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Formal reasoning about distributed algorithms (like Consensus) typically requires to analyze global
states in a traditional state-based style. This is in contrast to the traditional action-based reasoning
of process calculi. Nevertheless, we use domain-specific variants of the latter, as they are convenient
modeling languages in which the local code of processes can be programmed explicitly, with the
local state information usually managed via parameter lists of process constants. However, domain-
specific process calculi are often equipped with (unlabeled) reduction semantics, building upon a
rich and convenient notion of structural congruence. Unfortunately, the price for this convenience is
that the analysis is cumbersome: the set of reachable statesis modulo structural congruence, and the
processes’ state information is very hard to identify. We extract from congruence classes of reachable
states individual state-informative representatives that we supply with a proper formal semantics. As
a result, we can now freely switch between the process calculus terms and their representatives, and
we can use the stateful representatives to perform assertional reasoning on process calculus models.

1 Introduction

Many articles have been written about the pros and cons of using either action-based (aka: behavioral)
or state-based (aka: assertional) formalism for the purpose of verification. This paper can be added to
the list of these papers, but here we will not argue in favor ofone of the two kinds [3], and we will also
not design a new formalism to integrate both styles [6]. We rather deliver support when using an action-
based formalism—here: process calculi—to verify the correctness of distributed algorithms, where the
reasoning is traditionally rather state-based [11]. In this context, it is instructive to look at Lamport’s
case study [10], where he outlines that assertional reasoning not only applies to sequential and even
concurrent algorithms, but also to distributed algorithms[11]. Several of his remarks still hold just like
30 years ago, in particular concerning the requirements andaspects of the assertional method: 1. The
communication medium needs to be represented explicitly, ideally itself as a process. 2. The concept of
a global state should be explicitly available. 3. The methodinvolves reasoning about the entire network
of processes at once.

We try to profit as much as possible from both worlds. From process calculi, we take the advantage
of exploiting formally defined semantics for a tiny modelinglanguage that is close to a reasonable pro-
gramming language. From distributed computing, we take theassertional proof methods that are based
on the availability of complete global state information toverify the correctness of global invariants. We
study the possibility of putting them together such that theassertional proof techniques are explicitly tied
to the process calculus code.

A domain-specific process calculus for the particular classof fault-tolerant distributed consensus al-
gorithms should be equipped with (a) an explicit notion of distribution, node failure and failure-detection,
(b) the underlying communication medium in form of respective primitives, (c) a value language com-
prising expressions (constructors and selectors) for the required base types and containers (like lists), and
(d) some control-flow commands like conditionals.
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Next to the syntax, we also need to supply adequate semanticssuch as rules to evaluate conditionals,
rules to compute the values of expressions, rules to check for the current state of a failure detector
so that we know whether we should rather wait a bit longer for aprocess to react, or just proceed.
For some or most of these enhancements, we can typically choose whether we want their behavior be
modeled as explicit steps in a transition system, or whetherwe hide it in respective rules of a structural
congruence relation so that they do not “cost” a transition step; we then speak of structural evaluation.
There are advantages for both. In essence, as we focus on the interplay between independent distributed
components, we most often find the guideline that local computation—which does not change the local
state—is hidden within the structural congruence, while interaction with the other components via the
interprocess communication or some global failure detection device is modeled as transitions.

With the calculus at hand, one typically uses process constants to define the behavior at the various
program points; in a sense, these constants act as labels that we can use to implement recursive behavior.
For example, we will later on write an algorithm that starts in the state

n

∏
i=1

i [B(v1, . . . ,vn)]

where the notationi [−] indicates that the included process description is runningat locationi, with the
behaviorB being a constant that is here invoked with its initial set of parameters(v1, . . . ,vn). This hints
at a crucial underlying idea:The modeling philosophy, when using a process calculus for this type of
algorithm, is such that we simulate the local state of a process via the list of parameters when invoking a
constant that captures its behavior during the intended phase of the algorithm.At a later phase, processi
is going to be reinstated in a different phase, with a different list of parameters, for exampleB(v′1, . . . ,v

′
n).

This simulation of local state information becomes problematic deriving its transition system. The
substitution of a process constant by its defining expression (just like a procedure call) takes place within
the laws of a structural congruence relation≡ as part of the rule

C≡C1−→C2≡C′

C−→C′

As a result, the next reachable configurationC′ may be in a shape where we do no longer see the pa-
rameter lists of local processes. We might then argue that procedure calls should not be handled by the
structural congruence, but rather at the cost of a transition step. However, then we would still lose the
structure immediately. We may instead require that after every step, wemustend up in a form consisting
of just process constants. This could be enforced syntactically, or imposed as a modeling discipline. But
then another problem occurs when the behavior of such a process first does some local computation,
like evaluating a conditional (without changing its local state!), and depending on this evaluation pro-
ceeds with behaviors again conveniently described by otherconstants, which also do only carry out local
computations. Where should the structural evaluation stop?

Our approach to tackle this dilemma is based on a guideline toidentify process constants that are
essential to understand the local state of a process. This requires an intuitively deep understanding of the
algorithm, just like when one is looking for invariants. Referring to the character of processes as reactive
components (sometimes also called event handlers), we should identify the moments when processes wait
for messages to arrive. Thus structural evaluation should proceed to the point where such a moment is
reached and then stop with the process constant, where such amessage arrival is immediately expected.
A similar moment of waiting is reached when we require to detect a failure before computation may
proceed.
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Using this observation, we then design astandard formfor the global state of the algorithm, in which
all and only the possible “waiting states” are listed by means of their respective process constants—
including their explicit lists of parameters representingthe local state information—together with the
parallel composition of messages that are underway, i.e. sent but not yet received, possibly listed accord-
ing to their type. So, a standard form for an algorithm with two possible waiting states (W1,W2) per
process may be, as a first approximation, represented as

(

∏
i∈I1

W1(v
1
1, . . . ,v

1
n) |∏

i∈I2

W2(v
2
1, . . . ,v

2
n)

)
|M

with {I1, I2} being a partition of the set of process indices withIk containing the indices of those processes
that are currently in stateWk, andM being the composition of current messages. To make such forms
unique, we may have to impose an order on the listing of the various components and message types.
Note that this idea is, in a very simple form, already presentin Milner’s Scheduler example, as found in
[13].

We could now try to recover a standard form after each computation step, modulo structural con-
gruence. (Milner preferred to work with transitions up to strong bisimilarity.) Instead of trying to guide
structural evaluation in order to precisely hit such standard forms, we prefer to extract all the parameters
of such standard forms and cast them into a new mathematical structure, basically a sizable tuple that
we then use as our substitute representation of the global state. We devise a mapping that extracts ex-
actly one representative of such a structure from each structural congruence class that is reachable when
running the algorithm. The expansion of these representatives back to a process term will then precisely
provide the intended standard forms. As the representatives in the new structure carry the complete state
information, we define an explicit operational semantics that produces a new representative after each
transition, precisely mimicking the transitions of the expanded process term. In fact, we design it as a
1-1-correspondence, just like a strong bisimulation between process terms and their stateful representa-
tives. The goal is then clear. For any assertional proof of properties of the algorithm, we use the stateful
representatives instead of the process terms from which we initially extracted them.

Contributions Previously [9], we presented a rather detailed analysis of aConsensus algorithm known
from the literature [1]. There (and in the related Phd thesisby Kühnrich [8]), we already introduced the
idea of standard forms, but they were not uniquely defined, and we did not design an explicit operational
semantics for them. Instead, we focused on the overall proofmethodology that integrated the assertional
invariant-based reasoning with the definition of a bisimulation relation for the overall correctness proof.
In contrast, in this paper, while we revisit the same algorithm, the new contributions are the precise
definition of the standard forms, their uniqueness, the definition of an explicit operational semantics for
their stateful representatives, and the proof of 1-1-correspondence with the underlying process calculus
semantics. In the Appendix, we supply some proofs on the correctness of the chosen algorithm, now
carried out based on the explicit semantics of the stateful representatives. While the standard forms need
to be reinvented for each algorithm, the principles for finding them and also the overall methodology are
reusable.

2 Distributed Consensus

In this chapter we introduce a distributed process calculusfor fault tolerant systems. Fault tolerant
systems are systems that are able to proceed their work even in the case of failures. In every fault tolerant
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system there is a limit to how many failures can occur until the system ceases its operation. The limit is
directly linked to the design of the system and the nature of the failure. Failures can occur in every part of
the system, e. g. message transfer, on channels, or processes. We restrict our interest to permanent crashes
of processes. To detect crashes we need a tool, which we denote as failure detector. We concentrate on
unreliable failure detectors as described in [2].

2.1 Unreliable Failure Detectors

The following ideas and definitions are taken mostly verbatim from [2].
A distributed system consists of a set ofn processes,Π = {p1, . . . , pn}. Every pair of processes

is connected by a reliable communication channel. For simplicity, the existence of a discrete global
clock is assumed, with the rangeT of the clock’s ticks being the set of natural numbers. The function
F : T → 2Π describes afailure pattern, whileF(t) denotes the set of processes that have crashed through
time t ∈ T .The set of crashed processes is described bycrashed(F) =

⋃
t∈T F(t), where the set of

correct processes is described bycorrect(F) = Π− crashed(F). p ∈ crashed(F) saysp crashes inF
andp∈ correct(F) saysp is correct inF. Note, only failure patternsF such that at least one process is
correct are considered, i. e.correct(F) 6= /0.

Each failure detector module outputs the set of processes that it currently suspects to have crashed.
The functionH : Π×T → 2Π is called afailure detector history, whereH(p, t) denotes the value of the
failure detector model of processp at timet. q∈ H(p, t) says thatp suspectsq at timet in H.

Informally, a failure detectorD provides (possibly incorrect) information about the failure patternF
that occurs in an execution. Formally, failure detectorD is a function that maps each failure patternF
to a set of failure detector historiesD(F). This is the set of all failure detector histories that couldoccur
in executions with failure patternF and failure detectorD . We use two different failure detectors that
satisfy the following completeness and accuracy properties.
• Strong completeness: Eventually every process that crashes is permanently suspected by every

correct process.
∀F. ∀H ∈D(F). ∃t ∈ T . ∀p∈ crashed(F). ∀q∈ correct(F). ∀t ′ ≥ t. p∈ H(q, t ′)

• Strong accuracy: No process is suspected before it crashes.
∀F. ∀H ∈D(F). ∀t ∈ T ,∀p,q∈Π−F(t). p 6∈H(q, t)

• Weak accuracy: Some correct process is never suspected.
∀F. ∀H ∈D(F). ∃p∈ correct(F). ∀t ∈ T . ∀q∈Π−F(t). p 6∈ H(q, t)

A failure detector is calledperfectif it satisfies strong completeness and strong accuracy, with the set of
all these failure detectors being denoted byP. A failure detector is calledstrong if it satisfies strong
completeness and weak accuracy, with the set of all these failure detectors being denoted byS .

2.2 Syntax of the Calculus

We introduce a tailor-made calculus [9] to model Distributed Consensus. It is based on process calculi
like the well-known CCS orπ-calculus [12, 14]. The calculus is an adapted version of thecalculus
introduced by Francalanza and Hennessy in [4]. Most of the following definitions are taken verbatim
from [9, 8].

The syntax of the calculus is shown in Table 1, it consists of four layers: data values, guarded
processes, processes, and networks. The existence of a countably infinite set of channel, variable, and
function namesA = {a,b,c, . . .} and a finite set of location namesLoc that contains the special name⋆
is assumed. The definitions are mostly standard.S (|k|).P is the process that behaves likeP if the process
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DATA VALUES V v ::= ⊥,0,1,2,3, . . . | (v,v) | {v, . . . ,v}

VARIABLE PATTERN X ::= x | (X,X), with x∈ A

EXPRESSIONS e ::= v | X | (e,e) | f(e), with f ∈ A

GUARDED PROCESSESG G ::= 0 | c〈e〉.P | c(X).P | S (|k|).P | P(|k|).P | G+G
| if e then G elseG

PROCESSESP P,Q ::= τ .P | G | K(e) | P ‖ P

NETWORKS N M,N ::= 0 | ℓ [P] | N ‖ N | N\a

PROCESS EQUATIONS D def= {K j(X) = Pj} j∈J a finite set of process definitions

Table 1: Syntax

k is suspected to have crashed andP(|k|).P behaves likeP if the processk has crashed.K(X) denotes a
parametrized process constant, which is defined with respect to a finite set of process equationsD of the
form {K j(X) = Pj} j∈J.

Definition 2.1 (Configurations). ConfigurationsC have either of the two forms(L ,n)⊲⊥M or (L ,n)⊲ti
M, whereL ⊆Loc\{⋆} is a finite set of locations,n∈N is the number of processes that can crash and
M is a network. The locationti ∈Loc, ti 6= ⋆ is called atrusted immortal[15]; it cannot be suspected
and it never crashes. We defineC as the set of all configurations.

We define the projection:

live(ℓ,(L ,n)) =

{
true , if ℓ ∈L ∨ ℓ= ⋆

false ,else

HenceL ⊆Loc is the set of live processes andn denotes the number of processes that are allowed
to crash. AccordinglyLoc\L denotes the set of crashed processes. LetJeK denote the evaluation of
expressione, defined in the standard way.

The substitution of valuev for a variable patternX in expressione or processP is written e{v/X}
and P{v/X} respectively. The operator fn(·) defined on processes and networks is defined as usual.
Notice that only data values can be substituted for names andthat all variables of the patternX must
be free inP. We writec〈e〉 for c〈e〉.0 andc.P for c(x).P, x /∈ fn(P) andc for c〈⊥〉. Moreover we use
a@i(x).P def= a(x).P + S (|i|).P{⊥/x}, i. e. either there is communication on channela or locationi is
suspected. We proceed withP in both cases with respect to the given substitution.

2.3 Semantics of the Calculus

Network evaluation defines some rules to reduce configurations.

Definition 2.2. Let > be the evaluation relation defined on configurations (assuming live(ℓ,Γ) every-
where, except explicitly stated otherwise), closed under restriction, parallel composition, and the follow-
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ing rules:

Γ⊲ti ℓ [P ‖ Q] > Γ⊲ti ℓ [P] ‖ ℓ [Q] (E1)

Γ⊲ti ℓ [0] > Γ⊲ti 0 (E2)

Γ⊲ti ℓ [P] > Γ⊲ti 0, ¬ live(ℓ,Γ) (E3)

Γ⊲ti 0 ‖ N > Γ⊲ti N (E4)

Γ⊲ti N ‖ 0 > Γ⊲ti N (E5)

Γ⊲ti ℓ [c〈e〉.P] > Γ⊲ti ℓ [c〈JeK〉.P]

Γ⊲ti ℓ [K(e)] > Γ⊲ti ℓ [P{JeK/X}] , (K(X) def= P) ∈D

Γ⊲ti ℓ [if e then P elseQ]> Γ⊲ti ℓ [P] , JeK > 0

Γ⊲ti ℓ [if e then P elseQ]> Γ⊲ti ℓ [Q] , JeK = 0.

Let C >∗ C′ denote the maximal evaluation of an arbitrary configurationC into C′ respecting the rules
above, i. e.∀C,C′ ∈C.C >∗C′ def= C> · · ·>C′∧∄C′′.C′ >C′′.

We took this definition from [9] and added (similarly to [8]) the rules (E1) to (E5) to it. We re-
moved transitivity to ease the proof of local confluence in Lemma 3.7, because otherwise we would
not only have to prove diamonds but also triangles. Note thatstructural congruence contains the re-
flexive and transitive closure of>. As an example considerΓ ⊲ti ℓ [if 1 then (c〈e〉.P ‖ Q) elseR] >
Γ ⊲ti ℓ [c〈e〉.P ‖ Q]. Without Rule (E1) we cannot evaluate this term any further.With this Rule we
further evaluateΓ ⊲ti ℓ [c〈e〉.P ‖ Q] > Γ ⊲ti ℓ [c〈e〉.P] ‖ ℓ [Q] > Γ ⊲ti ℓ [c〈JeK〉.P] ‖ ℓ [Q]. Intuitively the
Rule (E1) allows to simplify the syntactic representation of a term as far as possible. This significantly
simplifies the definition of the semantics in Section 4. Rules(E2) to (E5) remove dead processes from
configurations.

Note that in [9] the Rule E1 is added to structural congruenceinstead of network evaluation. We find
this version to be more intuitive and handy, because it allows us to omit structural congruence in some
following proofs. Note that this decision does not influencethe meaning of structural congruence.

Definition 2.3. Structural congruence≡⊆ C×C is the least equivalence relation containing>, satisfy-
ing commutative monoid laws for (N,‖,0) closed under restriction and parallel composition.

Actions α ∈ Act are of the formα ::= τ | cv | cv. The transition relation−→⊆ C×Act×C is
the smallest relation satisfying the rules of Table 2. Rule (TI) non-deterministically selects a trusted
immortal. This rule has to be applied initially because all other rules require the trusted immortal set.
(Stop) allows agents to cease execution. (Susp) and (PSusp) model (perfect) suspicion of agents. (SumL)
and (SumR) allow to reduce the left or right side of a sum. Similar (Par) and (Res) allow to reduce an
agent within parallel composition or restriction. (Com), (Tau), (Snd), and (Rcv) model communication,
internal steps, sending, and receiving. Finally, (Red) models steps modulo structural congruence.

Let=⇒ denote the reflexive and transitive closure of
τ
−→ and let

α
=⇒ abbreviate=⇒

α
−→=⇒ if α 6= τ

and=⇒ else. Let Act∗ be the set of finite sequences of elements in Act\{τ}. We define
σ

=⇒ for some

sequenceσ = α1, . . . ,αn with α1≤i≤n∈Act as
α1=⇒···

αn=⇒ for n> 0 and else as=⇒. We use the standard
definition of weak bisimulation and weak bisimulation up to techniques as described e. g. in [16].

2.4 Case Study

Distributed Consensus is the following well-known problem: there is a fixed numbern of agents each
initially propose a valuevi , 1≤ i ≤ n; then, eventually, the agents must agree on a common value
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(TI) ti ∈L \{⋆}

(L ,n)⊲M
τ
−→ (L ,n)⊲ti M

(Stop) ℓ 6= ti∧ ℓ ∈L

(L ,n+1)⊲ti M
τ
−→ (L \{ℓ},n)⊲ti M

(PSusp) live(ℓ,Γ)∧¬live(k,Γ)
Γ⊲ti ℓ [P(|k|).P]

τ
−→ Γ⊲ti ℓ [P]

(Susp) live(ℓ,Γ)∧k 6= ti∧k 6= ℓ

Γ⊲ti ℓ [S (|k|).P]
τ
−→ Γ⊲ti ℓ [P]

(Tau) live(ℓ,Γ)
Γ⊲ti ℓ[τ .P]

τ
−→ Γ⊲ti ℓ[P]

(SumL) live(l ,Γ)∧Γ⊲ti ℓ [G1]
α
−→ Γ′ ⊲ti ℓ [P]

Γ⊲ti ℓ [G1+G2]
α
−→ Γ′ ⊲ti ℓ [P]

(Par) Γ⊲ti M
α
−→ Γ′ ⊲ti M′

Γ⊲ti M ‖ N
α
−→ Γ′ ⊲ti M′ ‖ N

(SumR) live(l ,Γ)∧Γ⊲ti ℓ [G2]
α
−→ Γ′ ⊲ti ℓ [P]

Γ⊲ti ℓ [G1+G2]
α
−→ Γ′ ⊲ti ℓ [P]

(Snd) live(ℓ,Γ)
Γ⊲ti ℓ [c〈v〉]

cv
−→ Γ⊲ti 0

(Rcv) live(ℓ,Γ)
Γ⊲ti ℓ [c(X).P]

cv
−→ Γ⊲ti ℓ [P{v/X}]

(Com) Γ⊲ti M
α
−→ Γ⊲ti M′ Γ⊲ti N

α
−→ Γ⊲ti N′

Γ⊲ti M ‖ N
τ
−→ Γ⊲ti M′ ‖ N′

, α ,α 6= τ

(Red) C⇛C1
α
−→C2 ⇛C′

C
α
−→C′

(Res) Γ⊲ti M
α
−→ Γ′ ⊲ti M′

Γ⊲ti M \a
α
−→ Γ′ ⊲ti M′ \a

, α 6= av,av

Table 2: Structural Operational Semantics

vi ∈ {v1, . . . ,vn}. The model in which we study this problem consists of asynchronously communicating
agents that are vulnerable to crash failures. Each agent is furthermore equipped with a failure detector,
which can detect whether other agents have stopped or not. The precise specification of the problem
comprises three properties with temporal logic flavor:

Termination: Every live agent eventually decides some value.
Agreement: No two agents decide differently.
Validity: If an agent decides valuev, thenv was proposed by some agent.

Table 3 presents an algorithm by Chandra and Toueg [2] that issupposed to solve Distributed Consensus
in the context of failure detectorS . It is based on three phases. In the following we give a short
description of the algorithm. The system consists ofn agents, which are identified by numbers, and the
wrapper, i. e.Loc def= {⋆,1, . . . ,n}. Every agentp has a knowledge vectorVp initially only containing its
own proposed valuevp, i. e.Vp(p) = vp. Unknown values are represented by⊥.

Validity is shown by an invariant. To show termination and agreement, we have to prove following
bisimulation:

(Loc,n−1)⊲⊥ (System‖ Wrapper)\R≈ (Loc,0)⊲ti ⋆
[
ok
]

Phase 1consists ofn−1 rounds. In every round agentp broadcasts to every other agent a message∆p,
initially containing the knowledge of the own proposed value. p then collects all messages∆q from
every agentq in the system or suspectsq to have crashed, i. e.S (|q|). If a message is received
containing the proposed value of agentq which is not known byp it is added to the knowledge of
p. After agentp processed all messages, it builds the message to send in the next round by taking
all new learned values into this message.

Phase 2 is used to synchronize knowledge. Every agentp sends its knowledge vectorVp to every other
agent. Thenp collects for every agentq eitherVq or suspectsq. If p collected a message such
that the message contains no knowledge about agentq, thenp also removes knowledge about this
agent, i. e.p setsVp(q) =⊥.
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1: Pseudo code for agentp
2: Vp← ⊥̃, Vp(p)← vp

3: ∆p←Vp, Mp← /0
4:

5: Phase 1:
6: for all rp← 1 ton−1 do
7: sendP1(p, rp,∆p) to all
8: ∆p← ⊥̃
9: block until

10: for all 1≤ q≤ n
11: receivem= P1(q, rp,∆)
12: Mp←Mp∪{m}
13: or suspectS (|q|)
14: for all q← 1 to ndo
15: if Vp(q) =⊥ and∃∆′ ∈Mp

16: with ∆′(q) 6=⊥ then
17: Vp(q)← ∆′(q)
18: ∆p(q)← ∆′(q)
19:

20: Phase 2:
21: sendP2(Vp) to all
22: block until
23: for all 1≤ q≤ n do
24: receivem= P2(V)
25: Mp←Mp∪{m}
26: or suspectS (|q|)
27: for all q← 1 to ndo
28: if ∃V ′ ∈Mp : V ′(q) =⊥
29: thenVp(q)←⊥
30:

31: Phase 3:
32: decide= min{q |Vp(q) 6=⊥}

Table 3: Distributed Consensus [2]

Phase 3. In Phase 3 every agent decides on a valuev= min{q |Vp(q) 6=⊥}.
We use an adapted version of the implementation of this algorithm as described in [8], see Table 4.

The implementation is adapted such that the whole knowledgevector is no longer sent over channelc in
Phase 3. This change does not affect the correctness of the algorithm because this vector is never used
by the wrapper. We also changed the wrapper code. In the implementation of [8], the wrapper reduced
to 0 upon receiving an invalid valuev. Invalid has the meaning that the wrapper already learned a value
v some agentp decided on and then received a valuev′ from some other agentq with V 6=V ′. Because
it might come in handy to know which process decided on that wrong value, we changed the wrapper
in a way such that it has an additional parameter which represents whether it can receive messages or
not. Initially the wrapper is allowed to receive messages but sets the parameter to 0 upon receiving an
invalid value. Observe thatWrap(·, ·,0)≈ 0. Since these are the only changes, the adapted version of the
implementation has the same behavior as the original version.

Definition 2.4. Each agent is uniquely identified by a numberp∈ Π, whereΠ = {1, . . . ,n} is the set of
agents, and a proposed valuevp. The tupleU contains all initially proposed values, i. e.U = (v1, . . . ,vn).

We use⊥ for unknown values and define the domain of valuesD asN∪{⊥} whereN= {1,2,3, . . .}
and let≤nat be the usual ordering relation on the natural numbers. The ordering≤⊆ D×D is the least
relation containing≤nat with the additional requirements⊥ ≤ ⊥ and⊥ ≤ i for all i = 1, . . . ,n. An n-
vector is a map from set{1, . . . ,n} to the setD and⊥̃ is then-vector(⊥, . . . ,⊥). We occasionally regard
vectors as ordered lists of values. The ordering≤ is extended point-wise ton-dimensional vectors and
we writeV1 ≤ V2 when vectorV2 is greater than or equal toV1. We say a vectorV is valid if V ≤U ,
whereU is the vector of Definition 2.4. The initial vectorV0

i of agenti contains only its proposed value
vi at positionV0

i (i), i. e.V0
i (i) = (U(i),0) andV0

i ( j) = (⊥,0) for all j ∈ Π \ {i}. The replay vector is
initialized in a similar way, i. e.∆0

i (i) =U(i) and∆0
i ( j) =⊥ for all j ∈Π\{i}. The initial configuration

is a term in the calculus of the form(Loc,n− 1) ⊲⊥
(
∏n

i=1 i
[
P1i(1, I0

i , Ii , /0)
]
‖ ⋆ [Wrap(1,⊥,1)]

)
\R

for somen ∈ N, I0
i ( j) = v0

i if j = i and⊥0 else, andIi( j) = vi if j = i and⊥ else. LetC0 denote
the set of all initial configurations. To simplify the following consideration we do not regard initial
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1: System def=
2:

(
∏n

i=1 i
[
P1i(1, I0

i , Ii , /0)
])

3: P1p(r,V,∆,M) def=
4: if (r < n) then
5: ∏1≤i≤n ap,i,r 〈∆〉 ‖ C1p(r,V,M,1)
6: else
7: P2p(V,M)

8: C1p(r,V,M, i) def=
9: if i ≤ n then

10: ai,p,r @i(∆).C1p

(
r,V,M +(∆, r, i), i +1

)

11: else
12: P1p

(
r +1,update

k
(r,M,V),

13: update
r
(r,M,V),M

)

14: P2p(V,M) def=
15: ∏1≤i≤n bp,i〈V〉 ‖ C2p(V,M,1)

16: C2p(V,M, i) def=
17: if i ≤ n then
18: bi,p@i(V ′).C2p(V,M +(V ′, i), i +1)
19: else
20: P3p(correct(M,V))

21: P3p(V) def=
22: cp〈getfst(V)〉

23: Wrap(i,v,b) def=
24: if (b== 1) then
25: if (1≤ i ≤ n) then
26: P(|i|).Wrap(i +1,v,1) +
27: ci(v′).
28: if ((v==⊥∧v′ !=⊥)∨v== v′) then
29: Wrap(i +1,v′,1) elseWrap(i,v,0)
30: else if(i == n+1) then ok
31: elseWrap(i,v,0)

Table 4: Encoding of the Algorithm in Table 3

configurations as reachable configurations, but only configurations that are reachable from some initial
configuration and in which the trusted immortal is set. LetCR denote the set of reachable terms, i. e.

CR =
{

Γ⊲ti M | ∃C∈ C0. ∃σ ∈ Act∗.C
σ

=⇒ Γ⊲ti M
}

.

3 Stateful Representatives

A stateful representative represents the global state of the system. We observe that the system consists of
messages in transit or agents wanting to receive messages. To describe the state of the system we need
variables that represent these messages and agents. Thus weobtain the sets of all messages of Phase 1,
i. e. Ω1, Phase 2, i. e.Ω2, and Phase 3, i. e.Ω3. We also get the sets of all agents wanting to receive
messages of Phase 1, i. e.Θ1, and Phase 2, i. e.Θ2. These sets do not contain a single value like an
agent identifier but rather a tuple of related informations,e. g.Ω1 contains tuples(p, i, r,∆). These tuples
provide the information that there is a message from agentp to agenti in Roundr containing the value
∆, we also know that this message belongs to Phase 1 because thetuple is contained inΩ1.

Definition 3.1. [Stateful Representative ] A standard form of a reachable configurationC is a configu-
ration of the form in Table 5 that is structural congruent toC, where live(p, Γ ) for all occurrences of
p. The stateful representative of a standard form is the vector given by all boxed elements, i. e. a stateful
representative has the form:

(Γ,ti,Ω1,Ω2,Ω3,Θ1,Θ2, j,w,b)
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Γ ⊲
ti

(
∏

(p,i,r)∈ Πout
1

p
[
ap,i,r 〈 ∆p,r 〉

]
‖

∏
(p,i)∈ Πout

2
p
[
bp,i〈 VP2

p 〉
]
‖

∏
p∈ Πout

3
p
[
cp〈 vP3p 〉

]
‖

∏
(p,r)∈ Πcol

1
p
[
C1p

(
r, VP1

p , MP1
p , iP1p

)]
‖

∏
p∈ Πcol

2
p
[
C2p

(
VP2

p , MP2
p , iP2p

)]
‖

⋆
[
Wrap( j , w , b )

])
\R

whereiP1p ≤ n, iP2p ≤ n, j≤ n, r < n, andb ∈ {0,1}.

Table 5: Standard Form for Reachable Configurations

with

Ω1 =
{
(p, i, r,∆) | (p, i, r) ∈Πout

1 ∧∆ = ∆p,r
}

Ω2 =
{
(p, i,V) | (p, i) ∈Πout

2 ∧V =VP2

p

}

Ω3 =
{
(p,v) | p∈Πout

3 ∧v= vP3p

}

Θ1 =
{
(p, r,V,M, i) | (p, r) ∈Πcol

1 ∧V =VP1

p ∧M = MP1

p ∧ i = iP1p

}

Θ2 =
{
(p,V,M, i) | p∈Πcol

2 ∧V =VP2

p ∧M = MP2

p ∧ i = iP2p

}

Let CN denote the set of standard forms. HenceC ) CR ) CN.

By Definition 3.1 every standard form represents a reachableconfiguration. We prove that for each
reachable configuration there is a standard form, and hence astateful representative.

Lemma 3.2. For every reachable configuration there is a standard form.

We prove this lemma by induction over the number of steps necessary to reach a configuration from
an initial configuration.

Definition 3.3 (NF). Let NF :CR→ CN be a function defined by

NF(C) = rw(order(identify(C′)))

whereC>∗ C′, i. e. identify is applied to a fully evaluated configuration.
The auxiliary function identify is given by:

identify(Γ⊲ti N\R) = Γ⊲ti identify(N)\R

identify(N ‖M) = identify(N) ‖ identify(M)

identify(ℓ [P]) = ℓ [translate(P)]
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By Definition 2.2, a fully evaluated configuration is a parallel composition of terms of the form as
visualized in Table 4 Lines 5, 10, 15, 18, 22, 26–29, 30, and 31. With the function identify, translate is
applied to each of these subterms. For the following terms

Ph1 def= ai,p,r@i(∆).C1p

(
r,V,M +(∆, r, i), i +1

)

Ph2 def= bi,p@i(V ′).C2p(V,M +(V ′, i), i +1)

W def= P(|i|).Wrap(i +1,v) +

ci(v
′).

if ((v==⊥∧v′ !=⊥)∨v== v′) then

Wrap(i +1,v′,1) elseWrap(i,v,0)

we define translate as:

translate(Ph1) = C1p(r,V,M, i)

translate(Ph2) = C2p(V,M, i)

translate(W) =Wrap(i,v,1)

translate(ok) =Wrap(0,v,1)

translate(P) = P, otherwise

The function order orders the subterms of the configuration into a standard form as visualized in
Table 5. First all outputs on channela are moved to the beginning of the standard form followed by all
outputs onb andc. Then the input guarded terms on channela andb, denoted asC1p(·, ·, ·, ·) respectively
C2p(·, ·, ·), followed by the Wrapper. Hence the function order can be implemented using the structural
congruence rules for commutativity and associativity of the parallel operator.

We define rw as:

rw(C) =





Γ⊲ti (M ‖ ⋆ [Wrap(0,⊥,1)])\R , if C = Γ⊲ti M \R and

M does not contain the location⋆

C , else

If the wrapper was reduced to 0, the function restores the wrapper to obtain a standard form as visualized
in Table 5.

Note that restriction is moved outwards by the definition above. Note as well, that there does not
exist an inverse function because NF is not injective. However for each configurationC passed to NF we
can compute an inverse to the standard form NF(C) which is structural congruent toC. Therefore we
will now define such a function returning a representative for the inverse being denoted by NF-1.
Definition 3.4 (NF-1). Let NF-1 : CN→ CR be a function defined by

NF-1(C) = identify′(C)

The auxiliary function identify′ is given by:

identify′(Γ⊲ti N\R) = Γ⊲ti identify′(N)\R

identify′(N ‖M) = identify′(N) ‖ identify′(M)

identify′(ℓ [P]) = ℓ
[
translate−1(P)

]

with translate−1 being the inverse of the function translate given in the definition of NF.
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Lemma 3.5. For every reachable configuration, the functionNF returns the corresponding standard
form, i. e.:∀C∈ CR.C≡NF(C)∧NF(C) ∈ CN.

Accordingly we show that the function NF-1 returns for every standard form a structural congruent
configuration. Note that NF(NF-1(N)) = N and NF-1(NF(C)) ≡C.

Lemma 3.6. For every standard form N,NF-1(N) returns a structural congruent configuration, i. e.:
∀N ∈ CN. N≡ NF-1(N)∧NF-1(N) ∈CR

In the following we show that the operator>∗ returns a fixed point, which is a necessary condition
for the uniqueness of stateful representatives.

Lemma 3.7(Confluence). The operator>∗ returns a fixed point, i. e.:

∀C1,C2 ∈ CR.C1 >C2 implies∃!C′ ∈CR.C1 >
∗C′∧C2 >

∗C′

Based on the lemma above we conclude that NF(C) returns a unique standard form for every reach-
able configuration.

Lemma 3.8. Let C be a reachable configuration withNF(C) as the corresponding standard form. For
every other configuration C′ with C≡C′ the following holds:NF(C) = NF(C′).

Finally we show that the definition of stateful representatives is unambiguous.

Lemma 3.9. Let C∈ CR be a reachable configuration with the standard form N, thenNF(C) = N.

Now we can proof that for every configurationC that has a standard form and a stepC to C′ then
there also exists a standard form forC′, henceC andC′ have stateful representatives.

Theorem 3.10. If C
τ
−→C′ and C has a standard form, then C′ also has a standard form.

4 A Semantics for Stateful Representatives

Building a Semantics for Stateful Representatives we can exploit the Stateful Representative being a
global state of the algorithm. So we can directly derive a Semantics on Stateful Representatives out of
the algorithm itself—by doing so we can ignore the actual implementation. The only obstacle is to make
sure the resulting Stateful Representative is unique. As shown in Section 3 the Stateful Representative is
a reordered version of the maximally evaluated calculus term. Thus we have to keep that in mind while
creating the rules.

For example in Phase 1 of the Algorithm we have to distinguishbetween 3 cases: (i) transition to the
next Round, (ii) transition to the next Phase, (iii) else. Additionally we have to distinguish between mes-
sage reception and suspicion of the other process. The rulesthat model suspicion can directly be derived
from the rules that model message reception because we have to handle received values differently.

The next three rules describe the behavior of a receiving process in Phase 1 ((q, r) ∈ Πcol
1 ) with the

sending process not being suspected (live(p,Γ)). We distinguish between three cases according to Line 4
and Line 9:
SR3: The receiving agent is in the last round of Phase 1 receiving a message from the last agent (p=

n∧ r = n−1).
SR2: The receiving agent is not in the last round of Phase 1 receiving a message from the last agent

(p= n∧ r < n−1).
SR1: Else (p< n∧ r < n).
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∃p,q∈Loc. live(p,Γ)∧ live(q,Γ). ∃r ∈ N. p< n∧ r < n. Rule SR1
(p,q, r) ∈Πout

1 ∧ (q, r) ∈Πcol
1 ∧ i

P1
q = p.

Π̂out
1 = Πout

1 \{(p,q, r)} remove the message received
∧ îP1q = iP1q +1 receive from the next process
∧ M̂P1

q = MP1
q ∪{(∆p,r , r, p)} add the received information to local messages

∃p,q∈Loc. live(p,Γ)∧ live(q,Γ). ∃r ∈ N. p= n∧ r < n−1. Rule SR2
(p,q, r) ∈Πout

1 ∧ (q, r) ∈Πcol
1 ∧ i

P1
q = p.

Π̂out
1 =

⋃n
j=1{(q, j, r +1)}∪ (Πout

1 \{(p,q, r)}) additionally send messages to all other proc
∧ îP1q = 1 receive from the first process
∧ M̂P1

q = MP1
q ∪{(∆p,r , r, p)}

∧ V̂P1
q = update

k
(r,M̂P1

q ,VP1
q ) update knowledge

∧ ∆̂q,r+1 = update
r
(r,M̂P1

q ,VP1
q ) update newly received knowledge

∧ Π̂col
1 =

(
Πcol

1 \{(q, r)}
)
∪{(q, r +1)} collect messages of the next round

The change tôiP1q may be omitted in the following rule because no according triple is added to the

setΠ̂out
1 . BecausêΠcol

1 = Πcol
1 \{(q, r)} we may also omit the change toîP1q . Both changes have no effect

on the derived stateful representative.
∃p,q∈Loc. live(p,Γ)∧ live(q,Γ). ∃r ∈ N. p= n∧ r = n−1. Rule SR3
(p,q, r) ∈Πout

1 ∧ (q, r) ∈Πcol
1 ∧ i

P1
q = p.

Π̂out
1 = Πout

1 \{(p,q, r)}
∧ îP1q = iP1q +1
∧ Π̂out

2 =
⋃n

j=1{(q, j)}∪Πout
2 send messages in Phase 2

∧ M̂P1
q = MP1

q ∪{(∆p,r , r, p)}
∧ V̂P1

q = update
k
(r,M̂P1

q ,VP1
q )

∧ ∆̂q,r+1 = update
r
(r,M̂P1

q ,VP1
q )

∧ Π̂col
1 = Πcol

1 \{(q, r)} stop receiving messages in Phase 1
∧ Π̂col

2 = Πcol
2 ∪{q} receives messages in Phase 2

∧ îP2q = 1
∧ V̂P2

q = V̂P1
q transfer knowledge to Phase 2

∧ M̂P2
q = M̂P1

q transfer knowledge to Phase 2

The Rules SR4 to SR6 are nearly the same as Rules SR1 to SR3. They model suspicion of the sending
process, thus the only differences in the Rules are: (i) the message in transit does not get removed, (ii) the
value that should be received gets replaced by⊥.

The next rule applies if some agent has crashed, i. e. the process and all of its messages gets removed
from the system.
∃p∈Loc. p 6= ti ∧ live(p,Γ). Rule SR7

(L̂ , n̂) = (L \{p},n−1)
∧ Π̂out

1 = Πout
1 \{(p, i, r) | ∃i ∈Loc, r ∈ N. (p, i, r) ∈Πout

1 }

∧ Π̂out
2 = Πout

2 \{(p, i) | ∃i ∈Loc. (p, i) ∈Πout
2 }

∧ Π̂out
3 = Πout

3 \{p}
∧ Π̂col

1 = Πcol
1 \

{
(p, r) | ∃r ∈ N. (p, r) ∈Πcol

1

}

∧ Π̂col
2 = Πcol

2 \{p}
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N

N′

NF-1(N)

NF-1(N′)

∀ ∃

Figure 1: Soundness

NF(C)

NF(C′)

C

C′

∃ ∀

Figure 2: Completeness

4.1 Correctness

To obtain a 1-1-correspondence, we prove our semantics to beequivalent to the calculus semantics re-
stricted to standard forms, see Figure 1 and 2. Therefore we show two main properties which we call
soundnessandcompleteness.
Soundness.We call our semantics to be sound, if whenever a standard formN can do a step toN′, the

according configurationC can do a step toC′ such thatN′ is the standard form toC′.
Completeness.We call our semantics to be complete, if for every step of a configurationC to C′, the

according standard formN can do a step toN′ such thatN′ is the according standard form toC′.
By showing these properties we are able to solely use the semantics of stateful representatives to show
properties of the implementation itself.

Being able to focus on stateful representatives enables us to tame the state space, because by Def-
inition 3.1 a standard form is structural congruent to a configuration and by Lemma 3.8 every two
structurally equivalent configurations have the same standard form. Hence a stateful representative is
a representative of an equivalence class of configurations.

The semantics is sound regarding to the calculus if every step in the stateful representative semantics
can be emulated by the calculus semantics, see Figure 1.

Theorem 4.1 (Soundness). ∀N,N′ ∈ CN. N −→ N′ implies∃C,C′ ∈ CR. NF-1(N) = C∧NF-1(N′) =
C′∧C

τ
−→C′.

To show soundness we have to provide a proof tree using the calculus semantics for each rule of the
stateful representative semantics. By proving soundness we observe that we obtain 7 proof trees, two for
each phase and one for process crashes.

To prove completeness we have to show that every transition being possible in the calculus beginning
from the initial setting can be simulated by our stateful representative semantics, see Figure 2. For
simplicity in the following we always assume live for the sending and receiving agent in a communication
step. In the case of suspicion we assume live for the receiving agent and neither live nor¬live for the
sending agent. Note that neither the wrapper nor the trustedimmortal can crash.

Theorem 4.2(Completeness). ∀C,C′ ∈CR.C
τ
−→C′ implies∃N,N′ ∈CN. N = NF(C)∧N′ = NF(C′)∧

N −→ N′.

To prove this Theorem we use Lemmata 3.2, 3.5, and 3.8 to be able to only observe standard forms
instead of every reachable configuration. Analyzing the standard form we observe that the only possible
steps are either communication or process crashes. For eachof these cases we show that there is a
corresponding rule in the stateful representative semantics, e. g. communication in Phase 1 corresponds
to Rules SR1 to SR3. We show by case differentiation that for each communication step in Phase 1
exactly one of these rules can be applied to obtain the correct stateful representative. The proof for the
other cases is similar.
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Soundness and correctness allows us to freely switch between both semantics. Thus we can now use
state based reasoning techniques like invariants as well asaction based techniques like bisimulation at
the same time.

5 Conclusion

The main ideas have been explained in the Introduction. We may finally emphasize that we could have
started the whole verification exercise from scratch using astate machine approach, for example using
the ASM formalism or also TLA+. Actually, we have done such work ourselves, as in [5] as the basis for
fully formal verification [7] within the Isabelle proof checking environment, but we are still convinced
that the initial design of the algorithm using language primitives to “code” the local behaviors for the
individual processes is of good value. After all, it is then very easy for programmers to implement the
algorithm on that basis. In comparison, this would be ratherindirect when starting from a state machine
approach.
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