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Bisimulation metric is a robust behavioural semantics for probabilistic processes. Given any SOS
specification of probabilistic processes, we provide a method to compute for each operator of the
language its respective metric compositionality property. The compositionality property of an oper-
ator is defined as its modulus of continuity which gives the relative increase of the distance between
processes when they are combined by that operator. The compositionality property of an operator
is computed by recursively counting how many times the combined processes are copied along their
evolution. The compositionality properties allow to derive an upper bound on the distance between
processes by purely inspecting the operators used to specify those processes.
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1 Introduction

Over the last decade a number of researchers have started to develop a theory of structural operational
semantics for probabilistic transition systems (PTSs). Several rule formats for various PTSs were pro-
posed that ensure compositionality of bisimilarity [3, 10,27] and of approximate bisimilarity [24, 31].
We will consider specifications with rules of the probabilistic GSOS format [3,9,29] in order to describe
nondeterministic probabilistic transition systems [30].

Bisimilarity is very sensitive to the exact probabilities of transitions. The slightest perturbation of the
probabilities can destroy bisimilarity. Bisimulation metric [6, 7, 13–16, 25] provides a robust semantics
for probabilistic processes. It is the quantitative analogue to bisimulation equivalence and assigns to
each pair of processes a distance which measures the proximity of their quantitative properties. The
distances form a pseudometric with bisimilar processes at distance 0. Alternative approaches towards a
robust semantics for probabilistic processes are approximate bisimulation [17, 25, 32] and bisimulation
degrees [33]. We consider bisimulation metrics as convincingly argued in e.g. [6,15,25].

For compositional specification and reasoning it is necessary that the considered behavioral semantics
is compatible with all operators of the language. For bisimulation metric semantics this is the notion
of uniform continuity. Intuitively, an operator is uniformly continuous if processes composed by that
operator stay close whenever their respective subprocesses are replaced by close subprocesses.

In the 1990s, rule formats that guarantee compositionalityof the specified operators have been pro-
posed by (reasonable) argumentation for admissible rules.Prominent examples are the GSOS format [5]
and thentyft/ntyxt [26] format. More recently, the development of compositional proof systems for the
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satisfaction relation of HML-formulae [18,23] allowed to derive rule formats from the logical character-
ization of the behavioral relation under investigation [4,19–21].

We propose a new approach that allows to derive for any given specification the compositionality
property of each of its specified operators. The compositionality properties are derived from an appro-
priate denotational model of the specified language. First,we develop for a concrete process algebra an
appropriate denotational model. The denotation of an open process term describes for each resolution of
the nondeterministic choices how many instances of each process variable are spawned while the pro-
cess evolves. The number of spawned process replicas is weighted by the likelihood of its realization just
like the bisimulation metric weights the distance between target states by their reachability. We derive
from the denotation of an open process term an upper bound on the bisimulation distance between the
closed instances of the denoted process. Then we generalizethis method to arbitrary processes whose
operational semantics is specified by probabilistic GSOS rules. In fact, the upper bound on the bisimu-
lation distance between closed instances off (x1, . . . , xr( f )) is a modulus of continuity of operatorf if the
denotation off (x1, . . . , xr( f )) is finitely bounded. In this case the operatorf is uniformly continuous and
admits for compositional reasoning wrt. bisimulation metric.

This paper continues our research programme towards a theory of robust specifications for proba-
bilistic processes. Earlier work [24] investigated compositional process combinators with respect to ap-
proximate bisimulation. Besides the different semantics considered in this paper, we extend substantially
on the approach of [24] by using the newly developed denotational approach. The denotational model
separates clearly between nondeterministic choice, probabilistic choice, and process replication. This
answers also the open question of [24] how the distance of processes composed by process combinators
with a nondeterministic operational semantics can be approximated.

2 Preliminaries

2.1 Probabilistic Transition Systems

A signatureis a structureΣ = (F, r), where (i)F is a countable set ofoperators, and (ii) r : F → N is
a rank function. r( f ) gives the arity of operatorf . We write f ∈ Σ for f ∈ F. We assume an infinite
set of state variablesVs disjoint from F. The set ofΣ-terms (also calledstate terms) over V ⊆ Vs,
notationT(Σ,V), is the least set satisfying: (i)V ⊆ T(Σ,V), and (ii) f (t1, . . . , tr( f )) ∈ T(Σ,V) for f ∈ Σ and
t1, . . . , tr( f ) ∈ T(Σ,V). T(Σ,∅) is the set of allclosed termsand abbreviated asT(Σ). T(Σ,Vs) is the set of
open termsand abbreviated asT(Σ). We may refer to operators asprocess combinators, to variables as
process variables, and to closed terms asprocesses. Var(t) denotes the set of all state variables int.

Probability distributions are mappingsπ : T(Σ)→ [0,1] with
∑

t∈T(Σ)π(t)= 1 that assign to each closed
term t ∈ T(Σ) its respective probabilityπ(t). By ∆(T(Σ)) we denote the set of all probability distributions
on T(Σ). We let π range over∆(T(Σ)). The probability mass ofT ⊆ T(Σ) in π is defined byπ(T) =
∑

t∈T π(t). Let δt for t ∈ T(Σ) denote theDirac distribution, i.e., δt(t) = 1 andδt(t′) = 0 if t and t′ are
syntactically not equal. The convex combination

∑

i∈I qiπi of a family {πi}i∈I of probability distributions
πi ∈ ∆(T(Σ)) with qi ∈ (0,1] and

∑

i∈I qi = 1 is defined by (
∑

i∈I qiπi)(t) =
∑

i∈I (qiπi(t)). By f (π1, . . . ,πr( f ))
we denote the distribution defined byf (π1, . . . ,πr( f ))( f (t1, . . . , tr( f ))) =

∏r( f )
i=1 πi(ti). We may writeπ1 f π2

for f (π1,π2).
In order to describe probabilistic behavior, we need expressions that denote probability distribu-

tions. We assume an infinite set of distribution variablesVd. We letµ range overVd, and x,y range
overV =Vs∪Vd. The set ofdistribution termsover state variablesVs ⊆ Vs and distribution variables
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Vd ⊆ Vd, notationT(Γ,Vs,Vd) with Γ denoting the signature extendingΣ by operators to describe dis-
tributions, is the least set satisfying: (i)Vd∪{δ(t) | t ∈ T(Σ,Vs)} ⊆ T(Γ,Vs,Vd), (ii)

∑

i∈I qiθi ∈ T(Γ,Vs,Vd)
if θi ∈ T(Γ,Vs,Vd) and qi ∈ (0,1] with

∑

i∈I qi = 1, and (iii) f (θ1, . . . , θr( f )) ∈ T(Γ,Vs,Vd) if f ∈ Σ and
θi ∈ T(Γ,Vs,Vd). A distribution variableµ ∈ Vd is a variable that takes values from∆(T(Σ)). An instan-
tiable Dirac distributionδ(t) is an expression that takes as value the Dirac distributionδt′ when variables
in t are substituted so thatt becomes the closed termt′. Case (ii) allows to construct convex combinations
of distributions. We writeθ1⊕q θ2 for qθ1+ (1−q)θ2. Case (iii) lifts the structural inductive construction
of state terms to distribution terms.T(Γ) denotesT(Γ,Vs,Vd). Var(θ) denotes the set of all state and
distribution variables inθ.

A substitutionis a mappingσ : V→ T(Σ)∪T(Γ) such thatσ(x) ∈ T(Σ) if x ∈ Vs, andσ(µ) ∈ T(Γ)
if µ ∈ Vd. A substitution extends to a mapping from state terms to state terms as usual. A substitu-
tion extends to distribution terms byσ(δ(t)) = δσ(t), σ(

∑

i∈I qiθi) =
∑

i∈I qiσ(θi) andσ( f (θ1, . . . , θr( f ))) =
f (σ(θ1), . . . ,σ(θr( f ))). Notice that closed instances of distribution terms are probability distributions.

Probabilistic transition systems generalize labelled transition systems (LTSs) by allowing for prob-
abilistic choices in the transitions. We consider nondeterministic probabilistic LTSs (Segala-type sys-
tems) [30] with countable state spaces.

Definition 1 (PTS) A nondeterministic probabilistic labeled transition system (PTS) is given by a triple
(T(Σ),A,−→), whereΣ is a signature, A is a countable set ofactions, and−→ ⊆ T(Σ)×A×∆(T(Σ)) is a
transition relation.

We writet
a
−→ π for (t,a,π) ∈ −→, andt

a
−→ if t

a
−→ π for someπ ∈ ∆(T(Σ)).

2.2 Specification of Probabilistic Transition Systems

We specify PTSs by SOS rules of the probabilistic GSOS format[3] and adapt from [29] the language
to describe distributions. We do not consider quantitativepremises because they are incompatible1 with
compositional approximate reasoning.

Definition 2 (PGSOS rule) A PGSOS rulehas the form:

{xi
ai,m
−−−→ µi,m | i ∈ I ,m∈ Mi} {xi

bi,n
−−−→6 | i ∈ I ,n∈ Ni}

f (x1, . . . , xr( f ))
a
−→ θ

with I = {1, . . . , r( f )} the indices of the arguments of operator f∈ Σ, finite index sets Mi ,Ni, actions
ai,m,bi,n,a ∈ A, state variables xi ∈ Vs, distribution variablesµi,m ∈ Vd, distribution termθ ∈ T(Γ), and
constraints:

1. all µi,m for i ∈ I ,m∈ Mi are pairwise different;

2. all x1, . . . , xr( f ) are pairwise different;

3. Var(θ) ⊆ {µi,m | i ∈ I ,m∈ Mi}∪ {x1 . . . , xr( f )}.

The expressionsxi
ai,m
−−−→ µi,m (resp.xi

bi,n
−−−→6 ) above the line are calledpositive(resp.negative) premises.

We call µi,m in xi
ai,m
−−−→ µi,m a derivativeof xi. We denote the set of positive (resp. negative) premises

of rule r by pprem(r) (resp. nprem(r)). The expressionf (x1, . . . , xr( f ))
a
−→ θ below the line is called the

1Cases 8 and 9 in [24] show that rules with quantitative premises may define operators that are not compositional wrt.
approximate bisimilarity. The same holds for metric bisimilarity.
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conclusion, notation conc(r), f (x1, . . . , xr( f )) is called thesource, notation src(r), the xi are called the
source variables, notationxi ∈ src(r), andθ is called thetarget, notation trgt(r).

A probabilistic transition system specification(PTSS) in PGSOS format is a tripleP = (Σ,A,R),
whereΣ is a signature,A is a countable set of actions andR is a countable set of PGSOS rules.Rf is
the set of those rules ofR with source f (x1, . . . , xr( f )). A supported modelof P is a PTS (T(Σ),A,−→)

such thatt
a
−→ π ∈ −→ iff for some ruler ∈ R and some closed substitutionσ all premises ofr hold, i.e.

for all xi
ai,m
−−−→ µi,m ∈ pprem(r) we haveσ(xi)

ai,m
−−−→ σ(µi,m) ∈ −→ and for all xi

bi,n
−−−→6 ∈ nprem(r) we have

σ(xi)
bi,n
−−−→ π < −→ for all π ∈ ∆(T(Σ)), and the conclusion conc(r) = f (x1, . . . , xr( f ))

a
−→ θ instantiates to

σ( f (x1, . . . , xr( f ))) = t andσ(θ) = π. Each PGSOS PTSS has exactly one supported model [2,5] whichis
moreover finitely branching.

2.3 Bisimulation metric on Probabilistic Transition Systems

Behavioral pseudometrics are the quantitative analogue tobehavioral equivalences and formalize the
notion of behavioral distancebetween processes. A 1-bounded pseudometricis a functiond: T(Σ)×
T(Σ)→ [0,1] with (i) d(t, t) = 0, (ii) d(t, t′) = d(t′, t), and (iii) d(t, t′) ≤ d(t, t′′)+ d(t′′, t′), for all terms
t, t′, t′′ ∈ T(Σ).

We define now bisimulation metrics as quantitative analogueto bisimulation equivalences. Like for
bisimulation we need to lift the behavioral pseudometric onstatesT(Σ) to distributions∆(T(Σ)) and sets
of distributionsP(∆(T(Σ))). A matchingω ∈ ∆(T(Σ)× T(Σ)) for (π,π′) ∈ ∆(T(Σ))×∆(T(Σ)) is given if
∑

t′∈T(Σ)ω(t, t′) = π(t) and
∑

t∈T(Σ)ω(t, t′) = π′(t′) for all t, t′ ∈ T(Σ). We denote the set of all matchings
for (π,π′) by Ω(π,π′). TheKantorovich pseudometricK (d) : ∆(T(Σ))×∆(T(Σ))→ [0,1] is defined for a
pseudometricd: T(Σ)×T(Σ)→ [0,1] by

K (d)(π,π′) = min
ω∈Ω(π,π′)

∑

t,t′∈T(Σ)

d(t, t′) ·ω(t, t′)

for π,π′ ∈ ∆(T(Σ)). TheHausdorff pseudometricH(d̂) : P(∆(T(Σ)))×P(∆(T(Σ)))→ [0,1] is defined for a
pseudometriĉd: ∆(T(Σ))×∆(T(Σ))→ [0,1] by

H(d̂)(Π1,Π2) =max

{

sup
π1∈Π1

inf
π2∈Π2

d̂(π1,π2), sup
π2∈Π2

inf
π1∈Π1

d̂(π2,π1)

}

for Π1,Π2 ⊆ ∆(T(Σ)) whereby inf∅ = 1 and sup∅ = 0.
A bisimulation metric is a pseudometric on states such that for two states each transition from one

state can be mimicked by a transition from the other state andthe distance between the target distributions
does not exceed the distance of the source states.

Definition 3 (Bisimulation metric) A 1-bounded pseudometric d onT(Σ) is abisimulation metricif for

all t, t′ ∈ T(Σ) with d(t, t′) < 1, if t
a
−→ π then there exists a transition t′

a
−→ π′ with K (d)(π,π′) ≤ d(t, t′).

We order bisimulation metricsd1 ⊑ d2 iff d1(t, t′) ≤ d2(t, t′) for all t, t′ ∈ T(Σ). The smallest bisimu-
lation metric, notationd, is calledbisimilarity metric and assigns to each pair of processes the least
possible distance. We call the bisimilarity metric distance also bisimulation distance. Bisimilarity equiv-
alence [28, 30] is the kernel of the bisimilarity metric [13], i.e. d(t, t′) = 0 iff t andt′ are bisimilar. We
say that processest andt′ do not totally disagreeif d(t, t′) < 1.
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Remark 1 Let t, t′ be processes that do not totally disagree. Then t
a
−→ iff t′

a
−→ for all a ∈ A, i.e. t and t′

agree on the actions they can perform immediately.

Bisimulation metrics can alternatively be defined as prefixed points of a monotone function. Let
([0,1]T(Σ)×T(Σ),⊑) be the complete lattice defined byd ⊑ d′ iff d(t, t′) ≤ d′(t, t′), for all t, t′ ∈ T(Σ). We
define the functionB : [0,1]T(Σ)×T(Σ)→ [0,1]T(Σ)×T(Σ) for d: T(Σ)×T(Σ)→ [0,1] andt, t′ ∈ T(Σ) by:

B(d)(t, t′) = sup
a∈A

{

H(K (d))(der(t,a),der(t′,a))
}

with der(t,a) = {π | t
a
−→ π}.

Proposition 1 ([13]) The bisimilarity metricd is the least fixed point ofB.

3 Denotational model

We develop now a denotational model for open terms. Essentially, the denotation of an open termt
describes for each variable int how many copies are spawned whilet evolves. The denotation oft allows
us to formulate an upper bound on the bisimulation distance between closed instances oft. In this section
we consider a concrete process algebra. In the next section we generalize our method to arbitrary PGSOS
specifications.

Let ΣPA be the signature of the core operators of the probabilistic process algebra in [10] defined by
the stop process 0, a family ofn-ary prefix operatorsa.([q1] ⊕ · · · ⊕ [qn] ) with a ∈ A, n≥ 1, q1, . . . ,qn ∈

(0,1] and
∑n

i=1 qi = 1, alternative composition+ , and parallel composition‖B for eachB⊆ A. We
write a.

⊕n
i=1[qi ] for a.([q1] ⊕ · · · ⊕ [qn] ), anda. for a.[1] (deterministic prefix operator). Moreover,

we write ‖ for ‖A (synchronous parallel composition). The PTSSPPA = (ΣPA,A,RPA) is given by
the following PGSOS rules inRPA:

a.
n

⊕

i=1

[qi ]xi
a
−→

n
∑

i=1

qiδ(xi)

x1
a
−→ µ1

x1+ x2
a
−→ µ1

x2
a
−→ µ2

x1+ x2
a
−→ µ2

x1
a
−→ µ1 x2

a
−→ µ2 (a∈ B)

x1 ‖B x2
a
−→ µ1 ‖B µ2

x1
a
−→ µ1 (a < B)

x1 ‖B x2
a
−→ µ1 ‖B δ(x2)

x2
a
−→ µ2 (a < B)

x1 ‖B x2
a
−→ δ(x1) ‖B µ2

We call the open termsT(ΣPA) nondeterministic probabilistic process terms. We define two impor-
tant subclasses ofT(ΣPA) that allow for a simpler approximation of the distance of their closed instances.
LetTdet(ΣPA) be the set ofdeterministic process terms, which are those terms ofT(ΣPA) that are built ex-
clusively from the stop process 0, deterministic prefixa. , and synchronous parallel composition‖ (no
nondeterministic and no probabilistic choices). We call the open termsTdet(ΣPA) deterministic because
all probabilistic or nondeterministic choices in the operational semantics of the closed instancesσ(t),
with σ : Vs→ T(ΣPA) any closed substitution, arise exclusively from the processes inσ. Let Tprob(ΣPA)
be the set ofprobabilistic process terms, which are those terms ofT(ΣPA) that are built exclusively from
the stop process 0, probabilistic prefixa.

⊕n
i=1[qi ] , and synchronous parallel composition‖ (no non-

deterministic choices). Again, all nondeterministic choices inσ(t) arise exclusively from the processes
in σ.
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The denotation of a deterministic process termt ∈ Tdet(ΣPA) is a mappingm: V→N∞ that describes
for each process variablex ∈ Var(t) how many copies ofx or some derivative ofx are spawned whilet
evolves. We callm the multiplicity of t. LetM be the set of all mappingsV → N∞. The denotation
of t, notation~t�M, is defined by~0�M(x) = 0, ~x�M(x) = 1, ~x�M(y) = 0 if x , y, ~t1 ‖ t2�M(x) =
~t1�M(x)+ ~t2�M(x), and~a.t′�M(x) = ~t′�M(x).

We use notation 0∈M for the multiplicity that assigns 0 to eachx∈V, andnV ∈M with V ⊆V for
the multiplicity such thatnV(x) = n if x∈V andnV(x) = 0 if x<V. We writenx for n{x}. As it will become
clear in the next sections, we need the denotationm(x) =∞ for (unbounded) recursion and replication.

We will approximate the bisimulation distance betweenσ1(t) and σ2(t) for closed substitutions
σ1,σ2 using the denotation oft and the bisimulation distances between processesσ1(x) andσ2(x) of
variablesx ∈ Var(t). The bisimulation distance of variables is represented bya mappinge: V→ [0,1).
We calleaprocess distance. LetE be the set of all process distancesV→ [0,1). We henceforth assume
closed substitutionsσ1,σ2 with a bisimulation distance betweenσ1(x) andσ2(x) that is strictly less than
1. Practically, this is a very mild restriction because for any (non-trivial) process combinator the compo-
sition of processes that totally disagree (i.e. which are inbisimulation distance 1) may lead to composed
processes that again totally disagree. For anyd: T(Σ)×T(Σ)→ [0,1] and any closed substitutionsσ1,σ2

we define the associated process distanced(σ1,σ2) ∈ E by d(σ1,σ2)(x) = d(σ1(x),σ2(x)).

Definition 4 For a multiplicity m∈ M and process distance e∈ E we define thedeterministic distance
approximation from aboveas

D(m,e) = 1−
∏

x∈V

(1−e(x))m(x)

To understand the functionalD remind thate(x) is the distance between processesσ1(x) andσ2(x). In
other words, processesσ1(x) andσ2(x) disagree bye(x) on their behavior. Hence,σ1(x) andσ2(x) agree
by 1−e(x). Thus,m(x) copies ofσ1(x) andm(x) copies ofσ2(x) agree by at least

∏

x∈V(1−e(x))m(x) ,
and disagree by at most 1−

∏

x∈V(1−e(x))m(x).

Example 1 Consider the deterministic process term t= x ‖ x and substitutionsσ1(x) = a.a.0 andσ2(x) =
a.([0.9]a.0⊕ [0.1]0). In this and all following examples we assume thatσ1 andσ2 coincide on all other
variables for which the substitution is not explicitly defined, i.e.σ1(y) = σ2(y) if x , y in this example. It
is clear thatd(σ1(x),σ2(x)) = 0.1. Then,d(σ1(t),σ2(t)) = 0.1 ·0.9+0.9 ·0.1+0.1 ·0.1 = 0.19, which is
the likelihood that either the first, the second or both arguments ofσ2(x ‖ x) can perform action a only
once. The denotation of t is~t�M(x) = 2. Then,D(~t�M,d(σ1,σ2)) = 1− (1−0.1)2 = 0.19.

The functionalD defines an upper bound on the bisimulation distance of deterministic processes.

Proposition 2 Let t∈ Tdet(ΣPA) be a deterministic process term andσ1,σ2 be closed substitutions. Then
d(σ1(t),σ2(t)) ≤ D(~t�M,d(σ1,σ2)).

The distanced(σ1,σ2) abstracts from the concrete reactive behavior of termsσ1(x) andσ2(x). It
is not hard to see that for deterministic process terms without parallel composition the approximation
functionalD gives the exact bisimulation distance. However, the parallel composition of processes may
lead to an overapproximation if the bisimulation distance of process instances arises (at least partially)
from reactive behavior on which the processes cannot synchronize.

Example 2 Consider t= x ‖ a.a.0 and substitutionsσ1(x) = a.b.0 andσ2(x) = a.([0.9]b.0⊕ [0.1]0) with
d(σ1(x),σ2(x)) = 0.1. We haved(σ1(t),σ2(t)) = 0 since bothσ1(t) andσ2(t) make an a move to a distri-
bution of parallel compositions either b.0 ‖ a.0 or 0 ‖ a.0 that all cannot proceed. Note that the bisimu-
lation distance betweenσ1(x) andσ2(x) arises from the difference on performing action b which cannot
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synchronize with a. The denotation of t is~t�M(x) = 1 which gives in this case an overapproximation of
the distanced(σ1(t),σ2(t)) = 0<D(~t�M,d(σ1,σ2)) = 1− (1−0.1)= 0.1. However, forσ′1(x) = a.a.0 and
σ′2(x) = a.([0.9]a.0⊕ [0.1]0) with d(σ′1(x),σ′2(x)) = 0.1 we getd(σ′1(t),σ′2(t)) = 0.1=D(~t�M,d(σ′1,σ

′
2)).

We remark that the abstraction of the closed substitutions to process distances is intentional and very
much in line with common compositionality criteria that relate the distance of composed processes with
the distance of the process components.

The denotation of a probabilistic process termt ∈ Tprob(ΣPA) is a distributionp∈ ∆(M) that describes
for each multiplicitym∈ M the likelihood p(m) that for each process variablex ∈ Var(t) exactlym(x)
copies ofx or some derivative ofx are spawned whilet evolves. We callp theprobabilistic multiplicity
of t. Let P be the set of all distributions∆(M). The denotation oft, notation~t�P, is defined by
~0�P = δm with m= 0, ~x�P = δm with m= 1x, ~t1 ‖ t2�P(m) =

∑

m1,m2∈M
m(x)=m1(x)+m2(x)

for all x∈V

~t1�P(m1) · ~t2�P(m2), and

~a.
⊕n

i=1[qi ]ti�P =
∑n

i=1 qi~ti�P. Notice that~t�P = δ~t�M for all t ∈ Tdet(ΣPA).
For important probabilistic multiplicities we use the samesymbols as for multiplicities but it will

always be clear from the context if we refer to probabilisticmultiplicities or multiplicities. By 0∈ P we
mean the probabilistic multiplicity that gives probability 1 to the multiplicity 0∈M. By nV ∈ Pwe mean
the probabilistic multiplicity that gives probability 1 tothe multiplicity nV ∈M.

Definition 5 For a probabilistic multiplicity p∈ P and process distance e∈ E we define theprobabilistic
distance approximation from aboveas

P(p,e) =
∑

m∈M

p(m) ·D(m,e)

Example 3 Consider t= a.([0.5](x ‖ x)⊕ [0.5]0) and substitutionsσ1(x)= a.a.0andσ2(x)= a.([0.9]a.0⊕
[0.1]0) with d(σ1(x),σ2(x)) = 0.1. It holds thatd(σ1(t),σ2(t)) = 0.5(1− (1− 0.1)2). The probabilis-
tic multiplicity of t is ~t�P(2x) = 0.5 and ~t�P(0) = 0.5. Then,D(2x,d(σ1,σ2)) = 1− (1− 0.1)2 and
D(0,d(σ1,σ2)) = 0. Hence, we get the probabilistic distance approximationP(~t�P,d(σ1,σ2)) = 0.5(1−
(1−0.1)2).

Remark 2 The functionalP shows a very important interaction between probabilistic choice and pro-
cess replication. Consider again the process term t= a.([0.5](x ‖ x)⊕ [0.5]0) and any closed substi-
tutionsσ1,σ2 with d(σ1(x),σ2(x)) = ǫ for any ǫ ∈ [0,1). In the probabilistic distance approximation
P(~t�P,d(σ1,σ2)) the deterministic distance approximationD(2x,d(σ1,σ2)) = 1− (1− ǫ)2 of the syn-
chronous parallel execution x‖ x of two instances of x is weighted by the likelihood0.5 of its realization.
Hence,P(~t�P,d(σ1,σ2)) = 0.5(1− (1− ǫ)2). From Bernoulli’s inequality1

m(1− (1− ǫ)n) ≤ ǫ if m≥ n, we
get0.5(1− (1− ǫ)2) ≤ ǫ. Hence, the distance between instances of two copies running synchronously in
parallel with a probability of0.5 is at most the distance between those instances running (non-replicated)
with a probability of1.0.

Notice thatP(~t�P,d(σ1,σ2)) = D(~t�M,d(σ1,σ2)) for all t ∈ Tdet(ΣPA). The functionalP defines an
upper bound on the bisimulation distance of probabilistic processes.

Proposition 3 Let t∈Tprob(ΣPA) be a probabilistic process term andσ1,σ2 be closed substitutions. Then
d(σ1(t),σ2(t)) ≤ P(~t�P,d(σ1,σ2)).

Before we can introduce the denotation of nondeterministicprobabilistic processes, we need to or-
der the denotation of probabilistic processes. Letπ : M→ [0,1] with

∑

m∈Mπ(m) ≤ 1 be a subdistri-
bution over multiplicities. We define the weighting ofπ as a mappingπ : V → R≥0 definedπ(x) =



70 Characterization of Compositionality Properties of Probabilistic Process Combinators

(1/|π|)
∑

m∈Mπ(m) ·m(x) if |π| > 0, with |π| =
∑

m∈Mπ(m) the size ofπ, andπ(x) = 0 if |π| = 0. Intuitively,
the number of process copiesm(x) are weighted by the probabilityπ(m) of realization of that multiplic-
ity. We order probabilistic multiplicitiesp1 ⊑ p2 if p1 can be decomposed into subdistributions such that
each multiplicity inp2 is above some weighted subdistribution ofp1. The order is now defined by:

p1 ⊑ p2 iff there is aω ∈ Ω(p1, p2) with ω(·,m) ⊑m for all m∈M

m1 ⊑m2 iffm1(x) ≤m2(x) for all x ∈ V

The denotation of a nondeterministic probabilistic process termt ∈ T(ΣPA) is a set of probabilistic
multiplicities P ⊆ P that describes byp ∈ P some resolution of the nondeterministic choices int such
that the process evolves as a probabilistic process described by p. We construct a Hoare powerdomain
over the probabilistic multiplicitiesP and use as canonical representation for any set of probabilistic
multiplicities P ⊆ P the downward closure defined as↓P = {p∈ P | p⊑ p′ for somep′ ∈ P}. LetD be
the set of non-empty downward closed sets of probabilistic multiplicities {P⊆P | P, ∅ and↓P= P}. We
use downward closed sets such thatD will form a complete lattice with the order defined below (esp.
satisfies antisymmetry, cf. Proposition 4). The denotationof t, notation~t�, is defined by~0� = {~0�P},
~x� = ↓{~x�P}, p ∈ ~t1 ‖B t2� iff there arep1 ∈ ~t1� and p2 ∈ ~t2� such thatp ⊑ p′ with p′ defined by
p′(m) =

∑

m1,m2∈M
m(x)=m1(x)+m2(x)

for all x∈V

p1(m1) · p2(m2) for all m∈M, p ∈ ~a.
⊕n

i=1[qi ]ti� iff there arepi ∈ ~ti� such that

p ⊑ p′ with p′ defined byp′ =
∑n

i=1 qi · pi , and~t1+ t2� = ~t1�∪ ~t2�. Notice that~t� = ↓{~t�P} for all
t ∈ Tprob(ΣPA). By 0∈ D we mean the singleton set containing the probabilistic multiplicity 0 ∈ P, and
by nV ∈ D the downward closure of the singleton set with elementnV ∈ P.

Definition 6 For a nondeterministic probabilistic multiplicity P∈D and process distance e∈ Ewe define
thenondeterministic probabilistic distance approximation from aboveas

A(P,e) = sup
p∈P

P(p,e)

Example 4 Consider the nondeterministic probabilistic process termt = a.([0.5](x ‖ x)⊕ [0.5]0)+ b.y,
and substitutionsσ1(x) = a.a.0, σ2(x) = a.([0.9]a.0⊕ [0.1]0) andσ1(y) = b.b.0, σ2(y) = b.([0.8]b.0⊕
[0.2]0). It is clear thatd(σ1(x),σ2(x))= 0.1 andd(σ1(y),σ2(y))= 0.2. Now,d(σ1(t),σ2(t))=max{0.5(1−
(1− 0.1)2),0.2}. The nondeterministic probabilistic multiplicity of t is~t� = ↓{p1, p2}, for p1(2x) =
0.5, p1(0) = 0.5 and p2(1y) = 1.0. ThusA(~t�,d(σ1,σ2)) = max(P(p1,d(σ1,σ2)),P(p2,d(σ1,σ2))) =
max(0.5(1− (1−0.1)2),0.2).

Notice thatA(~t�,d(σ1,σ2)) = P(~t�P,d(σ1,σ2)) for all t ∈ Tprob(ΣPA). Moreover,A(P,e) = A(↓P,e) for
any P ⊆ P. The functionalA defines an upper bound on the bisimulation distance of nondeterministic
probabilistic process terms.

Theorem 1 Let t∈ T(ΣPA) be a nondeterministic probabilistic process term andσ1,σ2 be closed substi-
tutions. Thend(σ1(t),σ2(t)) ≤ A(~t�,d(σ1,σ2)).

Theorem 1 shows that the denotation of a process term is adequate to define an upper bound on the
distance of closed instances of that process term. The converse notion is full-abstraction in the sense
thatd(σ1(t),σ2(t)) =A(~P�,d(σ1,σ2)) (no over-approximation). As demonstrated in Example 2, the ap-
proximation functionals would require for process variablesx ∈ Var(t) besides the bisimulation distance
betweenσ1(x) andσ2(x) also information about the reactive behavior and the branching. However, for
our objective to study the distance of composed processes inrelation to the distance of its components,
the bisimulation distance is the right level of abstraction.
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We introduce now an order onD that ensures monotonicity of both the approximation functional
A and the functionalF introduced in the next section to compute the denotation of arbitrary terms of a
PGSOS PTSS. The order is defined by

P1 ⊑ P2 iff for all p1 ∈ P1 there is ap2 ∈ P2 such thatp1 ⊑ p2.

Proposition 4 (D,⊑) is a complete lattice.

We order process distances bye1 ⊑ e2 iff e1(x) ≤ e2(x) for all x ∈ V. The nondeterministic proba-
bilistic distance approximationA is monotone in both arguments.

Proposition 5 Let P,P′ ∈ D and e,e′ ∈ E. ThenA(P,e) ≤ A(P′,e) if P ⊑ P′, and A(P,e) ≤ A(P,e′) if
e⊑ e′.

We will see in the following section that the denotations developed for terms ofPPA are sufficient for
terms of any PGSOS PTSS.

4 Distance of composed processes

Now we provide a method to determine the denotation of an arbitrary term. In line with the former section
this gives an upper bound on the bisimulation distance of closed instances of that term. In particular, the
denotation for the termf (x1, . . . , xr( f )) gives an upper bound on the distance of processes composed by
the process combinatorf . This allows us in the next section to formulate a simple condition to decide if a
process combinator is uniformly continuous, and hence if wecan reason compositionally over processes
combined by that process combinator.

4.1 Operations on process denotations

We start by defining two operations on process denotations that allow us to compute the denotation of
process terms by induction over the term structure. We definethe operations first onM and then lift
them toD.

The composition of two processest1 andt2 which both proceed requires that their multiplicities are
summed up (cf. parallel composition in the prior section). We define thesummationof multiplicities by:

(m1⊕m2)(x) =m1(x)+m2(x)

In order to define by structural induction the multiplicity of a term f (t1, . . . , tr( f )), we need an operation
that composes the multiplicity denoting the operatorf with the multiplicity of ti . We define thepointed
multiplicationof multiplicities with respect to variabley∈ V by:

(m1⊙y m2)(x) =m1(y) ·m2(x)

Then, the multiplicity of a state termf (t1, . . . , tr( f )) is given by:

~ f (t1, . . . , tr( f ))�M =
r( f )
⊕

i=1

(

~ f (x1, . . . , xr( f ))�M⊙xi ~ti�M
)

Example 5 Consider the open term t= a.x ‖ y. From Section 3 we get~a.x�M = 1x, ~y�M = 1y and
~x1 ‖ x2�M = 1{x1,x2}. Then, we have~t�M = (~x1 ‖ x2�M ⊙x1 ~a.x�M)⊕ (~x1 ‖ x2�M ⊙x2 ~y�M) = ((1x1 ⊕

1x2)⊙x1 1x)⊕ ((1x1 ⊕1x2)⊙x2 1y) = 1{x,y}.
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It remains to define the multiplicity off (x1, . . . , xr( f )) for operatorsf with an operational semantics
defined by some ruler. We define the multiplicity off (x1, . . . , xr( f )) in terms of the multiplicity of the
target ofr. Letµ be a derivative of the source variablex in rule r. We use the property (m⊙µ1x)(x) =m(µ)
in order to express the multiplicitym(µ) as a multiplicity ofx. Then, the multiplicity off (x1, . . . , xr( f )) is
defined for any variablex as the summation of the multiplicity ofx and its derivatives in the rule target:

~trgt(r)�M ⊕

(

⊕

xi

ai,m
−−−→µi,m∈

pprem(r)

~trgt(r)�M ⊙µi,m 1xi

)

Example 6 Consider t= f (x) and the following rule r:

x
a
−→ µ

f (x)
a
−→ µ ‖ µ

The operator f mimics the action a of its argument, replicates the derivativeµ, and proceeds as a process
that runs two instances of the derivative in parallel. Consider again the closed substitutionsσ1(x)= a.a.0
andσ2(x) = a.([0.9]a.0⊕ [0.1]0) with d(σ1(x),σ2(x)) = 0.1. Then,d(σ1(t),σ2(t)) = 1− (1− 0.1)2. The
denotation of the target of r is~trgt(r)�M = 2µ. Hence, the denotation of t is2µ⊕ (2µ⊙µ1x) = 2{µ,x}. Thus,
D(~t�M,d(σ1,σ2)) = 1− (1−0.1)2 byd(σ1,σ2)(x) = 0.1 andd(σ1,σ2)(µ) = 0.

Operationsop∈ {⊕,⊙y} overM lift to D by

(p1 op p2)(m) =
∑

m1,m2∈M
m=m1 op m2

p1(m1) · p2(m2)

p ∈ (P1 op P2) iff ∃p1 ∈ P andp2 ∈ P2 such thatp⊑ p1 op p2

4.2 Approximating the distance of composed processes

Let (Σ,A,R) be any PGSOS PTSS. We compute the denotation of terms and rules as least fixed point of
a monotone function. LetS = ST ×SR with ST = T(Σ)∪T(Γ)→D andSR = R→D. A pair (τ,ρ) ∈ S
assigns to each termt ∈ T(Σ)∪T(Γ) its denotationτ(t) ∈ D and to each ruler ∈R its denotationρ(r) ∈ D.
LetS = (S,⊑) be a poset with ordering (τ,ρ) ⊑ (τ′,ρ′) iff τ(t) ⊑ τ′(t) andρ(r) ⊑ ρ′(r) for all t ∈ T(Σ)∪T(Γ)
andr ∈ R. S forms a complete lattice with least element (⊥T ,⊥R) defined by⊥T(t) = ⊥R(r) = 0 for all
t ∈ T(Σ)∪T(Γ) andr ∈ R.

Proposition 6 S is a complete lattice.

We assume that for all rulesr ∈ R the source variable of argumenti is calledxi . Let Xr be the set
of source variablesxi for which r tests the reactive behavior, i.e.xi ∈ Xr iff r has either some positive

premisexi
ai,m
−−−→ µi,m or some negative premisexi

bi,n
−−−→6 .

The mappingF : S→ S defined in Figure 1 computes iteratively the nondeterministic probabilistic
multiplicities for all terms and rules. As expected, the denotation of a state termf (t1, . . . , tr( f )) is defined
as the application of all rulesRf to the denotation of the arguments. However, for distribution terms the
application of the operator needs to consider two peculiarities. First, different states in the support of a
distribution termf (θ1, . . . , θr( f )) may evolve according to different rules ofRf .
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FunctionF : S→ S is defined byF(τ,ρ) = (τ′,ρ′) with

τ′(t) =



































1x if t = x

r( f )
⊕

i=1

(

ρ f ⊙xi τ(ti)
)

if























t = f (t1, . . . , tr( f ))

ρ f =
⋃

r∈Rf

ρ(r)

τ′(θ) =























































































1µ if θ = µ

τ(t) if θ = δ(t)
∑

i∈I

qi · τ(θi) if θ =
∑

i∈I

qiθi

r( f )
⊕

i=1

(

ρ f ⊙xi τ(θi)
)

if



























θ = f (θ1, . . . , θr( f ))

ρ f = ↓















sup
r∈Rf

sup(supρ(r),1Xr )















ρ′(r) =

{

p⊕
(

⊕

xi

ai,m
−−−→µi,m∈

pprem(r)

p⊙µi,m 1xi

)

| p ∈ τ(trgt(r))

}

Figure 1: Computation of the denotation of arbitrary terms

Example 7 Consider the operator f defined by the following rule:

x
a
−→ µ

f (x)
a
−→ µ+µ

Operator f replicates the derivative of x and evolves as alternative composition of both process copies.
Consider the closed substitutionsσ1(x) = a.([0.9]a.a.0⊕ [0.1]0) andσ2(x) = a.([0.9]a.0⊕ [0.1]0) with
d(σ1(x),σ2(x)) = 0.9. Then,d(σ1( f (x)),σ2( f (x))) = 1−0.12 = 0.99. The denotations for the two rules
defining the alternative composition (see Section 3) are thedownward closed sets with maximal el-
ements1{x1,µ1} and 1{x2,µ2}. Sincesup1{x1,µ1} = 1{x1,µ1} ∈ P, sup1{x2,µ2} = 1{x2,µ2} ∈ P and 1Xr+1

= {x1},

1Xr+2
= {x2} we getρ+ = ↓{sup(1{x1,µ1},1{x2,µ2})} = 1{x1,x2,µ1,µ2} ∈ D. Hence, the denotation for the tar-

get of the f -defining rule is~µ+µ� = (1{x1,x2,µ1,µ2}⊙x1 1µ)⊕ (1{x1,x2,µ1,µ2}⊙x2 1µ) = 2µ. Thus,~ f (x)� = 2x.
Then,D(2x,d(σ1,σ2)) = 0.99.

Second, in the distribution termf (θ1, . . . , θr( f )) the operatorf may discriminate states in derivatives
belonging toθi solely on the basis that in some ruler ∈Rf the argumentxi ∈ Xr gets tested on the ability
to perform or not perform some action.

Example 8 Consider the operators f and g defined by the following rules:

x
a
−→ µ

f (x)
a
−→ g(µ)

y
a
−→ µ′

g(y)
a
−→ δ(0)

Operator f mimics the first move of its argument and then, by operator g, only tests the states in the
derivative for their ability to perform action a. Consider first operator g. We getd(σ1(g(y)),σ2(g(y))) = 0
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for all closed substitutionsσ1,σ2. Clearly,~g(y)� = 0. Consider now t= f (x) and substitutionsσ1(x) =
a.a.0 andσ2(x) = a.([0.9]a.0⊕ [0.1]0) with d(σ1(x),σ2(x)) = 0.1. The distance betweenσ1( f (x)) and
σ2( f (x)) is the distance between distributionsδg(a.0) and0.9δg(a.0)+0.1δg(0). Fromd(g(a.0),g(0))= 1 we
getd( f (σ1(x)), f (σ2(x))) = K (d)(δg(a.0),0.9δg(a.0)+0.1δg(0)) = 0.1.

If we would ignore that g tests its argument on the reactive behavior, then the denotation of g(µ)
would be~g(µ)� = ~g(x)�⊙x 1µ = 0, and the denotation of f(x) would be~g(µ)�⊕ (~g(µ)� ⊙µ 1x) = 0.
ThenD(0,d(σ1,σ2)) = 0< 0.1= d( f (σ1(x)), f (σ2(x))).

Because the operator g tests its argument on the ability to perform action a, it can discriminate in-
stances of the derivativeµ the same way as if the process would progress (without replication). Thus, the
denotation of operator g if applied in the rule target isρg = ↓{sup(sup0,1Xrg

)} = 1x as Xrg = {x}. Hence,
~g(µ)� = ρg⊙x 1µ = 1µ. Thus,~ f (x)� = 1x. It follows,d( f (σ1(x)), f (σ2(x))) ≤D(~ f (x)�,d(σ1,σ2)) = 0.1.

To summarize Examples 7 and 8: The nondeterministic probabilistic multiplicity for operator f ap-
plied to some distribution term is given byρ f = ↓{supr∈Rf

sup(supρ(r),1Xr ))} (Figure 1). We explain
this expression stepwise. For any ruler we define by supρ(r) ∈ P the least probabilistic multiplicity
which covers all nondeterministic choices represented by the probabilistic multiplicities inρ(r) ∈ D. By
sup(supρ(r),1Xr ) ∈ P we capture the case that premises ofr only test source variables inXr on their abil-
ity to perform an action (Example 8). By supr∈Rf

sup(supρ(r),1Xr ) ∈ P we define the least probabilistic
multiplicity which covers all choices of rulesr ∈ Rf (Example 7). Finally, by the downward closure
↓{supr∈Rf

sup(supρ(r),1Xr ))} ∈ D we gain the nondeterministic probabilistic multiplicityρ f that can be
applied to the distribution term (Figure 1).

Proposition 7 F is order-preserving and upwardω-continuous.

From Proposition 6 and 7 and the Knaster-Tarski fixed point theorem we derive the existence and unique-
ness of the least fixed point ofF. We denote by (ωT ,ωR) the least fixed point ofF. We write~t� for ωT(t)
and~t�τ for τ(t). We call~t� the canonical denotation oft. It is not hard to verify that all denotations
presented in Section 3 forPPA are canonical.

A denotation of termsτ ∈ ST is compatiblewith a distance functiond ∈ [0,1]T(Σ)×T(Σ), notationd �
~·�τ, if d(σ1(t),σ2(t)) ≤ A(~t�τ,d(σ1,σ2)) for all t ∈ T(Σ) and all closed substitutionsσ1,σ2. Now we
can show that the functionalB to compute the bisimulation distance and functionalF to compute the
denotations preserve compatibility (Proposition 8). A simple inductive argument allows then to show
that the canonical denotation of terms~·� is compatible with the bisimilarity metricd (Theorem 2).

Proposition 8 Let d∈ [0,1]T(Σ)×T(Σ) with d⊑ B(d) = d′ and(τ,ρ) ∈ S with(τ,ρ) ⊑ F(τ,ρ) = (τ′,ρ′). Then
d � ~·�τ implies d′ � ~·�τ′ .

Theorem 2 Let P be any PGSOS PTSS withd the bisimilarity metric on the associated PTS and~·� the
canonical denotation of terms according to P. Thend � ~·�.

Proof sketch. Remind thatd is the least fixed point ofB : [0,1]T(Σ)×T(Σ) → [0,1]T(Σ)×T(Σ) defined by
B(d)(t, t′) = supa∈A {H(K (d))(der(t,a),der(t′,a))} andH the Hausdorff metric functional (Proposition 1).
Let dn = Bn(0) and (τn,ρn) = Fn(⊥T ,⊥R). Proposition 8 shows thatdn � ~·�τn by reasoning inductively
over the transitions specified by the rules. Monotonicity and upwardω-continuity (Proposition 7) ensures
that this property is also preserved in the limit. �

5 Compositional Reasoning

In order to reason compositionally over probabilistic processes it is enough if the distance of the com-
posed processes can be related to the distance of their parts. This property is known as uniform continuity.
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In essence, compositional reasoning over probabilistic processes is possible whenever a small variance
in the behavior of the parts leads to a bounded small variancein the behavior of the composed processes.
Technically this boils down to the existence of a modulus of continuity. Uniform continuity generalizes
earlier proposals of non-expansiveness [15] and non-extensiveness [1].

Definition 7 (Modulus of continuity) Let f ∈ Σ be any process combinator. A mapping z: [0,1]r( f ) →

[0,1] is a modulus of continuity for operator f if z(0, . . . ,0)= 0, z is continuous at(0, . . . ,0), and

d( f (t1, . . . , tr( f )), f (t′1, . . . , t
′
r( f ))) ≤ z(d(t1, t

′
1), . . . ,d(tr( f ), t

′
r( f )))

for all closed terms ti , t′i ∈ T(Σ).

Definition 8 (Uniformly continuous operator) A process combinator f∈ Σ is uniformly continuousif
f admits a modulus of continuity.

Intuitively, a continuous binary operatorf ensures that for any non-zero bisimulation distanceǫ
(understood as the admissible tolerance from the operational behavior of the composed processf (t1, t2))
there are non-zero bisimulation distancesδ1 andδ2 (understood as the admissible tolerances from the
operational behavior of the processest1 andt2, respectively) such that the distance between the composed
processesf (t1, t2) and f (t′1, t

′
2) is at mostǫ = z(δ1, δ2) whenever the componentt′1 (resp.t′2) is in distance

of at mostδ1 from t1 (resp. at mostδ2 from t2). We consider the uniform notion of continuity because
we aim for universal compositionality guarantees.

The denotation off (x1, . . . , xr( f )) allows to derive a candidate for the modulus of continuity for oper-
ator f as follows.

Definition 9 (Derived modulus of continuity) Let P be any PGSOS PTSS. For any operator f∈ Σ we
define

zf (ǫ1, . . . , ǫr( f )) =min

















r( f )
∑

i=1

mf (xi)ǫi ,1

















with mf = sup~ f (x1, . . . , xr( f ))�.

Trivially, we havezf (0, . . . ,0) = 0 andd( f (t1, . . . , tr( f )), f (t′1, . . . , t
′
r( f ))) ≤ zf (d(t1, t′1), . . . ,d(tr( f ), t′r( f )))

for all closed termsti , t′i ∈ T(Σ) by Theorem 2. However,zf is continuous at (0, . . . ,0) only if the multi-
plicities in the denotation~ f (x1, . . . , xr( f )� assign to each variable a finite value.

Theorem 3 Let P be any PGSOS PTSS. A process combinator f∈ Σ is uniformly continuous if

~ f (x1, . . . , xr( f ))� ⊑ n{x1,...,xr( f )}

for some n∈ N.

Example 9 We will show that unbounded recursion operators may be not uniformly continuous. We
consider the replication operator ofπ-calculus specified by the rule:

x
a
−→ µ

!x
a
−→ µ ‖ δ(!x)

The replication operator is not continuous since no z withd(!t, !t′) ≤ z(d(t, t′)) and z(0) = 0 will be
continuous at0 since z(δ) = 1 for any δ > 0. The denotation~!x� = ∞x shows that the argument x is
infinitely often replicated. Hence, the replication operator is not continuous.
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Even more, for uniformly continuous operatorsf the functionzf is a modulus of continuity.

Theorem 4 Let P be any PGSOS PTSS. A uniformly continuous process combinator f ∈ Σ satisfies

d( f (t1, . . . , tr( f )), f (t′1, . . . , t
′
r( f ))) ≤ zf (d(t1, t

′
1), . . . ,d(tr( f ), t

′
r( f )))

for all closed terms ti , t′i ∈ T(Σ).

In reverse, for a given modulus of continuity (as specification of some process combinator), we can
derive the maximal replication of process of this operator.

Definition 10 (Derived multiplicity) Let z: [0,1]n→ [0,1] be a mapping with z(0, . . . ,0)= 0 and z con-
tinuous at(0, . . . ,0). Let m: V→ R∞

≥0 be defined by

m= sup















m: V→ R∞≥0 | ∀e∈ E.
n

∑

i=1

m(xi)e(xi) ≤ z(e(x1), . . . ,e(xn))















where m1,m2 : V → R∞
≥0 are ordered m1 ⊑ m2 iff m1(x) ≤ m2(x) for all x ∈ V. We call m the derived

multiplicity of z.

Theorem 5 Let P be any PGSOS PTSS, z: [0,1]n→ [0,1] be a mapping with z(0, . . . ,0)= 0 and z con-
tinuous at(0, . . . ,0), and m the derived multiplicity of z. Then, an operator f∈ Σ with r( f ) = n has z as
modulus of continuity if

sup~ f (x1, . . . , xr( f ))� ⊑m

To conclude, the methods provided in Section 3 and 4 to compute an upper bound on the distance be-
tween instances of the termf (x1, . . . , xr( f )) can be used to derive the individual compositionality property
of operatorf given by its the modulus of continuityzf . Note thatzf depends on all those rules which de-
fine operators of processes to which an instance off (x1, . . . , xr( f )) may evolve to. Traditional rule formats
define syntactic criteria on single rules in order to guarantee a desired compositionality property of the
specified operator. In contrast, our approach derives the compositionality property of an operator from
the the syntactic properties of those rules which define the operational behavior of processes composed
by that operator.

6 Conclusion and Future Work

We presented a method to approximate the bisimulation distance of arbitrary process terms (Theorem 1
and 2). This allows to decide for any given PTSS which operators allow for compositional metric rea-
soning, i.e. which operators are uniformly continuous (Theorem 3). Moreover, our method allows to
compute for any given PTSS a modulus of continuity of each uniformly continuous operator (Theo-
rem 4). Additionally, for any given modulus of continuity (understood as the required compositionality
property of some operator) we provide a sufficient condition to decide if an operator satisfies the modu-
lus of continuity (Theorem 5). The condition characterizesthe maximal number of times that processes
combined by the operator may be replicated during their evolution in order to guarantee the modulus of
continuity.

We will continue this line of research as follows. First, we will investigate the compositionality
of process combinators with respect to convex bisimulationmetric [12], discounted bisimulation met-
ric [15], and generalized bisimulation metric [8]. Second,we will explore compositionality with respect
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to behavioral pseudometrics based on trace semantics [11] and testing semantics. Finally, we will inves-
tigate how the denotational approach to decide the compositionality properties of operators relates to the
logical approach to derive rule formats of [4, 22]. Besides this general line, we want to investigate how
our structural syntactic approach to compositionality relates to the algorithmic computational approach
in [1].
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