is refined using re f ine(c), and the permissiveness check is repeated. If the result
however indicates a real trace in M2, then we must further analyze c to determine if it uncovers a
real violation in the system or not.
Similar to the finite-state case (Figure 1), this further analysis amounts to performing a query for
c ↑ αAw on M1. Note that in the infinite-state case, performing a query might result in further
refinements for M1 and corresponding subsequent checks for the new abstractions (as described in
the query check above). If the result of the analysis is that the assumption needs to be refined, the
counterexample c ↑ αAw is returned to L*, which will work on creating a new approximation for
A, based on new membership queries and conjecture checks.

Note that this framework has an important characteristic: the information that is communicated to
L* is always correct with respect to the concrete system. As a result, refinement of abstractions does not
require for L* to restart learning.

In our proposed framework, abstraction refinement is applied whenever a violating trace t is dis-
covered that belongs to a may abstraction (Mmay

1 or Mmay
2) but not to the corresponding un-abstracted

components (M1 and M2 respectively). Consequently t must contain a may transition that has no cor-
respondence in the un-abstracted system. We use a simple strategy based on weakest precondition
calculations [30] to compute new abstraction predicates that are guaranteed to eliminate the spurious
transitions. Given a counterexample t as a sequence of transitions {τ1,τ2...τn} we compute refine-
ment predicates wp(true, t) by using weakest preconditions recursively based on the following definition
wp(φ , t) = wp(wp(φ ,τn),{τ1,τ2...τn−1}).

4.2 Correctness and Termination

We argue now the correctness and the termination for the proposed algorithms. Our framework returns
true only if both 〈A〉Mmay

1 〈P〉 and 〈true〉Mmay
2 〈A〉 hold. Since the assume guarantee rule is sound, it

follows that 〈true〉Mmay
1 ‖Mmay

2 〈P〉 holds, and since the may abstractions are over-approximations, it
follows that 〈true〉Mmay

1 ‖Mmay
2 〈P〉 holds as well. On the other hand, if the framework reports an error,

it finds a trace which is both a trace of M2 and of M1 and it leads to a violation of P, hence it is an error
in M1 ‖M2 as well.

For infinite-state components, the abstraction-refinement algorithm used in our proposed framework
may not always terminate. However, from previous work on automatic abstraction refinement [23], we
know that if a component M has a finite bisimulation quotient, then abstraction-refinement (based on
weakest preconditions calculations) converges to that finite quotient. It follows that there is a refinement
iteration bound i such that Mmay is bisimilar to M (in our case the argument applies to M1 and M2).
Since bisimulation implies trace equivalence it follows that L (Mmay) =L (M) at that bound. Once that
bound is reached, no abstraction-refinement is performed, and the obtained counter-examples will either
be returned to L* for assumption-refinement or they will be returned to the user as real errors, in which
case the computation will terminate. By the correctness of L* we are guaranteed that it will eventually

D. Giannakopoulou and C. S. Păsăreanu 221

in!
	

ack!

out!

in!

SENDER	
 RECEIVER	

PROPERTY	

send!
	

send	

ack!

out!
	

GENERATED	
 ASSUMPTIONS	

send!

ack!
cex: send; ack !

send!

ack!

out, send!

Figure 3: Learning-based AG reasoning for a finite system

produce Aw wrt. Mmay
1 and property P. During this step, checking premise 1 will return true (by definition

of Aw) and checking premise 2 will either return true and terminate, or return a counterexample. This
counterexample is a trace in L

(
Mmay

2

)
= L (M2) that is not in L (Aw). Since Aw is both safe and

permissive, counterexample analysis will return false and the framework will terminate.
The framework may terminate earlier, not necessarily when it reaches bisimulation quotients for M1

and M2, but as soon as the abstractions Mmay
1 and Mmay

2 and the inferred assumption A are good enough
to show that the two premises hold or to expose a real counterexample.

5 Example: A simple communication protocol

In this section, we illustrate the presented algorithms through a very simple communication protocol.
The protocol consists of two components, Sender and Receiver. We analyze two different versions of the
protocol, one for the case where its components are finite-state, and one where they are infinite-state.

5.1 Finite State Protocol

The Sender and Receiver for the finite-state case are illustrated in Figure 3. The Sender starts by re-
ceiving input from the environment. It subsequently sends a message to the Receiver, and waits for an
acknowledgement. The Receiver, upon a message being sent by the Sender produces an output, and sub-
sequently acknowledges receipt of the message. The desired property from the environment’s perspective
is that actions in and out alternate, with in occurring first. As illustrated, the compositional verification
framework produces two assumptions; the second assumption is suitable for completing the assume-
guarantee reasoning for this example. Note that the assumption has 2 states, which is one state less than
the Receiver. The example is small and used for illustrative purposes, so the benefits of compositional
verification are modest.

5.2 Infinite State Protocol

Now let us modify the example with an infinite-state Sender. The Sender has a variable x, initially set to
0, and where x is in the domain of natural numbers. In Figure 4, we represent the component in terms

222 Infinite-State Compositional Verification

in!

if(x>5) !
	

if(x<=5) !
	

sendInvalid!
	

sendValid!
	

ack!
	

x:=x%5!
x=0!

x:=read!

out!sendValid !
	

sendInvalid!
	

ack!
out!

in!

SENDER	

RECEIVER	
 PROPERTY	

Figure 4: Infinite state communication protocol

of pseudo-code, displayed in terms of its control flow. Similarly to the finite-state case, the Sender starts
by receiving input from the environment, which prompts it to perform a read, the results of which are
stored in x. In other words, this represents the non-deterministic assignment of a natural number value
to variable x, modeling in term the communication of a value from the environment. Subsequently, x
is set to its previous value modulo 5. The control flow then branches depending on whether x > 5, in
which case it communicates an invalid message, and otherwise it sends a valid message, and waits for an
acknowledgement from the Receiver. The Receiver may now receive a valid message, in which case it
behaves as in the finite-state case, but also an invalid message. In the latter case, it directly transits to its
initial state and waits for the next message. The property is identical to the finite-state case.

Assume that one first creates an abstraction of Sender based on predicates x = 0 and x > 0. The
abstraction is illustrated in Figure 5 whereas, Figure 6 depicts the learning process for this infinite state
system. As illustrated in Figure 6 , when the learning algorithm queries the abstraction for “sendInvalid”,
the answer to the query is negative. The detailed trace at the top of Figure 6 provides the exact trace of
the abstracted sender that violates property P. However, if this trace is simulated on the concrete Sender
component of Figure 4, we can detect that it is impossible for (x > 5) to hold right after performing
operation (x := x%5); therefore, this initial abstraction needs to be refined. If one adds predicates x > 5
and x≤ 5, then the learning framework is able to show that P is satisfied with assume guarantee reasoning.
Note that the assumptions obtained are similar to the infinite-state case, where send is now split in two
actions, sendValid and sendInvalid.

6 Interface Generation for Infinite-State Components

Assumptions are closely related to the notion of component interfaces. Intuitively, a component interface
summarizes aspects of a component that are relevant to its customers. Traditionally, component inter-
faces have been of a purely syntactic form, that included information about the services/methods that
can be invoked on the component, and their signatures, meaning the numbers and types of arguments
and their return values. However, there is a recognized need for richer interfaces that capture additional,
behavioral, aspects of a component.

Temporal interfaces, as introduced in Section 2, are richer interfaces that capture ordering relation-

D. Giannakopoulou and C. S. Păsăreanu 223

if (x<=5) !
	

sendValid!
	

ack!
	

x:=x%5!

xeq0!

xeq0! xeq0!

if (x<=5) !
	

x:=i%5!

xgt0!

xeq0!

xeq0!

x:=x%5!
xgt0!

if (x>5) !
	

xgt0!

xgt0!
sendInvalid!
	

xgt0!
sendValid!
	

ack!
	

in!

x:=read!

x:=read!

xeq0!ABS_SENDER	

Figure 5: Abstracted sender - version 1

LEARNING	
 –	
 INFINITE	
 STATE	
 CASE	

query: sendInvalid!

xeq0! xgt0! x:=x%5!
sendInvalid!
	
 xgt0!

x:=read!
xeq0! xgt0!

if(x>5)!

(x:=x%5) && (x>5) is not satisfiable !

sendValid!
ack!

cex1: sendValid; ack !
sendValid!

ack!

out, sendValid!
sendInvalid!

add predicate xgt5!

sendInvalid!

sendInvalid!

GENERATED	
 ASSUMPTIONS	

in! in!
xgt0! xgt0!

Figure 6: Learning-based AG reasoning for infinite system

224 Infinite-State Compositional Verification

s0

serror s1 s2

a

b
c

b

M
Aerr

τ	

s0 s1
a

serror

a b

b

s0

s0

s1

s1

s2

s1

a

b

c serror

serror
b

τ	

s1

serror

M || Aerr

Figure 7: Checking for Permissiveness

ships between invocations of component methods. Ideally, a temporal interface should precisely repre-
sent the component in all its intended usages. In other words, it should include all the good interactions,
and exclude all problematic interactions.

In such a context, component interfaces have the same flavor as assumptions that relate to safety
properties, as studied in the previous section. However typically an interface summarizes the component
irrespective of the environment in which the component is to be introduced, while we have seen that an
assumption (used in compositional reasoning) serves as a potentially imprecise interface that is sufficient
for breaking up a targeted verification problem into simpler problems; all components that participate in
the verification problem are known and available.

In fact, a precise interface is similar to the weakest component assumption. It is therefore character-
ized in terms of two properties, safety, and permissiveness. For simplicity, we consider here error states
that are not introduced by explicit properties, but are rather assumed to represent undesirable component
states (e.g. assertion violations in the component’s code). Interfaces can be learned through frameworks
similar to those we developed for assume-guarantee reasoning; queries, and the part of conjectures re-
lated to safety, are answered in an identical way.

Permissiveness, however, is more difficult because the environment of the targeted component is not
available. The example in Figure 7 shows how a permissiveness check could be performed. Component
M has states named s0, s1, s2, serror and interface A has states named s0, s1 and serror. A permissiveness
check needs to detect sequences that are blocked by the interface but legal in the component. Such
sequences identify that the interface is not permissive. This can be performed by checking reachability,
in M ‖ A, of states of the form [si,serror], where 0 ≤ i ≤ 2. According to this check, trace 〈a,b〉 leading
to state [s1,serror] in the composition could be an indication that A is not permissive. However this is not
true, since the same sequence of actions leads to [serror,serror] on a different path, due to non-determinism.
This happens because the alphabet of the assumption is {a,b}, meaning that action c in M is considered
as a τ from the point of view of A. In the figure, this is illustrated as a τ action covering action c.

This example illustrates the fact that non-determinism in component M may cause spurious coun-
terexamples in the permissiveness reachability check described above. As a consequence, precise char-
acterization of permissiveness requires determinization of component M, which can be performed using
subset construction. The permissiveness check is therefore NP-hard [1], and can be inefficient in prac-

D. Giannakopoulou and C. S. Păsăreanu 225

tice. Several approaches have been proposed to deal with this problem. Unless determinization is a
viable solution for a targeted component M [3], heuristic approaches are often used to determine whether
a counterexample is spurious [1, 15].

Let us examine now the case of infinite-state component M. Abstraction is again needed to reason
about such components. However using may abstractions alone turns out to be insufficient, because the
generated interfaces may be overly restricting (due to the spurious error traces present in the abstraction).
In previous work [30], we have shown the following result:

Assume a component M, a may abstraction Mmay and a must abstraction Mmust for M. If an interface
A for M is safe with respect to Mmay and permissive with respect to Mmust , then A is safe and permissive
with respect to M.

Based on this result, we developed a framework [30] that interleaves abstraction-refinement and L*
learning for the automated generation of interfaces for infinite-state components. The framework uses
both Mmay and Mmust to compute an interface for M that is both safe and permissive. The abstractions
are refined automatically from counterexamples obtained during the reachability checks performed by
the framework.

It is interesting to note that in case component M is observationally deterministic (i.e. deterministic
with respect to its interface actions), the must abstraction is deterministic as well. Thus its use enables
us to avoid the exponentially expensive determinization step that is required when working with non-
deterministic components. The idea of the framework, based on the result above, is to use Mmay for the
safety check, and Mmust for the permissiveness check.

The safety check is similar to the compositional verification framework. Let us therefore analyze
how the permissiveness check is performed with Mmust , when M is observationally deterministic. If in
Mmust ‖ A it is not possible to reach an error state in A that is an accepting state in Mmust , then it means
that A permissive, in which case the framework produces A as a safe and permissive interface for M. If,
however, such a combined state is reachable by some counterexample c, then c is analyzed as follows.
If c leads to an error state in M, then Mmust needs to be refined to avoid this discrepancy. Otherwise,
c represents a real counterexample to the permissiveness of A and it is returned to L* for refining the
assumption. If, on the other hand, Mmust is observationally non-deterministic, it must be determinized
prior to performing the test.

In conclusion, we use both may and must abstractions for interface generation of infinite state com-
ponents. In contrast, may abstractions are sufficient for compositional verification, because component
M2 is known and can be used for selective permissiveness checks.

7 Related Approaches

We briefly describe here some of the related work that combines abstraction and compositional reasoning
in the context of infinite system analysis. The Magic tool performs verification of concurrent, message-
passing C programs using abstraction-refinement in a compositional way; the work has been extended
with a two-level abstraction scheme, but it does not use assume-guarantee style verification. The Blast
tool uses predicate abstraction and has been extended to perform assume-guarantee reasoning for check-
ing race conditions in multi-threaded C code [19]. In contrast to our work, it targets shared memory
communicating programs, and therefore it uses a different style of assume guarantee rule. Moreover, the
approach used by Blast is not based on learning. Bandera [9, 27] was aimed at verifying concurrent Java

226 Infinite-State Compositional Verification

programs. Bandera employed data abstraction and modular reasoning with user-supplied assumptions,
but not automated assumption generation and CEGAR, as we do here. As already mentioned, algorithms
for interface synthesis for infinite state components have been presented in [1, 3, 30]. Recently, L* learn-
ing has been combined with symbolic execution to automatically generate interfaces for Java classes that
include methods with parameters [16].

8 Conclusion

In this paper, we discussed the different types of abstractions that can be used for applying learning-
based assume-guarantee reasoning and interface generation to infinite-state systems. We proposed a
new framework for automated compositional verification, and illustrated it with a simple example. At
the present time, we are not able to perform extensive experimental evaluation of the framework. For
the presented example, we carried out all steps, except for abstraction refinement, automatically. In the
future, we plan to implement and evaluate extensively the proposed framework. We are also interested in
evaluating the quality of the obtained abstractions and assumptions, and the efficiency of our interleaved
approach.

Acknowledgment

Corina Păsăreanu uses this occasion to remember the wonderful times she spent at Kansas State Uni-
versity during her graduate studies. She would like to thank Dave Schmidt and the other professors in
the Department of Computing and Information Sciences for having started her interest in abstraction and
compositional reasoning, which have been the subject of her thesis and a recurrent research theme in her
work since then.

References

[1] Rajeev Alur, Pavol Cerný, P. Madhusudan & Wonhong Nam (2005): Synthesis of interface specifications for
Java classes. In Palsberg & Abadi [24], pp. 98–109, doi:10.1145/1040305.1040314. Available at http:
//dl.acm.org/citation.cfm?id=1040305.

[2] Dana Angluin (1987): Learning Regular Sets from Queries and Counterexamples. Inf. Comput. 75(2), pp.
87–106, doi:10.1016/0890-5401(87)90052-6.

[3] Dirk Beyer, Thomas A. Henzinger & Vasu Singh (2007): Algorithms for Interface Synthesis. In Damm &
Hermanns [11], pp. 4–19, doi:10.1007/978-3-540-73368-3 4.

[4] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha & Helmut Veith (2003): Modular Verification of
Software Components in C. In: ICSE, pp. 385–395, doi:10.1109/ICSE.2003.1201217.

[5] Sagar Chaki, Joël Ouaknine, Karen Yorav & Edmund M. Clarke (2003): Automated Compositional Abstrac-
tion Refinement for Concurrent C Programs: A Two-Level Approach. Electr. Notes Theor. Comput. Sci.
89(3), pp. 417–432, doi:10.1016/S1571-0661(05)80004-0.

[6] Marsha Chechik & Martin Wirsing, editors (2009): Fundamental Approaches to Software Engineering, 12th
International Conference, FASE 2009, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings. Lecture Notes in Computer
Science 5503, Springer, doi:10.1007/978-3-642-00593-0.

[7] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu & Helmut Veith (2000): Counterexample-Guided
Abstraction Refinement. In Emerson & Sistla [12], pp. 154–169, doi:10.1007/10722167 15.

http://dx.doi.org/10.1145/1040305.1040314
http://dl.acm.org/citation.cfm?id=1040305
http://dl.acm.org/citation.cfm?id=1040305
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1007/978-3-540-73368-3_4
http://dx.doi.org/10.1109/ICSE.2003.1201217
http://dx.doi.org/10.1016/S1571-0661(05)80004-0
http://dx.doi.org/10.1007/978-3-642-00593-0
http://dx.doi.org/10.1007/10722167_15

D. Giannakopoulou and C. S. Păsăreanu 227

[8] Jamieson M. Cobleigh, Dimitra Giannakopoulou & Corina S. Păsăreanu (2003): Learning Assumptions for
Compositional Verification. In Garavel & Hatcliff [13], pp. 331–346, doi:10.1007/3-540-36577-X 24.

[9] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S. Pasareanu, Robby & Hongjun
Zheng (2000): Bandera: extracting finite-state models from Java source code. In: ICSE, pp. 439–448,
doi:10.1145/337180.337234.

[10] Patrick Cousot & Radhia Cousot (1977): Abstract Interpretation: A Unified Lattice Model for Static Anal-
ysis of Programs by Construction or Approximation of Fixpoints. In Graham et al. [17], pp. 238–252,
doi:10.1145/512950.512973. Available at http://dl.acm.org/citation.cfm?id=512950.

[11] Werner Damm & Holger Hermanns, editors (2007): Computer Aided Verification, 19th International Con-
ference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings. Lecture Notes in Computer Science 4590,
Springer.

[12] E. Allen Emerson & A. Prasad Sistla, editors (2000): Computer Aided Verification, 12th International Con-
ference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings. Lecture Notes in Computer Science
1855, Springer.

[13] Hubert Garavel & John Hatcliff, editors (2003): Tools and Algorithms for the Construction and Analysis
of Systems, 9th International Conference, TACAS 2003, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings. Lecture
Notes in Computer Science 2619, Springer.

[14] Dimitra Giannakopoulou & Corina S. Păsăreanu (2008): Special issue on learning techniques for composi-
tional reasoning. Formal Methods in System Design 32(3), pp. 173–174, doi:10.1007/s10703-008-0054-9.

[15] Dimitra Giannakopoulou & Corina S. Păsăreanu (2009): Interface Generation and Compositional Verifica-
tion in JavaPathfinder. In Chechik & Wirsing [6], pp. 94–108, doi:10.1007/978-3-642-00593-0 7.

[16] Dimitra Giannakopoulou, Zvonimir Rakamaric & Vishwanath Raman (2012): Symbolic Learning of Compo-
nent Interfaces. In Miné & Schmidt [22], pp. 248–264, doi:10.1007/978-3-642-33125-1 18.

[17] Robert M. Graham, Michael A. Harrison & Ravi Sethi, editors (1977): Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California, USA, January 1977. ACM.
Available at http://dl.acm.org/citation.cfm?id=512950.

[18] Michael Hanus, editor (2007): Practical Aspects of Declarative Languages, 9th International Symposium,
PADL 2007, Nice, France, January 14-15, 2007. Lecture Notes in Computer Science 4354, Springer.

[19] Thomas A. Henzinger, Ranjit Jhala & Rupak Majumdar (2004): Race checking by context inference. In:
PLDI, pp. 1–13, doi:10.1145/996841.996844.

[20] Thomas A. Henzinger, Ranjit Jhala & Rupak Majumdar (2005): Permissive interfaces. In Wermelinger &
Gall [32], pp. 31–40, doi:10.1145/1081706.1081713.

[21] Cliff B. Jones (1983): Tentative Steps Toward a Development Method for Interfering Programs. ACM Trans.
Program. Lang. Syst. 5(4), pp. 596–619, doi:10.1145/69575.69577.

[22] Antoine Miné & David Schmidt, editors (2012): Static Analysis - 19th International Symposium, SAS 2012,
Deauville, France, September 11-13, 2012. Proceedings. Lecture Notes in Computer Science 7460, Springer,
doi:10.1007/978-3-642-33125-1.

[23] Kedar S. Namjoshi & Robert P. Kurshan (2000): Syntactic Program Transformations for Automatic Abstrac-
tion. In Emerson & Sistla [12], pp. 435–449, doi:10.1007/10722167 33.

[24] Jens Palsberg & Martı́n Abadi, editors (2005): Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005.
ACM. Available at http://dl.acm.org/citation.cfm?id=1040305.

[25] A. Pnueli (1985): In transition from global to modular temporal reasoning about programs, pp. 123–144.
Springer-Verlag New York, Inc., New York, NY, USA, doi:10.1007/978-3-642-82453-1 5. Available at
http://portal.acm.org/citation.cfm?id=101969.101977.

http://dx.doi.org/10.1007/3-540-36577-X_24
http://dx.doi.org/10.1145/337180.337234
http://dx.doi.org/10.1145/512950.512973
http://dl.acm.org/citation.cfm?id=512950
http://dx.doi.org/10.1007/s10703-008-0054-9
http://dx.doi.org/10.1007/978-3-642-00593-0_7
http://dx.doi.org/10.1007/978-3-642-33125-1_18
http://dl.acm.org/citation.cfm?id=512950
http://dx.doi.org/10.1145/996841.996844
http://dx.doi.org/10.1145/1081706.1081713
http://dx.doi.org/10.1145/69575.69577
http://dx.doi.org/10.1007/978-3-642-33125-1
http://dx.doi.org/10.1007/10722167_33
http://dl.acm.org/citation.cfm?id=1040305
http://dx.doi.org/10.1007/978-3-642-82453-1_5
http://portal.acm.org/citation.cfm?id=101969.101977

228 Infinite-State Compositional Verification

[26] Andreas Podelski & Andrey Rybalchenko (2007): ARMC: The Logical Choice for Software Model Checking
with Abstraction Refinement. In Hanus [18], pp. 245–259, doi:10.1007/978-3-540-69611-7 16.

[27] Corina S. Păsăreanu (2001): Abstraction and Modular Reasoning for the Verification of Software. PhD
Thesis, Kansas State University.

[28] Corina S. Păsăreanu, Dimitra Giannakopoulou, Mihaela Gheorghiu Bobaru, Jamieson M. Cobleigh &
Howard Barringer (2008): Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning. Formal Methods in System Design 32(3), pp. 175–205, doi:10.1007/s10703-008-0049-
6.

[29] Ronald L. Rivest & Robert E. Schapire (1993): Inference of Finite Automata Using Homing Sequences. Inf.
Comput. 103(2), pp. 299–347, doi:10.1006/inco.1993.1021.

[30] Rishabh Singh, Dimitra Giannakopoulou & Corina S. Păsăreanu (2010): Learning Component Interfaces
with May and Must Abstractions. In Touili et al. [31], pp. 527–542, doi:10.1007/978-3-642-14295-6 45.

[31] Tayssir Touili, Byron Cook & Paul Jackson, editors (2010): Computer Aided Verification, 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings. Lecture Notes in Computer Science
6174, Springer, doi:10.1007/978-3-642-14295-6.

[32] Michel Wermelinger & Harald Gall, editors (2005): Proceedings of the 10th European Software Engineer-
ing Conference held jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2005, Lisbon, Portugal, September 5-9, 2005. ACM.

http://dx.doi.org/10.1007/978-3-540-69611-7_16
http://dx.doi.org/10.1007/s10703-008-0049-6
http://dx.doi.org/10.1007/s10703-008-0049-6
http://dx.doi.org/10.1006/inco.1993.1021
http://dx.doi.org/10.1007/978-3-642-14295-6_45
http://dx.doi.org/10.1007/978-3-642-14295-6

	1 Introduction
	2 Formalisms
	2.1 Component Models and Properties
	2.1.1 Communicating State Machines
	2.1.2 Parallel Composition of CSMs
	2.1.3 Properties

	2.2 Assume-guarantee Reasoning
	2.2.1 Soundness and Completeness

	2.3 Abstraction
	2.4 The L* Algorithm

	3 Compositional Verification for Finite-State Systems
	3.1 Learning Assumptions
	3.2 Correctness Arguments.
	3.3 Extensions

	4 Compositional Verification for Infinite-State Systems
	4.1 Learning for Assumption Inference
	4.2 Correctness and Termination

	5 Example: A simple communication protocol
	5.1 Finite State Protocol
	5.2 Infinite State Protocol

	6 Interface Generation for Infinite-State Components
	7 Related Approaches
	8 Conclusion

