
J. Borgström and B. Luttik (Eds.): Combined Workshop on
Expressiveness in Concurrency and Structural Operational
Semantics (EXPRESS/SOS 2013)
EPTCS 120, 2013, pp. 17–31, doi:10.4204/EPTCS.120.3

c© Y. Arbach, K. Peters, U. Nestmann
This work is licensed under the
Creative Commons Attribution License.

Adding Priority to Event Structures ∗

Youssef Arbach† Kirstin Peters Uwe Nestmann

Technische Universität Berlin, Germany

Event Structures (ESs) are mainly concerned with the representation of causal relationships between
events, usually accompanied by other event relations capturing conflicts and disabling. Among the
most prominent variants of ESs arePrimeESs,BundleESs,StableESs, andDual ESs, which differ
in their causality models and event relations. Yet, some application domains require further kinds of
relations between events. Here, we add the possibility to express priority relationships among events.

We exemplify our approach on Prime, Bundle, Extended Bundle, and Dual ESs. Technically, we
enhance these variants in the same way. For each variant, we then study the interference between
priority and the other event relations. From this, we extract the redundant priority pairs—notably
differing for the types of ESs—that enable us to provide a comparison between the extensions. We
also exhibit that priority considerably complicates the definition of partial orders in ESs.

1 Introduction

Concurrency Model. Event Structures (ESs) are concerned with usually statically defined relation-
ships that govern the possible occurrences of events, typically represented ascausality(for precedence)
andconflict (for choice). An event is a single occurrence or an instance of an action, and thus cannot be
repeated. ESs were first used to give semantics to Petri nets in [15], then to give semantics to process
calculi in [4, 9], and concurrent systems in general in [14].The dynamics of an ES are usually provided
either by the sets of traces compatible with the constraints, or by means of configurations based sets of
events, possibly in their labeled partially-ordered variant (lposets).

Event Structures arenon-interleavingmodels. In interleaving models, events take place linearly,
one after the other. There, concurrency is expressed in terms of free choice or non-determinism, i.e.
concurrent events can appear in any order. Event Structuresshow concurrency not as a linear order with
free choice, but as independence between events, i.e. events are concurrent when they are related neither
by conflict nor causally. This intuition manifests clearly in system runs, represented by the so-called
configurations, or in terms of partial orders, where concurrent events are unordered.

Application Domain. We investigate the phenomenon of Dynamic Coalitions (DC). The term denotes
a temporary collaboration between entities in order to achieve a common goal. Afterwards, such a
coalition resolves itself, or is resolved. One example of a DC is the treatment of a stroke patient, taken
from the medical sector, which inspires our work:A patient gets a stroke which calls for the ambulance.
In the meanwhile, the emergency room prepares to receive thepatient. Then, the ambulance arrives
and the patient is transferred to the emergency room. While the patient is in the emergency room, the
latter communicates with the stroke unit to prepare for transferring the patient, and then the patient is
sent to the stroke unit. Before the patient is discharged from the stroke unit, some therapists are invited
by the stroke unit to join the patient treatment.Such coalitions are called dynamic, as they evolve over

∗Supported by the DFG Research Training Group SOAMED.
†Corresponding author:arbach@soamed.de

http://dx.doi.org/10.4204/EPTCS.120.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
arbach@soamed.de

18 Adding Priority to Event Structures

time, where new members can join, and others can leave, untilthe goal is achieved. We call this specific
phenomenon theformationof a DC. Others call it themembership dimensionof a DC [5].

Examining the application scenario, we observe that it can be naturally modeled by means of Event
Structures. Firstly, it mentions events, e.g. a patient gets a stroke, the ambulance joins, and the stroke
unit invites some therapists. Moreover, we are dealing withpossible conflicts between the members,
e.g. between the therapists. In addition, there is causality, for example the event, where the patient
gets a stroke, causes the ambulance to join and the emergencyroom to prepare. Finally, there can be
concurrency, i.e. multiple members of the coalition can work concurrently, e.g. the stroke unit prepares
to receive the patient while the emergency room is still working on the patient.

Further Requirements. Applications may impose to limit the amount of concurrency in the specifi-
cations of some systems or, in interleaving models, to limitthe non-determinism or free choice. For
example, in our above-mentioned healthcare scenario, imagine that while the therapists are working on
the patient outside the hospital, the patient gets another stroke, and then the ambulance again needs to
involve and interrupt the work of the therapists. So, they cannot all work together at the same time.
Besides, in this particular situation, the ambulance should have a higherpriority to perform its events,
such that only afterwards the therapists might continue their work. This is some kind of order, so there
is a determinism here on who needs to go first, carried by the concept of priority. The precedence caused
by priority is called “pre-emption” (cf. [12]). So, the event with higher priority pre-empts the event with
lower priority: the higher-priority one must happen beforeany concurrently enabled event with lower
priority, so a priority relation is (only) applied in a stateof competition. For example, some processes
compete to run on a processor. In the same way many members of acoalition compete for the patient.
Some of them can work concurrently, due to the specificationsof the system, and some cannot.

Overview. This paper is organized as follows. In§2, we start with the simplest form of ESs, the Prime
ESs, add priority to it, discuss the overlapping between priority and the other relations of Prime ESs,
and show how to reduce this overlapping. In§3, we introduce Bundle ESs, their traces, configurations,
and lposets. Then we add priority to them and investigate therelation between priority and other event
relations of BESs like enabling and precedence. In§4 and§5 we then study the two extensions Extended
Bundle ESs and Dual ESs of Bundle ESs and how their different causality models modify the relationship
of priority and the other event relations of the ESs. In§6, we summarize the work and conclude by
comparing the results.

Related Work. Priorities are used as a mechanism to provide interrupts in systems concerned with
processes. For example, in Process Algebra, Baeten et al. were the first to add priority in [1]. They
defined it as a partial order relation<. Moreover, Camilleri, and Winskel integrated priority within
the Summation operator in CCS [6]. Also, Lüttgen in [12] andCleaveland et al. in [7] considered the
semantics of Process Algebra with priority.

In Petri Nets, which are a non-interleaving model like EventStructures, Bause in [2, 3] added priority
to Petri Nets in two different ways: static and dynamic. Dynamic means the priority relation evolves
during the system run, while the static one means it is fixed since the beginning and will never change
till the end. In that sense, static priority is what we define here.

In this paper, we add priority to different kinds of Event Structures. Then we analyze the overlapping
between the priority relation and the other relations of therespective Event Structure in order to identify
and remove redundant priority pairs. We observe that the possibility to identify and remove redundant
priority pairs is strongly related to the causality model that is provided by the considered model of ESs.

Y. Arbach, K. Peters, U. Nestmann 19

(a)

a
b

c

d

e

(b)

a
b

c

d

e

(c)

a
b

c

d

e

Figure 1: A Prime ES without priority in (a), with priority in(b), and after dropping redundant priority
pairs in (c).

2 Priority in Prime Event Structures

Prime Event Structures (PESs), invented by Winskel [15], are the simplest and first version of ESs.
Causality is expressed in terms of an enabling relation, i.e. a partial order between events. For an event
to become enabled in PESs, all of its predecessors with respect to the enabling relation must take place;
an enabled event may happen, but does not have to do so. There is also a conflict relation between
events to provide choices, given as a binary symmetric relation, and a labeling function mapping events
to actions.

Definition 2.1. A Prime Event Structure (PES)is a quadrupleδ = (E,#,≤, l) where:
• E, a set ofevents
• # ⊆ E×E, an irreflexive symmetric relation (theconflict relation)
• ≤⊆ E×E, a partial order (theenablingrelation)
• l : E → Act, a labeling function

that additionally satisfies the following constraints:
1. Conflict Heredity: ∀e,e′,e′′ ∈ E . e#e′ ∧e′ ≤ e′′ =⇒ e#e′′

2. Finite Causes: ∀e∈ E . {e′ ∈ E | e′ ≤ e} is finite
Figure 1 (a) shows an example of a Prime ES, where a single-line arrow represents enabling, directed
from predecessors in≤ to successors. The dashed line represents a conflict. Note that this structure
fulfills the two constraints of a PES.

A configurationis a representation of system state by means of the set of events that have occurred
up to a certain point. In Prime ESs, a configuration is a conflict-free set of eventsC⊆E that is left-closed
under the enabling relation, i.e. no two events ofC are in conflict and for all predecessorsewith respect to
≤ of an evente′ ∈C it holdse∈C. Thus, given a Prime ESδ = (E,#,≤, l), a configurationC represents
asystem runof δ (or thestateof δ after this run), where events not related by≤ occur concurrently.

A trace is a sequential version of a system run. It can be defined as a sequence of events which are
conflict-free and where all the predecessors of an event in≤ precede that event in the trace. We will
define it formally in another equivalent way, which we will rely on when we define priority later:

Let σ be a sequence of eventse1 · · ·en such that{e1, . . . ,en} ⊆ E in a PESδ = (E,#,≤, l). We refer
to {e1, . . . ,en} by σ̄ , and we call enδ (σ) the set of events that are enabled byσ , where

enδ (σ) ,
{

e∈ (E \ σ̄) |
(

∀e′ ∈ E . e′ ≤ e =⇒ e′ ∈ σ̄
)

∧
(

∄e′ ∈ σ̄ . e#e′
)}

. (1)

We useσi to denote the prefixe1 · · ·ei , for somei < n. Then, the sequenceσ = e1 · · ·en is called atrace
of δ iff

∀i ≤ n. ei ∈ enδ (σi−1) (2)

Accordingly, a trace is a linearization of a configuration respecting≤. Usually many traces can
be derived from one configuration. The differences between such traces of the same configuration result

20 Adding Priority to Event Structures

from concurrent events that are independent, i.e. are related neither by enabling nor conflict. For example,
in Figure 1 (a), the eventsc anda are independent and thus concurrent in a configuration like{e,a,c}.
From{e,a,c} the traceseac, eca, andceacan be derived for the structure in Figure 1 (a).

If we add priority to PESs, it should be a binary relation between events such that, whenever two
concurrent events ordered in priority are enabled together, the one with the higher priority must pre-
empt the other.1 Thus we add a new acyclic relation⋖ ⊆ E×E, thepriority relation, to Prime ESs and
denote the pair(δ ,⋖) asprioritized Prime ES (PPES). Later on, we add priority in a similar way to other
kinds of Event Structures. Sometimes, we expand a prioritized ES(δ ,⋖), whereδ = (E, r1, r2, l), to
(E, r1, r2, l,⋖).

Figure 1 (b) illustrates a prioritized variant of Figure 1 (a), where the priority relation is represented
by a double-lined arrow from the higher-priority event to the lower-priority one, showing the direction
of precedence (pre-emption). Sometimes representing bothan Event Structure and its associated priority
relation in the same diagram becomes too confusing. In that case we visualize the priority relation in a
separate diagram next to the structure.

Let us define the interpretation of⋖ in a formal way: letσ = e1 · · ·en be a sequence of events in a
PPESδ ′ = (δ ,⋖). We callσ a trace ofδ ′ iff it is 1.) a trace ofδ , and 2.) satisfies the following constraint:

∀i < n. ∀ej ,eh ∈ σ̄ . ej 6= eh∧ej ,eh ∈ enδ (σi)∧eh⋖ej =⇒ j < h (3)

For example, the sequenceebadis a trace of Figure 1 (a) but not of Figure 1 (b) due to priority. Let
us denote the set of traces of a structure as T(δ). By definition, the traces of a PPESδ ′ = (δ ,⋖) are a
subset of the traces of the Prime ESδ .

Proposition 2.2. T(δ ,⋖)⊆ T(δ).
If we analyze Figure 1 (a) and (b) we observe that, because of the conflict relation, no trace can

contain bothc andd. And even without the priority relation the enabling relation ensures thate always
has to preceded. Since neitherc andd nor e andd can be enabled together, i.e. do never compete,
applying the priority relation between them is useless or trivial. Indeed we can always reduce the priority
relation by dropping all pairs between events that are under≤ or # without affecting the set of traces.

Theorem 2.3. Let (E,#,≤, l,⋖) be an PPES, and let⋖′ , ⋖\{(e,e′) | e′#e∨e′ ≤ e∨e≤ e′ }. Then:

T(E,#,≤, l,⋖) = T
(

E,#,≤, l,⋖′
)

Proof. Straightforward from the Definitions of traces, (3), and (1).

Figure 1 (c) shows the result of dropping the priority pairs that are redundant in Figure 1 (b). Note that
after dropping all redundant pairs, there is no overlapping, neither between the priority and the enabling
relation, nor between the priority and the conflict relation. The following theorem insures minimality of
reduction.

Theorem 2.4.Let(E,#,≤, l,⋖) be an PPES, let⋖′ , ⋖\{(e,e′) | e′#e∨e′ ≤ e∨e≤ e′ }, and⋖′′ ⊂⋖′.
ThenT(E,#,≤, l,⋖) 6= T(E,#,≤, l,⋖′′).

Proof. Straightforward from the Definitions of traces, (3), and (1).

This result is good for a modeler, since it implies unambiguity about whether a priority relation affects
the behavior or not. In other words, after dropping all the redundant priority pairs, the remaining priority
pairs always lead to pre-emption, limit concurrency and narrow down the possible traces. This is not the
case for the following ESs, since they offer other causalitymodels.

1In fact we could define it as a partial order. However after dropping redundant priority pairs as explained later the priority
relation is usually no longer transitive, i.e. no longer a partial order.

Y. Arbach, K. Peters, U. Nestmann 21

(a)

a

b c

d
(b)

a

b c

d
(c)

a

b c

d

Figure 2: A Bundle ES without priority in (a), with priority in (b), and after dropping redundant priority
pairs in (c).

3 Priority in Bundle Event Structures

Prime ESs are simple but also limited. Conflict heredity and the enabling relation of Prime ESs do
not allow to describe some kind of optional or conditional enabling of events. Bundle ESs—among
others—were designed to overcome these limitations [9]. Here an event can have different causes, i.e.
they allow for disjunctive causality.

In Bundle ESs the conflict relation is as in Prime ESs an irreflexive and symmetric relation, but the
enabling relation offers some optionality, based on bundles. A bundle(X,e), also denoted byX 7→ e,
consists of a bundle setX and the evente it enables. Abundle setis a set of events that are pairwise in
conflict. There can be several bundles(X1,e) , . . . ,(Xn,e) for the same evente. So—instead of a set of
events as in Prime ESs—an evente in Bundle ESs is enabled by a set{X1, . . . ,Xn} of bundle sets.

When one event of a setXi takes place, then the bundleXi 7→ e is said to be satisfied; and fore to be
enabled all its bundles must be satisfied. In Bundle ESs (and also Extended Bundle ESs) no more than
one event out of each setXi can take place; this leads to causal unambiguity [10]. But since a bundle set
can be satisfied by any of its members, this yields disjunctive causality and gives flexibility in enabling.

Definition 3.1. A Bundle Event Structure (BES)is a quadrupleβ = (E,#, 7→, l) where:
• E, a set ofevents
• #⊆ E×E, an irreflexive symmetric relation (theconflict relation)
• 7→⊆ P(E)×E, theenablingrelation
• l : E → Act, a labeling function

that additionally satisfies the following constraint:
Stability: ∀X ⊆ E . ∀e∈ E . X 7→ e =⇒ (∀e1,e2 ∈ X . e1 6= e2 =⇒ e1#e2) (SC)

Figure 2 (a) shows an example of a BES. The solid arrows denotecausality, i.e. reflect the enabling
relation, where the bar between the arrows shows that they belong to the same bundle and the dashed
line denotes again a mutual conflict. Thus there are two bundles in this example, namely the singleton
{a} 7→ b and{b,c} 7→ d. As required by (SC) we haveb#c andc#b.

As in Prime ES, letσ = e1 · · ·en be a sequence of events andσ̄ = {e1, . . . ,en} such thatσ̄ ⊆ E. We
use enβ (σ) to refer to the set of events enabled byσ :

enβ (σ) ,
{

e∈ (E \ σ̄) | (∀X ⊆ E . X 7→ e =⇒ X∩ σ̄ 6= /0)∧
(

∄e′ ∈ σ̄ . e#e′
)}

(4)

Then the sequenceσ = e1 · · ·en is called atraceof β iff

∀i ≤ n. ei ∈ enβ (σi−1) (5)

We denote the set of all valid traces inβ as T(β). A set of eventsC ⊆ E is called aconfigurationof an
BESβ iff ∃σ ∈ T(β) .C= σ̄ . Let C(β) denote the set of configurations ofβ .

22 Adding Priority to Event Structures

Definition (4) ensures that for an evente to be enabled, one event out of each pointing bundle setX
with X 7→ e is necessary. In a trace, if there is one event of a bundle set,then we denote the corresponding
bundle assatisfied. Remember that, because of the stability condition, no morethan one event out of
each bundle set can take place. In Figure 2, the sequencebd is not a trace since{a} 7→ b has never been
satisfied. On the other hand,abcd is not a trace either, sinceb conflicts withc. While a, c, ab, ac, ca, cd,
abd, acd, cad, andcdaare all traces.

The following lemma proves that whenever an evente is in a bundle setX pointing toe′, i.e. such
thatX 7→ e′, theneande′ cannot be enabled together.

Lemma 3.2. Letβ = (E,#, 7→, l) be an BES, and let e,e′ ∈ E such that∃X ⊆ E . e∈ X∧X 7→ e′. Then:

∀σ = e1 · · ·en ∈ T(β) . ∄i < n. e,e′ ∈ enβ (σi)

Proof. Let σ = e1 · · ·en ∈ T(β) andX ⊆ E such thate∈ X∧X 7→ e′. Assumee∈ enβ (σi) for somei < n.
Then:

e∈ enβ (σi)∧e∈ X∧X 7→ e′
(SC)
=⇒ e∈ enβ (σi)∧e∈ X∧X 7→ e′∧

(

∀e′′ ∈ (X \{e}) . e#e′′
)

(4)
=⇒ X 7→ e′∧

(

∀e′′ ∈ X . e′′ /∈ σ̄i
) (4)
=⇒ e′ /∈ enβ (σi)

Hence∄i < n. e,e′ ∈ enβ (σi).

3.1 Labeled Partially Ordered Sets

Labeled partially ordered sets, abbreviated as lposets, are used as a semantical model for different kinds
of ESs and other concurrency models (see e.g. [13]). In contrast to configurations, lposets do not only
record the set of events that happened so far, but also reflectthe precedence relations between these
events. Here, we use them to describe the semantics of BESs (as well as of EBESs and DESs in the next
sections). An lposet consists of a set, a partial order over this set, and a labeling function.

Definition 3.3. A labeled partially ordered set (lposet)is a triple〈A,≤, f〉 where:
• A, a finite set ofevents
• ≤, apartial order overA
• f : A→ Act, a labeling function

We useη to denote the empty lposet〈 /0, /0, /0〉. A non-empty lposet〈A,≤, f〉 is visualized by a box
containing all the events ofA and where two eventse1 ande2 are related by an arrow iffe1 ≤ e2, where
reflexive and transitive arrows are usually omitted. Figure3 depicts several lposets, where e.g. the top
right box visualizes the lposet〈{a,b,d} ,{(a,b) ,(b,d)} , f〉 for some (not visualized) labeling function f.

An lposet describes the semantics of a BES for a specific set ofevents. To describe the semantics of
the entire BES, families of lposets are used. These familiesconsist of several lposets that are related by
a prefix relation on lposets [8]:

〈A,≤, f〉 is aprefixof
〈

A′,≤′, f′
〉

⇐⇒ A⊆ A′∧ ≤=
(

≤′ ∩
(

A′×A
))

∧ f = f ′ ↾A

Now a familyP of lposets is defined as a non-empty set of lposets that is downward closed under the
lposet-prefix relation. It is shown in [8] that a family of lposets along with the prefix relation is itself
a partially ordered set. As investigated by Rensink in [13],families of lposets (even posets) form a
convenient underlying model for models of concurrency likeBESs (or EBESs).

In order to define the lposets of a BESβ , we build a partially ordered set (poset) over a configuration
C ∈ C(β). We define the partial order as a precedence relation≺C ⊆C×C between events as follows:

e≺C e′ ⇐⇒ ∃X ⊆ E . e∈ X∧X 7→ e′ (6)

Y. Arbach, K. Peters, U. Nestmann 23

η

a

c

a b

a
c

c d

a b d

a
c d

Figure 3: The family of lposets of the BES in Figure 2 (a).

and define�C as the reflexive and transitive closure of≺C. It is proved in [9] that�C is a partial order
overC. Finally, by adding the labeling functionl ↾C, the triple〈C,�C, l ↾C〉 is an lposet. We call L(β)
the set of all lposets defined on C(β). Figure 3 shows the largest family of lposets for the examplein
Figure 2 (a), where the arrows between lposets denote the prefix relation.

As proved in [9], each linearization (obeying the defined precedence relations) of a given lposet built
from an BES (or EBES) yields an event trace of that structure.

3.2 Adding Priority to BESs

Again we add priority⋖⊆ E×E to EBESs as a binary acyclic relation between events such that, when-
ever two events are enabled together, the one with the higherpriority pre-empts the other. We denote
β ′ = (β ,⋖) = (E,#, 7→, l,⋖) asprioritized Bundle ES (PBES). Figure 2 (b) illustrates a prioritized ver-
sion of the BES in Figure 2 (a).

Also the semantics of⋖ is defined similarly to Prime ESs. A sequence of eventsσ = e1 · · ·en is a
trace of(β ,⋖) iff 1.) σ ∈ T(β) and 2.)σ satisfies the following constraint:

∀i < n. ∀ej ,eh ∈ σ̄ . ej 6= eh∧ej ,eh ∈ enβ (σi)∧eh⋖ej =⇒ j < h (7)

Again the traces of a PBES(β ,⋖) are a subset of the traces of the corresponding BESβ .
Proposition 3.4. T(β ,⋖)⊆ T(β).

For example the sequencecad is a trace of the BES in Figure 2 (a), but it is not a trace of the PBES
in Figure 2 (b). Of course a larger priority relation filters more traces out than a smaller one.
Lemma 3.5. Let (β ,⋖) and(β ,⋖′) be two PBES with⋖′ ⊆⋖. ThenT(β ,⋖)⊆ T(β ,⋖′).

Proof. Straightforward from the Definition of traces, (7), and⋖′ ⊆⋖.

We adapt the notion of configuration to prioritized BESs suchthatσ ∈ C(β ,⋖) for a PBES(β ,⋖)
iff ∃σ ∈ T(β ,⋖) . C = σ̄ . In Section 3.1 we define the semantics of BESs by families of lposets. Un-

fortunately doing the same for PBESs is not that simple. Consider the lposeta c d of the BESβ
in Figure 2 (a). According to Figure 2 (b),d has a higher priority thana, i.e. a⋖d. Hence a c d

does not describe the semantics of the PBES(β ,⋖) with respect to the Configuration{a,c,d}, because
cad∈ T(β) butcad /∈ T(β ,⋖). In fact we cannot describe the semantics of PBESs by a familyof lposets
as depicted in Figure 3. Instead, to describe the semantics of (β ,⋖) with respect to{a,c,d} we need the

two different lposetsa c d and c d a .
The enabling relation defines precedence between events as used for≺C in (6), whereas priority

rather defines some kind of conditional precedence. Priority affects the semantics only if the related
events are enabled together. Thus the same problem with the definition of lposets appears for all kinds
of Event Structures that are extended by priority. We leave the problem on how to fix the definition of
lposets as future work.

24 Adding Priority to Event Structures

3.3 Priority versus Enabling and Conflict

Again, as in Section 2, we can reduce the priority relation byremoving redundant pairs, i.e. pairs that
due to the enabling or conflict relation do not affect the semantics of the PBES. First we can—as already
done in PPES—remove a priority paire⋖ e′ or e′⋖ e between an evente and its causee′, because an
event and its cause are never enabled together. Therefore e.g. the paird⋖c in Figure 2 (b) is redundant
because of{b,c} 7→ d. Also a priority paire⋖e′ between two events that are in conflict is redundant,
because these conflicting events never occur in the same trace. Consider for example the eventsb andc
in Figure 2 (b). Because ofb#c the pairc⋖b is redundant.

Theorem 3.6. Let (β ,⋖) = (E, , 7→, l,⋖) be a PBES and

⋖′ =⋖\
{(

e,e′
)

,
(

e′,e
)

| e#e′∨
(

∃X ⊆ E . e∈ X∧X 7→ e′
)}

.

ThenT(β ,⋖) = T(β ,⋖′).

Proof. T(β ,⋖)⊆ T(β ,⋖′) follows from Lemma 3.5.
To show T(β ,⋖′) ⊆ T(β ,⋖), assume a traceσ = e1 · · ·en ∈ T(β ,⋖′). We have to show thatσ ∈

T(β ,⋖), i.e. thatσ ∈ T(β) and thatσ satisfies Condition (7).σ ∈ T(β) follows from σ ∈ T(β ,⋖′) by
the Definition of traces.σ satisfies Condition (7) when∀i < n. ∀ej ,eh ∈ σ̄ . ej 6= eh∧ej ,eh ∈ enβ (σi)∧
eh ⋖ ej =⇒ j < h. Let us fix i < n andej ,eh ∈ σ̄ . Assumeej 6= eh, ej ,eh ∈ enβ (σi), andeh ⋖ ej . It
remains to prove thatj < h. Because of the Definition of⋖′, there are three cases foreh⋖ej :

Caseeh⋖
′ ej : Theneh⋖

′ ej ∧ej ,eh ∈ σ̄ ∧σ ∈ T(β ,⋖′)
(7)
=⇒ j < h.

Caseej#eh∨eh#ej : This case is not possible, because it is in contradiction to (5), (4), andej ,eh ∈ σ̄ .

Case∃X ⊆ E . (eh ∈ X∧X 7→ ej)∨ (ej ∈ X∧X 7→ eh): This case is not possible, because it is in con-
tradiction toej ,eh ∈ enβ (σi) and Lemma 3.2.

Note that priority is redundant for all pairs of events that are directly related by the bundle enabling
relation or the conflict relation regardless of the direction of the priority pair. We say that this reduction
is done at the structure level, since it is done w.r.t. the relations which are part of the Event Structure.

In PPESs enabling is a transitive relation and we can drop allpriority pairs between events that are
related by enabling. In the case of PBESs neither conflict norenabling are transitive relations. For

example in the event structure
e1 e2 e3

(which can be both; a PES as well as a BES) we have
e1#e2 and e2#e3 but not e1#e3. Accordingly we cannot drop a priority paire1 ⋖ e3 because else the
sequencee1e3 becomes a trace.

However in PPESs enabling is transitive, so whenevere1 ≤ e2 ande2 ≤ e3 there ise1 ≤ e3 and we can
also drop priority pairs relatinge1 ande3 (compare e.g. withe, a, andd in Figure 1). In PBES the situation
is different. For the PBES in Figure 2 we have{a} 7→ band{b,c} 7→ d butd does not necessarily depend
ona and thus we cannot drop the paira⋖d sincecad /∈T(β ,⋖). Unfortunately this means that we do not
necessarily drop the whole redundancy in priority if we reduce the priority relation as described in The-
orem 3.6. For examplee1⋖e3 is redundant in({e1,e2,e3} , /0,{{e1} 7→ e2,{e2} 7→ e3} , l,{e1⋖e3}),
because in this special casee1 is indeed a necessary cause fore3. Thus for PBESs⋖′ is not necessarily
minimal, i.e. we cannot prove∀⋖′′ ⊂ ⋖′ . T((E, , 7→, l,⋖)) 6= T((E, , 7→, l,⋖′′)) as we have done in
Theorem 2.4 for PPESs.

For the PBES in Figure 2 the reduction described in Theorem 3.6 indeed suffices to remove all
redundant priority pairs. The result is presented in Figure2 (c).

Y. Arbach, K. Peters, U. Nestmann 25

3.4 Priority versus Precedence

In order to identify some more redundant priority pairs we consider configurations and lposets. If we
analyze for example the configurations{a,b,c} and{a,c,d} of the PBES in Figure 2, we observe that,
because of{a} 7→ b and{b,c} 7→ d, the priority paira⋖d is redundant in the first configuration while
it is not in the second one. Thus, in some cases, i.e. with respect to some configurations (or lposets), we
can also ignore priority pairs of events that are indirectlyrelated by enabling. Since such a redundancy
is relative to specific configurations and their traces, and since dropping priority pairs affects the whole
set of traces obtained from a ES, we use the term “ignorance” rather than “dropping” for distinction,
and we say that this ignorance is done at the configuration level. Priority ignorance is necessary while
linearizing configurations and trying to obtain traces.

The cases in which priority pairs are redundant with respectto some configurationC are already well
described by the precedence relation�C, i.e. we can identify redundant priority pairs easily from the
lposets forC. Note that in BESs (and also EBESs) each configuration leads to exactly one lposet. The

priority pair a⋖d is obviously redundant in the case ofa b d but not in the case ofa c d .
To formalize this let T(β ,⋖)↾C , {σ | σ ∈ T(β ,⋖)∧ σ̄ =C} be the set of traces over the configu-

rationC ⊆ E for some BESβ = (E, , 7→, l). Thus T(β ,⋖) ↾C consists of all the traces of T(β ,⋖) that
are permutations of the events inC. Then for all configurationsC all priority pairse⋖e′ such thate′ �C e
or e�C e′ can be ignored.
Theorem 3.7.Let(β ,⋖) be a PBES,〈C,�C, l〉 ∈ L(β), and⋖′ , ⋖\{(e,e′) | e′ �C e∨e�C e′ }. Then:

T(β ,⋖)↾C = T
(

β ,⋖′
)

↾C

Proof. Note that by induction on� and Lemma 3.2,ej �C eh as well aseh �C ej imply thatej andeh

cannot be enabled together in a trace of T(β) ↾C. With this argument the proof is straightforward from
the definitions of traces,⋖′, traces over a configuration, Lemma 3.5, and (7).

Consider once more the PBES(β ,⋖) of Figure 2 with respect to the configuration{a,b,d}. We have
{a} 7→ b, {b,c} 7→ d, anda⋖d. As explained before we cannot drop the priority paira⋖d, because of
the sequencecad /∈ T(ε ,⋖). However with Theorem 3.7 we can ignorea⋖d for the semantics of(β ,⋖)
if we limit our attention to{a,b,d}, because T(β ,⋖)↾{a,b,d}= {abd} = T(β)↾{a,b,d}.

For PBESs ignorance ensures that⋖′ is minimal with respect a configurationC.
Theorem 3.8. Let (β ,⋖) be a PBES,〈C,�C, l〉 ∈ L(β) for some configuration C∈ C(β ,⋖), ⋖′ ,
⋖\{(e,e′) | e′ �C e∨e�C e′ }, and⋖′′ ⊂⋖′. ThenT(β ,⋖)↾C 6= T(β ,⋖′′)↾C.

Proof. Because of⋖′′ ⊂⋖′, there are somee,e′ ∈ E such thate⋖e′ bute 6⋖′e′, e′ 6�C e, ande 6�C e′. Note
that each linearization of a given lposet that respects the precedence relation is a trace [9]. Thuse′ 6�C e
ande 6�C e′ imply that T(β ,⋖′′)↾C contains a trace such thateande′ are enabled together andeprecedes
e′. Because ofe⋖e′ such a trace cannot be contained in T(β ,⋖)↾C. So T(β ,⋖)↾C 6= T(β ,⋖′′)↾C.

In the following two sections we consider two extensions of Bundle ESs.

4 Priority in Extended Bundle Event Structures

The first extension of Bundle ESs we consider areExtended Bundle Event Structures (EBESs). Bundle
ESs were developed to give semantics to LOTOS in [9], but since the conflict relation was symmet-
ric, they could not give semantics to the disable operator ofLOTOS. Thus Extended Bundle ESs were
introduced in the same reference.

26 Adding Priority to Event Structures

(a)

a b

c d e f

g h

(b)

a

b c

d e f g

h

(c)

a

b c

d e f g

h

Figure 4: A PEBES(ε ,⋖) with ε in (a) and⋖ in (b) as a Hasse diagram with transitivity exposed.
(c) shows⋖ after dropping redundant priority pairs.

Extended Bundle ESs are similar to Bundle ESs except that theconflict relation is replaced by the
so-calledasymmetric conflictrelation ordisabling relation. If an evente1 disables another evente2,
denoted bye2 e1, then oncee1 takes placee2 cannot take place anymore, i.e.e1 can never precede
e2. Accordingly, disabling can be considered as an exclusion relation. Note that the asymmetric conflict
or disabling relation is an irreflexive relation ⊆ E×E but is not necessarily asymmetric as the name
suggests, i.e.e1 e2 =⇒ e2 6 e1 does not necessarily hold for all eventse1 ande2. Therefore Extended
Bundle ESs are a generalization of Bundle ESs, and thus are more expressive [9].

Formally an Extended Bundle ES is a quadrupleε = (E, , 7→, l), where the stability condition is
adapted as follows:

Stability: ∀X ⊆ E . ∀e∈ E . X 7→ e =⇒ (∀e1,e2 ∈ X . e1 6= e2 =⇒ e1 e2) (SC’)

Note that stability again ensures that two distinct events of a bundle set are in mutual conflict. We adapt
the Definitions of enε(σ), traces, T(ε), configurations, and C(ε) accordingly.

Figure 4 (a) shows an example of an EBES. The solid arrows denote causality, i.e. reflect the enabling
relation, where the bar between the arrows shows that they belong to the same bundle and the dashed line
denotes again a mutual conflict as required by the stability condition (SC’). The dashed arrow denotes
disabling, e.g.b a andba∈ T(ε) but ab /∈ T(ε) in this example.

In order to define lposets of EBESs, we have to adapt the precedence relation≺C ⊆C×C such that
it also covers disabling:

e≺C e′ ⇐⇒
(

∃X ⊆ E . X 7→ e′∧e∈ X
)

∨e e′ (8)

Again�C denotes the reflexive and transitive closure of≺C. The Definitions of lposets and L(ε) are then
adapted accordingly. [9] proves that�C is a partial order overC and that each linearization (obeying the
defined precedence relations) of a given lposet built from anEBES yields an event trace of that structure.
Furthermore, it is proved in [9, 8] that given two EBESsε ,ε ′ their lposets are equal iff their traces are
equal, i.e. L(ε) = L(ε ′) ⇐⇒ T(ε) = T(ε ′).

(ε ,⋖) = (E, , 7→, l,⋖) is aprioritized Extended Bundle ES (PEBES), whereε = (E, , 7→, l) is an
EBES and⋖⊆ (E×E) is the acyclic priority relation. Figure 4 illustrates an example of a PEBES with
the EBES in Figure 4 (a) and the priority relation in Figure 4 (b). A sequence of eventsσ = e1 · · ·en is a
trace of(ε ,⋖) iff 1.) σ ∈ T(ε) and 2.)σ satisfies the following constraint:

∀i < n. ∀ej ,eh ∈ σ̄ . ej 6= eh∧ej ,eh ∈ enε(σi)∧eh⋖ej =⇒ j < h (9)

C ∈ C(ε ,⋖) iff ∃σ ∈ T(ε ,⋖) . σ̄ =C. Again T(ε ,⋖)⊆ T(ε) and⋖′ ⊆⋖ implies T(ε ,⋖)⊆ T(ε ,⋖′).

Lemma 4.1. Let (ε ,⋖) and(ε ,⋖′) be two PEBES with⋖′ ⊆⋖. ThenT(ε ,⋖)⊆ T(ε ,⋖′).

Proof. Straightforward from the Definition of traces, (9), and⋖′ ⊆⋖.

Y. Arbach, K. Peters, U. Nestmann 27

Similar to PBESs, we can remove a priority paire⋖e′ or e′⋖e between an evente and its causee′,
because an event and its cause are never enabled together. Therefore e.g. the paire⋖ b in Figure 4 is
redundant because of{b} 7→ e. Also a priority paire⋖e′ between an evente′ and its disablere, i.e. for
e′ e, does not affect the semantics, sincee must followe′ anyway. Consider for example the eventsa
andd in Figure 4. Because ofa d, a always pre-emptsd and thusd⋖a is redundant.

Theorem 4.2. Let (ε ,⋖) be a PEBES and

⋖′ , ⋖\
{(

e,e′
)

| e′ e∨
(

∃X ⊆ E .
(

e∈ X∧X 7→ e′
)

∨
(

e′ ∈ X∧X 7→ e
))}

.

ThenT(ε ,⋖) = T(ε ,⋖′).

Proof. Similar to the proof of Theorem 3.6, where the second case is replaced by:
Caseej eh: Because of the Definition of traces,σ = e1 · · ·en ∈ T(ε) andej ,eh ∈ σ̄ imply that ej ∈

enε(σ j−1). Thenej eh∧ej ∈ enε(σ j−1)∧eh ∈ σ̄ =⇒ j < h.

Note that priority for events that are directly related by the bundle enabling relation is always redundant,
regardless whether the cause has the higher priority or the effect does. On the other hand we can reduce
pairs of events that are related by disabling only if the event has a higher priority than its disabler.
Consider for example the PEBES({e,e′ } ,{e e′ } , /0, l,{e⋖e′ }). The only traces of this PEBES are
e ande′, but if we remove the priority paire⋖e′ we have the additional traceee′. Similarly we cannot
remove thee e′ here, because this yields to the additional tracee′e.

The result of dropping redundant priority pairs for the PEBES in Figure 4 as described by Theo-
rem 4.2 is presented in Figure 4 (c). Note that after droppingredundant pairs the priority relation is not
a partial order anymore.

Again limiting our attention to a specific configuration allows us to ignore some more priority pairs.
In contrast to PBESs we can sometimes also ignore priority pairs that overlap with disabling. Consider
for exampleb a and a d of the PEBES in Figure 4. The priority paird⋖ b is redundant with
respect to the configuration{a,b,d} but not with respect to the configuration{b,d}. Note that again the
direction of the priority pair is important in the case of indirect disabling but not in the case of indirect
enabling. If we for instance replaced⋖ b in Figure 4 byb⋖ d, then{a,b,d} is not a configuration
anymore andb⋖d is not redundant in all remaining configurations containingb andd.

The cases in which priority pairs are redundant with respectto some configurationC are again well
described by the precedence relation�C, i.e. we can identify redundant priority pairs easily from the

lposet ofC. The priority pairh⋖b is obviously redundant in the case ofb e h but not in the case

of b f h andd⋖b is obviously redundant in the case ofb a d but not in the case ofb d .
Let T(ε ,⋖) ↾C , {σ | σ ∈ T(ε ,⋖)∧ σ̄ =C} be the set of traces overC. Then for all configurationsC
we can ignore all priority pairse⋖e′ such thate′ �C e.

Theorem 4.3.Let(ε ,⋖) be a PEBES,〈C,�C, l〉 ∈ L(ε), and⋖′ , ⋖\{(e,e′) ∈C×C | e′ �C e}. Then:

T(ε ,⋖)↾C = T
(

ε ,⋖′
)

↾C

Proof. Note that T(ε ,⋖)↾C ⊆ T(ε ,⋖) and T(ε ,⋖′)↾C ⊆ T(ε ,⋖′).
By Lemma 4.1, T(ε ,⋖)⊆ T(ε ,⋖′) and thus also T(ε ,⋖)↾C ⊆ T(ε ,⋖′)↾C.
To show T(ε ,⋖′) ↾C ⊆ T(ε ,⋖) ↾C, assume a traceσ = e1 · · ·en ∈ T(ε ,⋖′) ↾C. We have to show that

σ ∈ T(ε ,⋖)↾C, i.e. that∀e∈ σ̄ . e∈C, σ ∈ T(ε), and thatσ satisfies Condition (9).∀e∈ σ̄ . e∈C and
σ ∈ T(ε) follows from σ ∈ T(ε ,⋖′)↾C by the Definition of traces of PEBESs.σ satisfies Condition (9)
if ∀i < n. ∀ej ,eh ∈ σ̄ . ej 6= eh∧ ej ,eh ∈ enε(σi)∧ eh⋖ ej =⇒ j < h. Let us fix i < n andej ,eh ∈ σ̄ .
Assumeej 6= eh, ej ,eh ∈ enε(σi), andeh⋖ej . It remains to prove thatj < h.

28 Adding Priority to Event Structures

Because of the Definition of⋖′, assumptioneh⋖ej implies thateh⋖
′ ej or ej �C eh. In the first case

j < h follows, because of the Definition of traces and (9), fromeh⋖
′ ej , ej ,eh ∈ σ̄ , andσ ∈ T(ε ,⋖′)↾C.

The other case, i.e. thatej �C eh andej 6= eh implies j < h, was already proved in [9].

Consider once more the PEBES(ε ,⋖) of Figure 4 with respect to the configuration{b,e,h}. We have
{b} 7→ e, {e, f } 7→ h, and h⋖ b. As explained before we cannot drop the priority pairh⋖ b, be-
cause of the tracef hb /∈ T(ε ,⋖). However with Theorem 4.3 we can ignoreh⋖ b—and alsoh⋖ e
ande⋖ b—for the semantics of(ε ,⋖) if we limit our attention to{b,e,h}, because T(ε ,⋖) ↾{b,e,h}=
T(ε ,(⋖\{h⋖b,h⋖e,e⋖b}))↾{b,e,h}.

Similarly we can ignorec⋖ a if we limit our attention to the configurationC = {a,c,d}, since
T(ε ,⋖) ↾C= T(ε ,(⋖\{c⋖a})) ↾C. Note that here the precedence paira�C c that allows us to ignore
c⋖a results from the correlation between a disabling paira d and an enabling pair{d} 7→ c. Thus
with Theorem 4.3 we can ignore even priority pairs that are redundant in specific situations because of
combining enabling and disabling.

This combination prohibits us on the other hand from ignoring priority of the opposite direction,
the direction which is compatible with the precedence direction. That is possible only with precedence
resulted from enabling purely as it is the case in Theorem 3.7for PBESs. For instance, suppose that
b⋖h for the structure in Figure 4 then we can ignore this prioritypair in a configuration{b,e,h}. That
is not formulated in the Theorem 4.3 above, since�C abstracts from the relation between events. While
in contrast to EBESs, the conflict relation is symmetric in Bundle ESs, and precedence results only from
enabling. Thus, in contrast to PBESs, we do not have minimality of priority ignorance in PEBESs.

5 Priority in Dual Event Structures

Dual ESs are the second extension of BES examined here. The stability constraint in BESs and EBESs
prohibits two events from the same bundle to take place in thesame system run. Thus e.g.{b,e, f ,h}
is not a configuration of the EBES in Figure 4. It provides somekind of stability to the causality in the
structure. More precisely due to stability in every trace orlposet for every event the necessary causes can
be determined. Without the conflict betweeneand f in the example the tracebe f his possible. But then
it is impossible to determine whetherh is caused inbe f hby e or f . The stability constraint prohibits
such ambiguity. On the other hand such a constraint limits the expressiveness of the structure, and forces
an XOR condition between the elements of a bundle set. In somesystem specifications a more relaxed
definition may be useful. Dual ESs provide such a relaxed definition.

The definition of Dual ESs varies between [8] and [10], but both show the causal ambiguity explained
above. In [8] Dual ESs are based on Extended Bundle ESs, whilein [10] they are based on Bundle ESs.
Since we have studied the relation between disabling and priority, and want to focus here on the effect
of causal ambiguity on priority, we analyze the version of [10]. A Dual Event Structure (DES)is a
quadruple∆ = (E,#, 7→, l) similar to Definition 3.1 but without the stability condition.

The Definitions of en∆(σ), traces, and T(∆) are similar to Section 3 for BESs. Of course the dele-
tion of the stability condition leads to additional traces,e.g. for structure in Figure 2 (a) we obtain the
additional tracesabcd,abdc,acbd,acdb,cabd,cadb, andcdab. Figure 5 shows a DES taken from [10].

Causal ambiguity affects the way lposets are built, since the causal order is not clear2. In [10]
Langerak et al. tried to solve this problem. They illustrated that there are different causality interpre-

2Since there is no disable relation here, causality is the only source of order in lposets.

Y. Arbach, K. Peters, U. Nestmann 29

(a)

a b c

d
(b)

a b c

d

Figure 5: A Dual ES without priority in (a) and with priority in (b).

tations possible for causal ambiguity. They defined five different intensional posets: liberal, bundle-
satisfaction, minimal, early and late posets. Intensionalmeans posets are defined depending on the
causality relations in the structure, while observationalon the other hand means posets are obtained out
of event traces (where no structure of the system is available, but only behavior). We examine these
different kinds and their relations informally for brevity.

Langerak et al. illustrated that in order to detect the causeof an event liked in the traceabcd of
Figure 5, one should consider the prefix ofd (i.e. abc) and then can have the following interpretations:

• Liberal Causality: means that any cause out of the prefix is accepted as long as bundles are satis-
fied: abc,ab,b,ac,bc, etc. are all accepted as a cause ford. Then all events in a cause preceded in

the built poset, e.g. the posets for the last causes are

a
bc d

,

a
bc d

,

a
bc d

,

a
bc d

,

a
bc d

,
etc. , respectively. We use the same mechanism of building posets for the next types of causalities.

• Bundle-Satisfaction Causality: bundles are satisfied by exactly one event:b,ab,ac are accepted
causes but notabc.

• Minimal Causality: bundles are satisfied so that no subset ofa cause is accepted. Sob,ac are
accepted but notab or bc.

• Early Causality: the earliest bundle-satisfaction cause is accepted:b is accepted, but notac asc
happened later thanb.3

• Late Causality: (cf. [10], it will be skipped here).
[10] shows that equivalence in one kind of posets between twostructures implies equivalence in some

other specific kinds of posets, but equivalence in any of the kinds implies equivalence in traces.
We add priority to DESs in the same way as before. Aprioritized Dual ES (PDES)is the tuple

(∆,⋖), where∆ is a DES and⋖ is the acyclic priority relation. Also the definitions of traces, T(∆,⋖),
configurations, and C(∆,⋖) are adapted similar as in the section before.

Since the conflict relation provided here is the same as in Bundle ESs, we can remove redundant
priority pairs that overlap with the conflict relation as described in Theorem 3.6, i.e. whenever there is
e#e′ or e′#e thene⋖e′ is redundant and can be removed. The situation for enabling is different because
of the missing stability condition. The priority pairc⋖ d in the PDES in Figure 5 is not redundant,
because it removes some traces. The reason is thatc is not anymore a necessary cause ford, sinced
can be enabled byb even ifc occurs in the same trace. So at the structure level of PDESs wecannot in
general remove priority pairs because of overlappings withthe enabling relation.

In the case of PBESs and PEBESs partial orders help to identify redundant priority pairs at the config-
uration level. Unfortunately, we cannot do the same here. Let us consider the configuration{a,b,c,d},

and consider liberal causality. Indeed applying (3.7) on the poset
a
b cd

and the priorityc⋖ d
yields the sequenceabcdwhich is not a trace. On the other hand, considering bundle-satisfaction causal-

3In [11] a procedure is defined to detect how early is a cause depending on binary numbers.

30 Adding Priority to Event Structures

ity, the poset
a b

c d
with the same priority yields the same sequenceabcdagain. The same will be

for minimal causality and a poset like
a bc d

.
In fact none of the mentioned kinds of posets can be used alonewithout the priority, and thus igno-

rance is not possible with causal ambiguity w.r.t. a single poset for a configuration. Even whenc⋖ d

seems to yield pre-emption in the poseta b cd , one can have the linearizationacbd which is a
trace, and priority turns out to be redundant in this very trace (but not in the whole poset). The reason is
partial orders here do not necessarily represent causes.

6 Conclusions

We have added priority to different Event Structures: PrimeESs as a simple model with conjunctive
causality, Bundle ESs with disjunctive causality, Extended Bundle ESs with asymmetric conflict, and
Dual ESs with causal ambiguity. In all cases, priority leadsto trace filtering and limits concurrency and
non-determinism. We then analyze the relationship betweenthe new priority relation and the other rela-
tions of the ESs. Since priority has an effect only if the related events are enabled together, overlappings
between the priority relation and the other relations of theESs sometimes lead to redundant priority pairs.

In PPESs, PBESs, and PEBESs priority is redundant between events that are related directly by
causality. Moreover in all considered ESs priority is redundant between events that are related directly
by the conflict relation. But in the case of PEBESs the conflictrelation implements asymmetric conflicts.
Hence in contrast to the other ESs we have to take the direction of the disabling relation into account.

The main difference between redundancy of priority in PPESsand the other three models is due to
events that are indirectly related by causality. In PPESs causality is a transitive relation, i.e. all pairs
which are indirectly related by causality are directly related by causality as well. The enabling relation
of the other models is not transitive. Thus priority pairs between events that are only indirectly related
by enabling are not necessarily redundant. Unfortunately and unlike PPESs, this means that we cannot
ensure after removing the redundant priority pairs that theremaining priority pairs necessarily lead to
pre-emption. So the other models hold more ambiguity to a modeler.

Instead we show that if we limit our attention to a specific configurationC a priority paire⋖ e′ is
redundant ife′ �C e∨ e�C e′ for PBESs or ife′ �C e for PEBESs. This allows us to ignore, for the
semantics with respect to specific configurations, additionally priority pairs between events indirectly
related by enabling for PBESs and by enabling, by disabling,or even by combinations of enabling and
disabling for PEBESs. In the case of PBESs we obtain a minimality result this way.

Unfortunately in PDESs even priority pairs between events that are directly related by causality are
not necessarily redundant. So from a modelers perspective,priority in DESs hold the biggest ambiguity
among all the studied ESs. In other words, one cannot figure out the role priority plays at design time or
structure level, and whether this priority yields pre-emption or not. Even at the configuration level, that
is not possible in general due to causal ambiguity.

Thus our main contributions are: 1.) We add priority as a binary acyclic relation on events to ESs.
2.) We show that the relation between priority and other event relations of an ES can lead to redundant
priority pairs, i.e. to priority pairs that do never (or at least for some configurations not) affect the behavior
of the ES. 3.) Then we show how to completely remove such pairsin PPESs and that this is in general
not possible in ESs with a more complex causality model like PBESs, PEBESs, or PDESs. 4.) Instead
we show how to identify all priority pairs that are redundantwith respect to configurations in PBESs and
that the situation in PEBESs and DESs is different. 5.) We show how to identify (some of the) redundant

Y. Arbach, K. Peters, U. Nestmann 31

priority pairs at the level of configurations in PEBESs and 6.) that again this is in general not possible in
the same way for PDESs.

After dropping or ignoring redundant priority pairs as described above, the minimum potential for
overlapping between priority and causality can be found in PPESs, while the maximum is in PDESs. In
PPESs all remaining priority pairs indeed affect the semantics, i.e. exclude traces. In PBESs the same
holds with respect to specific configurations. In PEBESs after dropping the redundant priority pairs the
disabling relation has no overlapping with only priority directed in the opposite direction.

In Section 3.2 we show that adding priority complicates the definition of families of lposets to capture
the semantics of prioritized ESs. We observe that because ofpriority a single configuration may require
several lposets to describe its semantics. The same alreadyapplies for DESs because of the causal
ambiguity. However note that priority does not lead to causal ambiguity. Thus, we can define the
semantics of prioritized ESs by families of lposets if we do not insist on the requirement that there is
exactly one lposet for each configuration. We leave the definition of such families of lposets for future
work. Such families of lposets for prioritized ESs may also help to identify and ignore redundant priority
pairs in the case of PEBESs and PDESs. Another interesting topic for further research is to analyze how
priority influences the expressive power of ESs.

References

[1] J.C.M. Baeten, J.A. Bergstra & J.W. Klop (1986):Syntax and defining equations for an interrupt mechanism
in process algebra. Fundamenta Informaticae9, pp. 127–167.

[2] F. Bause (1996):On the analysis of Petri nets with static priorities. Acta Informatica33(7), pp. 669–685,
doi:10.1007/s002360050065.

[3] F. Bause (1997):Analysis of Petri nets with a dynamic priority method. In: Proceedings of Application and
Theory of Petri Nets, LNCS 1248, Springer, pp. 215–234, doi:10.1007/3-540-63139-938.

[4] G. Boudol & I. Castellani (1991):Flow models of distributed computations: event structuresand nets.
Technical Report, INRIA.

[5] J.W. Bryans, J.S. Fitzgerald, C.B. Jones & I. Mozolevsky(2006):Dimensions of Dynamic Coalitions. Tech-
nical Report, Newcastle upon Tyne.

[6] J. Camilleri & G. Winskel (1995):CCS with Priority Choice. Information and Computation116(1), pp.
26–37, doi:10.1006/inco.1995.1003.

[7] R. Cleaveland, G. Lüttgen & V. Natarajan (1999):Priority in Process Algebra. ICASE report, NASA.

[8] J.P. Katoen (1996):Quantitative and Qualitative Extensions of Event Structures. Ph.D. thesis, Twente.

[9] R. Langerak (1992):Transformations and Semantics for LOTOS. Ph.D. thesis, Twente.

[10] R. Langerak, E. Brinksma & J.P. Katoen (1997):Causal ambiguity and partial orders in event structures. In:
Proceedings of CONCUR, LNCS, Springer, pp. 317–331, doi:10.1007/3-540-63141-022.

[11] R. Langerak, R. Brinksma & J.P. Katoen (1997):Causal ambiguity and partial orders in event structures.
Technical Report, Twente.

[12] G. Lüttgen (1998):Pre-emptive Modeling of Concurrent and Distributed Systems. Ph.D. thesis, Passau.

[13] A. Rensink (1992):Posets for Configurations! In: Proceedings of CONCUR, LNCS 630, Springer, pp.
269–285, doi:10.1007/BFb0084797.

[14] R. van Glabbeek & U. Goltz (2001):Refinement of actions and equivalence notions for concurrent systems.
Acta Informatica37, pp. 229–327, doi:10.1007/s002360000041.

[15] G. Winskel (1980):Events in Computation. Ph.D. thesis, Edinburgh.

http://dx.doi.org/10.1007/s002360050065
http://dx.doi.org/10.1007/3-540-63139-9_38
http://dx.doi.org/10.1006/inco.1995.1003
http://dx.doi.org/10.1007/3-540-63141-0_22
http://dx.doi.org/10.1007/BFb0084797
http://dx.doi.org/10.1007/s002360000041

	1 Introduction
	2 Priority in Prime Event Structures
	3 Priority in Bundle Event Structures
	3.1 Labeled Partially Ordered Sets
	3.2 Adding Priority to BESs
	3.3 Priority versus Enabling and Conflict
	3.4 Priority versus Precedence

	4 Priority in Extended Bundle Event Structures
	5 Priority in Dual Event Structures
	6 Conclusions
	References

