
J. Borgström, S. Crafa (Eds.): Combined Workshop on Expressiveness in
Concurrency and Structural Operational Semantics (EXPRESS/SOS 2014)
EPTCS 160, 2014, pp. 79–93, doi:10.4204/EPTCS.160.8

c© B. Klin & B. Nachyła
This work is licensed under the
Creative Commons Attribution License.

Distributive Laws
and Decidable Properties of SOS Specifications∗

Bartek Klin
University of Warsaw

klin@mimuw.edu.pl

Beata Nachyła
Institute of Computer Science, Polish Academy of Sciences

beatanachyla@gmail.com

Some formats of well-behaved operational specifications, correspond to natural transformations of
certain types (for example, GSOS and coGSOS laws). These transformations have a common gener-
alization: distributive laws of monads over comonads. We prove that this elegant theoretical gener-
alization has limited practical benefits: it does not translate to any concrete rule format that would be
complete for specifications that contain both GSOS and coGSOS rules. This is shown for the case of
labeled transition systems and deterministic stream systems.

1 Introduction

Distributive laws (see [14, 8] for more information) are an abstract approach to several kinds of well-
behaved operational specifications. For example, for a fixedsetA of labels, a family of inference rules

x
a

−→ x′ y
a

−→ y′

x⊗y
a

−→ x′⊗y′
(for a∈ A)

that define synchronous composition over labeled transition systems (LTSs), can be presented as a natural
transformationλ : ΣB=⇒ BΣ (a distributive law ofΣ overB), whereΣX = X×X andBX=Pω(A×X)
are functors on the categorySetof sets and functions. Similarly, a family of rules

x
a

−→ x′ y
b

−→ y′

x⋊y
a

−→ y′⋊x′
(for a,b∈ A)

that define an alternating composition operator⋊ on infinite streams of labels, can be understood as a
transformationλ : ΣB=⇒ BΣ whereΣX = X×X again, andBX = A×X.

Typically Σ is a polynomial functor arising from an algebraic signature. Specifications that give rise
to distributive laws ofΣ over B enjoy several desirable properties: they induce aB-coalgebra (e.g. an
LTS) on the carrier of the initialΣ-algebra (the algebra ofΣ-terms) so that bisimilarity is a congruence,
and they provide an interpretation of the signature on the final B-coalgebra (provided that it exists).

These desirable properties extend to other, more expressive types of laws, including:

(a) GSOS lawsρ : Σ(B× Id) =⇒ BΣ∗, whereΣ∗ is the free monad overΣ (see Section 2.1),

(b) coGSOS lawsρ : ΣB∞ =⇒ B(Id+Σ), whereB∞ is the cofree comonad overB (see Section 2.2),

(c) distributive laws of monads over comonads, i.e., natural transformationsλ : Σ∗B∞ =⇒ B∞Σ∗ sub-
ject to a few axioms. (In this paper we only consider distributive laws of free monads over cofree
comonads, see Section 2.4.)

∗This work was supported by the Polish National Science Centre (NCN) grant 2012/07/E/ST6/03026.

http://dx.doi.org/10.4204/EPTCS.160.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

80 Distributive Laws and Decidable Properties of SOS

GSOS and coGSOS laws are incomparable, i.e., there are specifications that conform to one type but not
the other, and distributive laws of monads over comonads area common generalization of both. From
now on, for brevity, we shall call them simplydistributive laws.

For standard examples ofB, GSOS and coGSOS laws correspond torule formats, i.e., syntactic re-
strictions on the form of inference rules that are allowed ina specification for it to define a corresponding
type of law. ForBX= Pω(A×X), wherePω is the finite powerset functor, it was observed in [14] that
GSOS laws correspond to previously known GSOS [2] specifications (hence the name of the law type),
that allow rules such as:

x1
a1,1
−→ y1,1 x1

a1,2
−→ y1,2 · · · xi

ai, j
−→ yi, j · · · xi 6

bi, j
−→ ·· ·

f(x1, . . . ,xk)
b

−→ t

where variablesxi can be tested for the presence and/or absence of transitionslabeled with different
labels, and the resulting transition can go to an arbitrary termt built over the variablesxi andyi, j . On the
other hand, coGSOS laws for the same functorB are induced bysafe ntree[5, 14] specifications, where
additionally lookaheadis allowed, i.e., variables that are targets of premise transitions can be further
tested for other transitions as in the rule:

x
a

−→ y
b

−→ z

f(x)
c

−→ g(z)

On the other hand, coGSOS is restricted in that the target term t in the conclusion must be either a
variable or a flat term built of a single operation symbol and variables.

Both GSOS and coGSOS laws, are generalized by distributive laws. In fact, desired properties of
systems induced by GSOS and coGSOS laws were proved in [14] byshowing first that these laws induce
distributive laws, and then proving those properties for the latter, more general laws. This is tantalizing,
as it suggests that for standard functorsB one could find new, more expressive syntactic rule formats
that would correspond to distributive laws and hence guarantee good properties of specifications. The
problem of finding such a format was left open in [14] and mentioned as still open in later works [1, 8].

The purpose of this paper is to suggest a negative answer to that problem. Specifically, we claim that
there is no rule format that would adequately recognize those specifications that induce distributive laws
of monads over comonads, within a class of specifications that extends both GSOS and coGSOS.

This claim is rather vague, and we must make it precise beforewe attempt to prove it. First of all,
there is no hope to prove it for all monads and comonads; clearly, for some trivial monads and comonads
all distributive laws are easily enumerated, and even for some nontrivial comonads a complete description
of distributive laws is known [7]. Therefore in this paper weshall consider lawsλ : Σ∗B∞ → B∞Σ∗ for Σ∗

the free monad over a polynomial functorΣ, andB∞ the cofree comonad overBX= A×X, pertaining to
stream systems, orBX=Pω(A×X), pertaining to labeled transition systems. Hopefully it shall be clear
how our arguments for the lack of expressive formats for these two behaviour functors, might extend to
other standard functors used to model transition systems coalgebraically.

To make our claim precise, the first question we need to answeris: what is a format?In positive
results about GSOS and coGSOS laws mentioned above, the answer was easy: one simply formulated
some “syntactic forms” of rules and provided ways of defininglaws from sets of rules that conformed to
them. Now that we want a negative result, we need to quantify over all “syntactic forms”, so we need to
understand what a syntactic form is in general. We opt for a general and permissive answer:a format is a
decidable property of specifications.Indeed, no matter what a “format” may be, it should be effectively
checkable whether a specification conforms to it.

B. Klin & B. Nachyła 81

This leads to another question:what is a specification?Some definitions of this term would imme-
diately invalidate our claim; for example, if we say that “a specification is either a GSOS specification or
a coGSOS specification”, then every specification induces a distributive law as described already in [14]
and the problem is trivially decidable. However, we are interested in more permissive notions of speci-
fication that would allow a more substantial combination of GSOS and coGSOS features. We therefore
focus onmixed-GSOS specifications, where every rule is either a GSOS or a coGSOS rule.

Note that there are other interesting notions of specification where the claim becomes false. For
example, as proved in [13], in the context of LTSs one may consider so-called (positive)tyft/tyxt [4]
specifications, and guarantee the existence of a distributive law for every specification. However, tyft/tyxt
specifications extend neither full GSOS nor coGSOS, so this does not match the abstract observation that
distributive laws generalize both GSOS laws and coGSOS laws.

There is still one vague point in our claim:what does it mean for a specification to induce a dis-
tributive law? In positive results about GSOS and coGSOS specifications [8,14], one simply provides
particular ways of inducing distributive laws from specifications that look so natural that everybody is
convinced. Here, to show undecidability, we shall need to prove that some instances donot induce
distributive laws, so we need to quantify over all possible “ways of inducing laws”, a vague notion itself.

We approach this problem by observing that every mixed-GSOSspecification induces, in a very
natural way, a natural transformationρ : ΣB∞ =⇒ BΣ∗ which we call abiGSOS law. Then we define
(Definition 13) what it means for a distributive lawλ to extenda biGSOS lawρ ; essentially,λ must
restrict toρ when composed with obvious inclusions and projections. Ourclaim then becomes:
Claim. It is undecidable whether a given mixed-GSOS specification extends to a unique distributive law.

One may worry whether our insistence on a unique extension isnot overly restrictive. Indeed, perhaps
sometimes a specification may extend to several distributive laws, but one of these laws is somehow
better than the other ones, for example (in the LTS setting) the least one, or canonical in some other way?
However, as will be evident from our proofs, this is not a problem: all our instances of specifications
will either extend to one distributive law or to none at all, therefore no matter what notion of “canonical
extension” one may come up with, the problem remains undecidable.

We prove undecidability by reduction from the halting problem of a variant of queue machines de-
fined in Section 4. Then, in Section 5, we prove the Claim for the case of stream systems (Theorem 24),
and in Section 6 we explain how the proof is adapted to the caseof LTSs (Theorem 29).

2 Preliminaries

The reader should be familiar with notions of category theory such as functors and natural transforma-
tions, see e.g. [11]. All functors we consider are endofunctors on the category of sets and functions.

2.1 Algebras and monads

An algebra for a functorΣ is a setX (thecarrier) together with a functiong : ΣX → X (thestructure).
An algebra morphism fromg : ΣX → X to h : ΣY →Y is a function f : X →Y such thatf ◦g= h◦Σ f .
Algebras forΣ and their morphisms form a category. Of particular interestin this category are initial
objects, i.e., initialΣ-algebras.

Assume that, for any setX, an initial algebra for the functorΣ(−)+X exists, denote its carrierΣ∗X
and its structure by:

ΣΣ∗X
ψX // Σ∗X X.

ηXoo

82 Distributive Laws and Decidable Properties of SOS

ThenΣ∗, defined on functions using initiality, becomes a functor and ψ : ΣΣ∗ =⇒ Σ∗ andη : Id =⇒ Σ∗

are natural transformations. Moreover,Σ∗ is amonad, i.e., it is equipped with a natural transformation
µ : Σ∗Σ∗ =⇒ Σ∗ such that the following diagrams commute:

Σ∗ Σ∗η +3

❊❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
❊❊

Σ∗Σ∗

µ
��

Σ∗ηΣ∗

ks

②②
②②
②②
②②

②②
②②
②②
②②

Σ∗Σ∗Σ∗ Σ∗µ +3

µΣ∗

��

Σ∗Σ∗

µ
��

Σ∗ Σ∗Σ∗
µ

+3 Σ∗.

(1)

Σ∗ is called thefree monadoverΣ. Another relevant transformation isι : Σ=⇒ Σ∗ defined byι = ψ ◦Ση ;
it further satisfies the equationψ = µ ◦ ιΣ∗.

Example 1 Any algebraic signature(qi)i∈I , where eachqi is an operation symbol of arityni ∈ N, gives
rise to an endofunctorΣX =

∐

i∈I Xni . ThenΣ-algebras are algebras for the signature in the sense of
universal algebra, andΣ-algebra morphisms are exactly algebra homomorphisms. Moreover,Σ∗X is the
set of terms over the signature with variables taken fromX, η interprets variables as terms,ψ andµ glue
together terms built of terms, andι interprets terms built of single operation symbols as terms.

2.2 Coalgebras and comonads

The following development is dual to the one for algebras andmonads; we include it for completeness
and to introduce some basic terminology and notation. For more information about coalgebras, see [12].

A coalgebrafor a functorB is a setX (thecarrier) together with a functiong : X →BX (thestructure).
A coalgebra morphism fromg : X → BX to h : Y → BY is a function f : X →Y such thath◦ f = B f ◦g.
Coalgebras forB and their morphisms form a category.

Assume that, for any setX, a final coalgebra for the functorB(−)×X exists, denote its carrierB∞X
and its structure by:

BB∞X B∞X
θXoo εX // X.

ThenB∞, defined on functions using finality, becomes a functor andθ : B∞ =⇒ BB∞ andε : B∞ =⇒ Id
are natural transformations. Moreover,B∞ is acomonad, i.e., it is equipped with a natural transformation
δ : B∞ =⇒ B∞B∞ such that diagrams dual to (1) commute.B∞ is called thecofree comonadover B.
Another relevant transformation isπ : B∞ =⇒ B defined byπ = Bε ◦θ ; it further satisfies the equation
θ = πB∞ ◦δ .

Example 2 Let BX = A×X, for a fixed setA of labels. B-coalgebras arestream systems, i.e., setsX
(of states) equipped with functions toA and toX again; the intuition is that a state produces a label and
transforms into another state. The cofree comonad overB is given byB∞X = (X×A)ω ; we will depict
elements ofB∞X as streams of labeled transitions:

B∞X ∋ σ = x0
a0−→ x1

a1−→ x2
a2−→ x3

a3−→ ·· ·

with xi ∈ X andai ∈ A. For anyn∈ N, by σ (n) ∈ B∞X denote then-th tail of σ , i.e., the substream ofσ
that starts atxn. Natural transformations explained above are then given by:

εX(σ) = x0 θX(σ) =
(

a0,σ (1))

δX(σ) =
(

σ a0−→ σ (1) a1−→ σ (2) a2−→ σ (3) −→ ·· ·) πX(σ) = (a0,x1)

B. Klin & B. Nachyła 83

One may look at elements ofB∞X as streams of labels “colored” with elements ofX; elements ofB∞B∞X
are then streams colored by streams, andδX(σ) is the stream that arises fromσ by coloring each node
with the substream ofσ that starts in it.

Example 3 Let Pω denote the finite powerset functor, and letBX = Pω(A×X), for a fixed setA
of labels. B-coalgebras are(finitely branching) labeled transition systems. The cofree comonad over
B is a functorB∞ that maps a setX to the set of finitely branching, but possibly infinitely deeptrees,
edge-labeled with elements ofA and node-colored by elements ofX, quotiented by a version of strong
bisimilarity that takes into account both edge labels and node colors.

Natural transformations listed above are defined by analogyto Example 2. For a treeT ∈ B∞X:

• εX(T) ∈ X is the color of the root node ofT,

• δX(T) ∈ B∞B∞X arises fromT by coloring every node with the subtree rooted in it,

• θX(T) ∈ BB∞X is the set of immediate subtrees of the root together with labels of the edges that
lead to these subtrees,

• πX(T) ∈ BX is similar, but with the immediate subtrees replaced by the colors of their roots.

A little care is needed to show that components of these transformations are well-defined on bisimilarity
classes of trees. For example, ifT1 andT2 are related by a bisimulation, thenδX(T1) andδX(T2) also are,
as bisimilar nodes get assigned the same colors (here colorsare bisimilarity classes of trees).

2.3 GSOS and coGSOS laws

Algebras, coalgebras, monads and comonads can be combined in distributive laws of various kinds. We
only recall a few basic definitions and examples here; for a more comprehensive treatment see [8].

For any functorB, denoteB̃= Id×B.

Definition 4 Given endofunctorsΣ andB such that the free monadΣ∗ over Σ exists, aGSOS lawis a
natural transformationρ : ΣB̃=⇒ BΣ∗.

Example 5 ConsiderBX = A×X, and letΣX = X ×X arise from a signature with a single binary
function symbolzip. A family of rules

x
a

−→ x′ y
b

−→ y′

zip(x,y)
a

−→ zip(y,x′)
(for a,b∈ A)

together defines a GSOS law by:

ρX(zip((x,(a,x
′)),(y,(b,y′)))) = (a,zip(y,x′))

for anyx,x′,y,y′ ∈ X anda,b∈ A.

Dually, for any functorΣ, denoteΣ̄ = Id+Σ.

Definition 6 Given endofunctorsΣ andB such that the cofree comonadB∞ overB exists, acoGSOS law
is a natural transformationρ : ΣB∞ =⇒ BΣ̄.

84 Distributive Laws and Decidable Properties of SOS

Example 7 ConsiderBX = A×X, and letΣX = X arise from a signature with a single unary function
symbolq. The family of rules (that define a unary operation that dropsevery second label from a given
stream):

x
a1−→ x′

a2−→ x′′

q(x)
a2−→ q(x′′)

(for a1,a2 ∈ A)

together defines a coGSOS law by:

ρX(q(x
a1−→ x′

a2−→ x′′
a3−→ ·· ·)) = (a2,q(x

′′))

for anyx,x′,x′′, . . . ∈ X anda1,a2,a3, . . . ∈ A.

Example 8 Now, consider the LTS behaviour functorBX = Pω(A×X), and letΣX = X as in Exam-
ple 7. The rules:

x
a1−→ x′

a2−→ x′′

q(x)
a2−→ q(x′′)

x
a1−→ x′ 6−→

q(x)
a1−→ q(x)

(for a1,a2 ∈ A)

define a coGSOS lawρ : ΣB∞ =⇒ BΣ̄, whereρX(q(T)) is the set of pairs(a,q(x)) such thatT has (1) a
two-step path from the root to a node colored byx with the second step labeled bya, or (2) a single step,
labeled witha, to a leaf (i.e. a node without successors), and the root ofT is colored byx.

2.4 Distributive laws

In [14] it was noticed that both GSOS and coGSOS laws are generalized by distributive laws of monads
over comonads; in this paper we call them simplydistributive laws.

Definition 9 A distributive law of a monad(Σ∗,η ,µ) over a comonad(B∞,ε ,δ) is a natural transforma-
tion λ : Σ∗B∞ =⇒ B∞Σ∗ subject to the following four axioms:

B∞

ηB∞

��

B∞η

�!(i)

(ii)

Σ∗B∞ λ +3

Σ∗ε %-

B∞Σ∗

εΣ∗

��
Σ∗

Σ∗Σ∗B∞ Σ∗λ +3

µB∞

��
(iii)

Σ∗B∞Σ∗ λΣ∗
+3 B∞Σ∗Σ∗

B∞µ
��

Σ∗B∞

Σ∗δ
��

λ +3

(iv)

B∞Σ∗

δΣ∗

��
Σ∗B∞B∞

λB∞
+3 B∞Σ∗B∞

B∞λ
+3 B∞B∞Σ∗

Example 10 ConsiderBX = A×X as in Example 2, and a functorΣX =
∐

q∈QX ∼= Q×X arising as in
Example 1 from an algebraic signature consisting of a set of unary operation symbolsQ= {q1, . . . ,qk}.
ThenB∞X = (X×A)ω andΣ∗X = Q∗×X; for t ∈ Q∗, we shall writet(x) instead of(t,x) ∈ Σ∗X, and
simply x instead ofε(x), for the empty stringε ∈ Q∗.

For a distributive lawλ : Σ∗B∞ =⇒ B∞Σ∗, the naturality condition means that if

λX(t(x0
a0−→ x1

a1−→ x2
a2−→ ·· ·)) = τ0

b0−→ τ1
b1−→ τ2

b2−→ ·· ·

λY(t(y0
a0−→ y1

a1−→ y2
a2−→ ·· ·)) = γ0

c0−→ γ1
c1−→ γ2

c2−→ ·· ·

B. Klin & B. Nachyła 85

then for all i ∈ N one hasbi = ci , andγi ∈ Σ∗Y arises fromτi ∈ Σ∗X by substituting eachx j by the
correspondingy j . Informally, the value ofλX ont(σ) essentially depends only on the termt and on the
labels in the streamσ , and the colorsx j in σ are merely rearranged into termsτk independently from
their identity or structure. This also implies that all elements fromX present inλX(t(σ)) must have been
present inσ .

Further, the four axioms of Definition 9 amount to:

(i) λX(x0
a0−→ x1

a1−→ x2
a2−→ ·· ·) = x0

a0−→ x1
a1−→ x2

a2−→ ·· · ,

(ii) if λX(t(x0
a0−→ x1

a1−→ x2
a2−→ ·· ·)) = τ0

b0−→ τ1
b1−→ τ2

b2−→ ·· · thenτ0 = t(x0),

(iii) if λX(s(x0
a0−→ x1

a1−→ x2
a2−→ ·· ·)) = τ0

b0−→ τ1
b1−→ τ2

b2−→ ·· · and

λΣ∗X(t(τ0
b0−→ τ1

b1−→ τ2
b2−→ ·· ·)) = γ0

c0−→ γ1
c1−→ γ2

c2−→ ·· · then
λX(ts(x0

a0−→ x1
a1−→ x2

a2−→ ·· ·)) = γ0
c0−→ γ1

c1−→ γ2
c2−→ ·· · .

Informally, λ is defined compositionally with respect toΣ-terms.

(iv) if λX(t(x0
a0−→ x1

a1−→ x2
a2−→ ·· ·)) = τ0

b0−→ τ1
b1−→ τ2

b2−→ ·· · then for everyi ∈ N,

λX(τi) = τi
bi−→ τi+1

bi+1
−→ ·· · , whereτi ∈ Σ∗B∞X arises fromτi ∈ Σ∗X by replacing everyx j with

the stream starting at it. Informally,λX is defined “decompositionally” with respect to streams.

3 BiGSOS laws and mixed-GSOS specifications

In [14] it was proved that (1) every GSOS law induces a distributive law and (2) every coGSOS law
induces a distributive law. The two ways of inducing distributive laws explained there are both natural
and convincing, but formally different. We wish to study theproblem of inducing distributive laws
from specifications that would generalize both GSOS and coGSOS laws, so we need to have a general
understanding of what it means to induce a distributive law.To this end, we consider the following
simple generalization of GSOS and coGSOS:

Definition 11 Given endofunctorsΣ and B such that the free monadΣ∗ over Σ exists and the cofree
comonadB∞ overB exist, abiGSOS lawis a natural transformationρ : ΣB∞ =⇒ BΣ∗.

GSOS and coGSOS laws give rise to biGSOS laws by composing with injections or projections:

ΣB∞ Σ〈ε ,π〉
+3 ΣB̃

ρ ′

+3 BΣ∗, ΣB∞ ρ ′′

+3 BΣ̄
B[η ,ι]

+3 BΣ∗.

whereρ ′ is a GSOS law andρ ′′ is a coGSOS law. (Note that〈ε ,π〉 : B∞ =⇒ B̃ and[η , ι] : Σ̄ =⇒ Σ∗ are
natural transformations.) As a result, biGSOS laws generalize both GSOS and coGSOS laws. However,
they offer much more flexibility. In particular, for the caseof stream systems and LTSs, we consider:

Definition 12 A stream (or LTS) specification ismixed-GSOSif every rule in it is either a GSOS rule or
a coGSOS rule, and moreover, for any operatorf, rules that definef (i.e., those that havef on the left
side of the conclusion) are either all GSOS or all coGSOS.

Note that we allow coGSOS-defined operations in conclusionsof GSOS rules (and vice versa), so
that e.g. the specification in Example 14 below is mixed-GSOS.

One could also define mixed GSOS more abstractly, by partitioning the signature into two disjoint
subsignatures,Σ = ΣGSOS+ΣcoGSOS, and requesting two natural transformations:

ρGSOS: ΣGSOSB̃=⇒ BΣ∗ ρcoGSOS: ΣcoGSOSB
∞ =⇒ BΣ̄,

86 Distributive Laws and Decidable Properties of SOS

one responsible for the GSOS, the other one the coGSOS part ofthe specification. It is then clear how
a mixed-GSOS specification induces a biGSOS law, by comparing ρGSOSandρcoGSOScomposed with
suitable injections and projections. Note that biGSOS lawsallow still more flexibility than allowed by
mixed-GSOS, as they allow rules that combine complex conclusion terms as in GSOS, with lookahead
as in coGSOS.

It may not be evident what it means for a biGSOS law to induce a distributive law, but it is clear how a
given distributive law may extend a biGSOS law, by composingwith relevant injections and projections:

Definition 13 A distributive law λ : Σ∗B∞ =⇒ B∞Σ∗ extendsa biGSOS lawρ : ΣB∞ =⇒ BΣ∗ if the
following diagram commutes:

ΣB∞ ρ +3

ιB∞

��

BΣ∗

Σ∗B∞
λ

+3 B∞Σ∗

πΣ∗

KS

(2)

In other words,λ extendsρ if it equalsρ when its arguments are restricted toΣ-terms of depth 1 and
results projected toB-behaviours of depth 1.

As the following examples show, not every biGSOS law extendsto a distributive law, and those that
do may not extend uniquely.

Example 14 ForBX= A×X with a chosen element $∈ A, consider syntax with one constantC and one
unary operationq, so thatΣX = 1+X andB∞X = (X×A)ω . Considerρ : ΣB∞ =⇒ BΣ∗ defined by rules:

C
$

−→ q(C)

x
a

−→ x′
b

−→ x′′

q(x)
b

−→ q(x′′)
(for a,b∈ A)

Consider any distributive lawλ : Σ∗B∞ =⇒ B∞Σ∗, and presentλ0(C) as:

λ0(C) = C
a0−→ τ1

a1−→ τ2
a2−→ ·· · ∈ B∞Σ∗0 (3)

with eachτi ∈ Σ∗0 andai ∈ A.
If λ extendsρ then, by (2) applied toC ∈ ΣB∞0, we havea0 = $ andτ1 = q(C). Sinceλ is a

distributive law, by axioms (ii) and (iv) of Definition 9 as explained in Example 10, from (3) we get

λ0(q(C)) = q(C)
a1−→ τ2

a2−→ ·· · (4)

Now, by (2) applied toq(λ0(C)) ∈ ΣB∞Σ∗0, we have:

λΣ∗0(q(λ0(C))) = λΣ∗0(q(C
a0−→ τ1

a1−→ τ2
a2−→ ·· ·)) = q(C)

a1−→ q(τ2)−→ ·· · (5)

(only the first step of the stream on the right is determined this way). By axiom (iii) of Definition 9 as
explained in Example 10, the stream (5) is equal to (4) (or, more precisely, it is mapped to it by pointwise
application ofµ0); as a result,τ2 = q(τ2). However, there is no such termτ2 and, as a consequence, a
distributive lawλ that extendsρ does not exist.

Example 15 Consider the previous example with the rightmost rule slightly modified to:

x
a

−→ x′
b

−→ x′′

q(x)
b

−→ x′′
(for a,b∈ A)

B. Klin & B. Nachyła 87

If, say,A= {$,e}, then the correspondingρ can be extended e.g. to distributive lawsλ ,λ ′ such that:

λ0(C) = C
$

−→ q(C)
$

−→ q(C)
$

−→ q(C)
$

−→ ·· ·

λ ′
0(C) = C

$
−→ q(C)

e
−→ q(C)

e
−→ q(C)

e
−→ ·· ·

This example shows that distinct distributive lawsλ ,λ ′ : Σ∗B∞ =⇒B∞Σ∗ can sometimes be equalized
by composing with bothιB∞ : ΣB∞ =⇒ Σ∗B∞ andπΣ∗ : B∞Σ∗ =⇒ BΣ∗ (see Definition 13). However,
distinct distributive laws cannot be equalized by composing with only one of these transformations:

Lemma 16 For any distributive lawsλ ,λ ′ : Σ∗B∞ =⇒ B∞Σ∗:

(a) if λ ◦ ιB∞ = λ ′ ◦ ιB∞ thenλ = λ ′, and (b) ifπΣ∗ ◦λ = πΣ∗ ◦λ ′ thenλ = λ ′.

It makes sense to say that a biGSOS lawρ induces a distributive law if there is a unique distributive
law that extendsρ . This is consistent with known results about GSOS and coGSOSlaws, which, as has
been understood since [14], induce distributive laws:

Theorem 17 For every GSOS lawρ : ΣB̃=⇒ BΣ∗, and for every coGSOS lawρ : ΣB∞ =⇒ BΣ̄ there is
a unique distributive lawλ : Σ∗B∞ =⇒ B∞Σ∗ that extends the associated biGSOS law.

Proof sketch. For the existence ofλ , constructions of distributive laws from GSOS and coGSOS laws
were given already in [14], and later explained more elegantly in [10]. It is not difficult to prove that
those constructions extend the respective GSOS and coGSOS laws in the sense of Definition 13.

For the uniqueness ofλ , Lemma 16 is used. 2

4 Queue machines

We shall prove that it is undecidable whether a given biGSOS law uniquely extends to a distributive law.
To this end, we use the undecidability of the halting problemof queue machines.

A queue machine (QM) is a deterministic finite automaton additionally equipped with a first-in-first-
out queue to store letters. A machine can read letters off thequeue, and depending on their contents
change their state while adding new letters to the queue. Under the classical definition [9], a QM in each
transition (a) removes exactly one letter from the queue and(b) adds some (possibly zero) letters to it.
For our purposes, it will be convenient to consider instead avariant of QMs that, in each step: (a) remove
zero, one or two letters from the queue, and (b) add exactly one letter to it. Formally:

Definition 18 A queue machine(QM) M = (Q,A,$,q1,δ0,δ1,δ2) consists of a finite setQ of states, a
finite alphabetA with a chosen symbol $∈A, a starting stateq1 ∈Q, and three partial transition functions:

δ0 : Q⇀ Q×A δ1 : Q×A⇀ Q×A δ2 : Q×A×A⇀ Q×A

that are disjointly defined and jointly total, i.e., such that for eachq ∈ Q anda,b ∈ A, exactly one of
δ0(q), δ1(q,a) or δ2(q,a,b) is defined. Aconfigurationof M is a pair(q,w) ∈ Q×A∗; the machine
induces a transition function � on the set of configurations by:

(q,w) � (q′,wc) if δ0(q) = (q′,c)

(q,aw) � (q′,wc) if δ0(q) undefined andδ1(q,a) = (q′,c)

(q,abw) � (q′,wc) if δ0(q) andδ1(q,a) undefined andδ2(q,a,b) = (q′,c).

88 Distributive Laws and Decidable Properties of SOS

Note that an MQM never makes a queue empty, and it terminates if and only if it reaches a configuration
(q,a) with a single lettera in the queue, such thatδ0(q) andδ1(q,a) are undefined.

Theorem 19 It is undecidable whether a given QM terminates from the configuration(q1,$), called the
initial configuration.

Proof. As is well known, it is undecidable whether a classical QMM as defined in [9] terminates on its
initial configuration. For every classicalM one constructs a QMM as in Definition 18 that terminates
on its initial configuration if and only ifM does. 2

5 From queue machines to stream specifications

Given a QMM = (Q,A,$,q1,δ0,δ1,δ2), consider a signature with a single constantC and a family of
unary operation symbols{q | q∈ Q}, and a family of rules:

C
$

−→ q1(C)
(C)

q(x)
c

−→ q′(x)
(R0)

x
a

−→ y

q(x)
c

−→ q′(y)
(R1)

x
a

−→ y
b

−→ z

q(x)
c

−→ q′(z)
(R2) (6)

for all q,q′ ∈ Q anda,b,c∈ A subject to the following conditions:

• R0 is included whenδ0(q) = (q′,c),

• R1 is included whenδ0(q) is undefined andδ1(q,a) = (q′,c), and

• R2 is included whenδ0(q) andδ1(q,a) are undefined andδ2(q,a,b) = (q′,c).

These rules are mixed GSOS, so they define a biGSOS lawρM : ΣB∞ =⇒ BΣ∗, whereBX = A×X
and ΣX = 1+Q×X. We shall now prove, in a sequence of lemmas, thatρM uniquely extends to
a distributive law if and only ifM doesnot terminate from the initial configuration. Our argument
relies on the following correspondence between partial runs of M and prefixes of streams produced by
distributive laws that extendρM :

Lemma 20 For everyn> 0, if a QM M makesn−1 steps from the initial configuration:

q1,w1 � q2,w2 � q3,w3 � · · · � qn,wn

(wherew1 = $) then every distributive lawλ that extendsρM maps the constant symbolC ∈ Σ∗B∞0 to a
streamλ0(C) ∈ B∞Σ∗0 that begins with

τ0
$

−→ τ1
a1−→ τ2

a3−→ τ3
a3−→ ·· ·

an−1
−→ τn,

where

• eachai ∈ A is the last letter ofwi+1, i.e., the letter added to the queue in thei-th step ofM ,

• τ0 = C, andτ1, . . . ,τn ∈ Σ∗0 are such that eachτi = qi(τ j), where 0≤ j < i is such thati− j = |wi |.

(Note that from these properties it follows thata ja j+1 · · ·ai−1 = wi.)

B. Klin & B. Nachyła 89

Proof. We proceed by induction onn. For the base casen= 1, if λ extendsρM then, thanks to ruleC,
the streamλ0(C) must begin with:

λ0(C) = C
$

−→ q1(C)

which satisfies the inductive statement.
For the inductive step, assume thatM makesn steps:

q1,w1 � q2,w2 � q3,w3 � · · · � qn,wn � qn+1,wn+1

By the inductive assumption, for anyλ that extendsρM , the streamλ0(C) must begin with:

τ0
$

−→ τ1
a1−→ τ2

a3−→ τ3
a3−→ ·· ·

an−1
−→ τn, (7)

whereτn = qn(τ j) such thatn− j = |wn|, andwn = a ja j+1a j+2 · · ·an−1.
There are three cases to consider, depending on how the configuration(qn+1,wn+1) is derived from

(qn,wn):

• δ0(qn) = (qn+1,an) andwn+1 = wnan, for somean ∈ A. ThenρM includes a corresponding rule
R0, and if λ extendsρM then the initial part (7) inλ0(C) is necessarily extended withτn

an−→
τn+1 = qn+1(τ j), and the inductive statement is preserved.

• δ0(qn) is undefined, andδ1(qn,a j) = (qn+1,an) andwn+1 = a j+1a j+2 · · ·an−1an, for somean ∈ A.
ThenρM includes a corresponding ruleR1, and ifλ extendsρM then the initial part (7) inλ0(C)

is necessarily extended withτn
an−→ τn+1 = qn+1(τ j+1), and the inductive statement is preserved.

• δ0(qn) andδ1(qn,a j) are undefined, andδ2(qn,a j ,a j+1) = (qn+1,an) andwn+1 = a j+2 · · ·an−1an,
for somean ∈A. (Note that, since M does not terminate in(qn,wn), we know thatn− j ≥ 2.) Then
ρM includes a corresponding ruleR2, and if λ extendsρM then the initial part (7) inλ0(C) is
necessarily extended withτn

an−→ τn+1 = qn+1(τ j+2), and the inductive statement is preserved.

2

Lemma 21 For any QMM that does not terminate from the initial configuration, the transformation
ρM is extended by at most one distributive law.

Proof. Consider distributive lawsλ ,λ ′ : Σ∗B∞ =⇒ B∞Σ∗ that both extendρM . For any setX, we wish
to prove that the component functionsλX,λ ′

X : Σ∗B∞X → B∞Σ∗X are equal. We prove this by structural
induction on termst ∈ Σ∗B∞X.

For the first base case, ift = σ ∈ B∞X thenλX(t) = λ ′
X(t) follows immediately from axiom (i) of

Definition 9. For the second base case, ift = C then the equality follows from Lemma 20, sinceM

makes arbitrarily many steps from the initial configuration.
For the inductive step, we need to prove that for all termst ∈Σ∗B∞X and statesq∈Q, if λX(t) = λ ′

X(t)
thenλX(q(t)) = λ ′

X(q(t)). Denote

σ = λX(t) = λ ′
X(t) = τ0

a0−→ τ1
a1−→ τ2

a2−→ ·· · (τi ∈ Σ∗X).

We begin by proving that the desired equality holds when postcomposed withπΣ∗X : B∞Σ∗X →BΣ∗X, i.e.,
that the streamsλX(q(t)) andλ ′

X(q(t)) coincide on their first transitions. This is proved by case analysis
similar to that used in the proof of Lemma 20. For example, ifδ0(q) is undefined andδ1(q,a0) = (q′,b)

90 Distributive Laws and Decidable Properties of SOS

for someq′ ∈ Q andb∈ A, thenρM includes a relevantR1 rule and ifλ andλ ′ both extendρM then

λX(q(t)) andλ ′
X(q(t)) must both begin withq(τ0)

b
−→ q′(τ1).

We proved that for any termt ∈ Σ∗B∞X the streamsλX(t) andλ ′
X(t) coincide on the first transitions,

i.e.,πΣ∗ ◦λ = πΣ∗ ◦λ ′. Hence, by Lemma 16(b),λ = λ ′. 2

Lemma 22 If a QM M does not terminate from the initial configuration, then there exists a distributive
law that extendsρM .

Proof. Fix a QM M that does not terminate from the initial configuration(q1,$). We shall define a
distributive lawλ that extendsρM . For any setX, begin by defining

λX(C) = τ0
a0−→ τ1

a1−→ τ2
a2−→ ·· · ∈ B∞Σ∗X

with τi ∈ Σ∗X andai ∈ A such that:

• τ0 = C anda0 = $,

• for any i > 0, τi = qi(τ j), where thei-th configuration reached byM is (qi ,wi) and j = i −|wi|;
moreover,a j is the first letter ofwi.

To defineλX on other terms inΣ∗B∞X, note that apart from ruleC, the entire specificationρM is a
coGSOS specification, therefore, by Theorem 17, there exists a distributive laŵλ that extends all rules
of ρM apart fromC. For any termt ∈ Σ∗B∞X whereC does not appear, defineλX(t) to beλ̂X(t). If C
appears int, replace it with the streamλX(C) and usêλΣ∗X followed byB∞µX on the term obtained.

It is easy to see thatλ defined in this manner is natural and satisfies axioms (i)-(iii) of Definition 9
(see also Example 10).

The only remaining axiom is (iv), which in principle could fail if the above procedure, on one of the
termsτi present inλX(C), returned a stream that differs from the substream ofλX(C) starting atτi . This
is, however, not the case, as can be proved by induction oni, using case analysis similar to that used in
the proof of Lemma 20. 2

Lemma 23 If a QM M terminates from the initial configuration, then there is no distributive law that
extendsρM .

Proof. Assume to the contrary, thatM terminates aftern steps in a configuration(qn,wn) and there is a
distributive lawλ that extendsρM . By Lemma 20, the streamλ0(C) begins with:

C
a1−→ τ1

a2−→ τ2
a3−→ ·· ·τn−1

an−→ τn

whereτn = qn(τn−|wn|). Note thatM can terminate in(qn,wn) only if wn has length 1, henceτn =
qn(τn−1) andwn = an; moreover,δ0(qn) andδ1(qn,an) must be undefined.

The remaining argument follows the line of Example 14. Suppose that the next step inλ0(C) is τn
an+1
−→

τn+1, for somean+1 ∈ A andτn+1 ∈ Σ∗0. Sinceδ0(qn) andδ1(qn,an) are undefined,δ2(qn,an,an+1) =
(q′,b) must be defined for someq′ ∈ Q andb∈ A. As a result,ρM contains anR2 rule:

x
an−→ y

an+1
−→ z

qn(x)
b

−→ q′(z)

B. Klin & B. Nachyła 91

and, sinceλ extendsρM , instantiatingx to τn−1 we obtainb= an+1 andτn+1 = q′(τn+1), a contradiction.
2

Note that all rules inρM are either GSOS or coGSOS rules; we call specifications with this property
mixed-GSOS specifications. We arrive at a proof of our Claim from the Introduction:

Theorem 24 For the case of stream systems, it is undecidable whether a given mixed-GSOS specifica-
tion extends to a unique distributive law.

Proof. Combine Lemmas 21-23 with Theorem 19 2

6 Labelled transition systems

We shall now show how to encode Queue Machines into mixed-GSOS specifications for LTSs, to prove
that distributive laws admit no format forBX = Pω(A×X) either. Since the general idea and most
technical details are the same as in the case of stream systems (Section 5), we only sketch the differences
between the two cases.

To begin with, note that the set of rules (6) from Section 5 canbe read as rules in the mixed-GSOS
format forBX= Pω(A×X). However, taking the same rules for a QMM would give rise to a biGSOS
law that always extends to some distributive law (a counterpart of Lemma 23 would fail). Intuitively,
unlike in the case ofBX = A×X, a distributive law forBX = Pω(A×X) is allowed to produce an
empty set of successors for a term that corresponds to a terminating configuration ofM .

Our solution is to extend the specification (6), now understood as a mixed-GSOS specification for
the LTS behaviour, with additional rules:

x
a

−→ y y6−→

q(x)
a

−→ q(x)
(R2’) (8)

for q∈Q anda∈ A. These new rules are included wheneverδ0(q) andδ1(q,a) are undefined. We denote
the biGSOS law defined by the extended specification byρEXT : ΣB∞ =⇒ BΣ∗, whereBX= Pω(A×X)
andΣX = 1+Q×X.

For any QMM , the biGSOS lawρEXT uniquely extends to a distributive law if and only ifM does
not terminate from the initial configuration. The proof of this follows the line of Section 5, and we shall
only explain the main differences here.

The main technical step in Section 5, Lemma 20, holds in a verysimilar form:

Lemma 25 For everyn> 0, if a QMM makesn−1 steps from the initial configuration as in Lemma 20,
then every distributive lawλ that extendsρEXT maps the constant symbolC ∈ Σ∗B∞0 to a treeλ0(C) ∈
B∞Σ∗0 that begins with a degenerate tree, i.e., a sequence:

τ0
$

−→ τ1
a1−→ τ2

a3−→ τ3
a3−→ ·· ·

an−1
−→ τn

whereai andτi are as in Lemma 20.

Proof. By induction onn entirely analogous to the proof of Lemma 20. Intuitively, the initial part of
λ0(C) is degenerate because the specificationρEXT is deterministic, i.e., it only infers one transition from
C, and infers at most one transition forq(x) if x can make at most one transition. 2

The next two lemmas are proved entirely analogously to Section 5:

92 Distributive Laws and Decidable Properties of SOS

Lemma 26 For an QMM that does not terminate from the initial configuration, the transformation
ρEXT is extended by at most one distributive law.

Lemma 27 If a QM M does not terminate from the initial configuration, then there exists a distributive
law that extendsρEXT.

In particular, the distributive law defined in Lemma 27 is exactly as in the proof of Lemma 22, with
the streams produced in the latter considered as (degenerate) trees.

The only step that requires some care is Lemma 23, which now takes the form:

Lemma 28 If a QM M terminates from the initial configuration, then there is no distributive law that
extendsρEXT.

Proof. Assume to the contrary, thatM terminates aftern steps in a configuration and there is a distribu-
tive law λ that extendsρM . By Lemma 25, the treeλ0(C) begins with a sequence:

C
a1−→ τ1

a2−→ τ2
a3−→ ·· ·τn−1

an−→ τn

where, as in the proof of Lemma 23,τn = qn(τn−1), andδ0(qn) andδ1(qn,an) are undefined.
What successors canτn have in the treeλ0(C)? Assume first that is has no successors. Sinceλ

extendsρEXT, by applying a corresponding ruleR2’ instantiated toq= qn, x= τn−1 anda= an we infer
thatτn = q(τn−1) indeed does have at least one successor, which is a contradiction.

Now assume thatτn has some successors. All these successors are terms inΣ∗0. Some of these suc-
cessors are minimal, i.e., have the smallest depth of nesting of operationsqi. Pick one of these minimal

successors and call itτ ′. Sinceλ extendsρEXT, the transitionτn
b

−→ τ ′ must be derivable from rules
in ρEXT. The only rule that can be used to this end is a corresponding rule R2, instantiated toq = qn,
x= τn−1, y= τn anda= an. But this means thatτn must have a successorz such thatτ ′ = q′(z), which
contradicts the minimality ofτ ′. 2

Thus we prove our Claim from the Introduction for the case of LTSs:

Theorem 29 For the case of labeled transition systems (BX = Pω(A×X)), it is undecidable whether a
given mixed-GSOS specification extends to a unique distributive law.

Proof. Combine Lemmas 26-28 and Theorem 19. 2

7 Related work

We have proved, for the case of stream systems and LTSs, that there is no format for distributive laws
of monads over comonads that would be complete for mixed-GSOS specification, i.e., that would cover
exactly those mixed-GSOS specification that extend to a distributive law. The specifications used in
our proofs are actually coGSOS specifications extended withonly one GSOS rule that has no premises.
Moreover, the coGSOS rules only uses lookahead of depth 2, and the GSOS rule uses a rule conclusion
of height 2. As a result, there is no complete format even for such restricted specifications.

On the other hand, our results do not contradict the existence of formats complete for classes of
specifications that do not cover the mixed-GSOS format. Indeed as shown in [13], in the context of
LTSs one can combine GSOS and coGSOS but restrict to specifications with positive premises only, and

B. Klin & B. Nachyła 93

guarantee the existence of a corresponding distributive law. (Note that specifications used in Section 6
rely on negative rule premises.)

Our proofs can be easily modified to show undecidability of other problems related to operational
specifications, some of them phrased without reference to distributive laws. For example, in the case of
LTSs, it is undecidable whether a transition system specification (or even a mixed-GSOS specification)
has a supported model, a unique supported model, or a unique stable model [6]; the constructions needed
for these are minor variations of the one used in Section 6.

In the case of stream systems, our results are related to studies of the productivity of stream defini-
tions [3]. Specifications used in Section 5 can be seen as definitions in the “pure stream specification
format” of [3]. Indeed, that format is closely related to stream coGSOS extended with premise-less GSOS
rules for constants. In [3] it was proved that productivity of pure stream specifications is decidable for
specifications that are data-oblivious, i.e., natural withrespect to transition labels. Our specifications are
not data-oblivious in that sense. It is easy to use the constructions of Section 5 to prove that productivity
of pure stream specifications becomes undecidable without data-obliviousness.
Acknowledgment. We are grateful to Jurriaan Rot for several helpful discussions, and to anonymous
referees for spotting embarrassing mistakes both in the content and the presentation of our results.

References

[1] F. Bartels (2004):On Generalised Coinduction and Probabilistic Specification Formats. PhD dissertation,
CWI, Amsterdam.

[2] B. Bloom, S. Istrail & A. Meyer (1995):Bisimulation can’t be traced. Journal of the ACM42, pp. 232–268,
doi:10.1145/200836.200876.

[3] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara & J. Klop (2007): Productivity of Stream Definitions.
Fundamentals of Computation Theory, pp. 274–287, doi:10.1007/978-3-540-74240-1_24.

[4] W. Fokkink (1994):The Tyft/Tyxt Format Reduces to Tree Rules. In: Procs. TACS, Lecture Notes in Computer
Science789, Springer, pp. 440–453, doi:10.1007/3-540-57887-0_109.

[5] W. Fokkink & R. J. van Glabbeek (1996):Ntyft/ntyxt rules reduce to ntree rules. Information and Computa-
tion 126, pp. 1–10, doi:10.1006/inco.1996.0030.

[6] R. J. van Glabbeek (2004):The meaning of negative premises in transition system specifications II. J. Log.
Algebr. Program.60-61, pp. 229–258, doi:10.1016/j.jlap.2004.03.007.

[7] M. Kick (2002): Rule Formats for Timed Processes. In: Proc. CMCIM’02, ENTCS68, Elsevier, pp. 12–31,
doi:10.1016/S1571-0661(04)80498-5.

[8] B. Klin (2011): Bialgebras for structural operational semantics: An introduction. Theoretical Computer
Science412(38), pp. 5043–5069, doi:10.1016/j.tcs.2011.03.023. CMCS Tenth Anniversary Meeting.

[9] D. Kozen (1997):Automata and computability. Springer, doi:10.1007/978-1-4612-1844-9.

[10] M. Lenisa, J. Power & H. Watanabe (2004):Category theory for operational semantics. Theoretical Com-
puter Science327(1-2), pp. 135–154, doi:10.1016/j.tcs.2004.07.024.

[11] S. Mac Lane (1998):Categories for the Working Mathematician, second edition. Springer.

[12] J. J. M. M. Rutten (2000):Universal coalgebra: a theory of systems. Theoretical Computer Science249, pp.
3–80, doi:10.1016/S0304-3975(00)00056-6.

[13] S. Staton (2008):General Structural Operational Semantics through Categorical Logic. In: Proc. LICS’08,
IEEE Computer Society Press, pp. 166–177, doi:10.1109/LICS.2008.43.

[14] D. Turi & G. D. Plotkin (1997):Towards a Mathematical Operational Semantics. In: Proc. LICS’97, IEEE
Computer Society Press, pp. 280–291, doi:10.1109/LICS.1997.614955.

http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1007/978-3-540-74240-1_24
http://dx.doi.org/10.1007/3-540-57887-0_109
http://dx.doi.org/10.1006/inco.1996.0030
http://dx.doi.org/10.1016/j.jlap.2004.03.007
http://dx.doi.org/10.1016/S1571-0661(04)80498-5
http://dx.doi.org/10.1016/j.tcs.2011.03.023
http://dx.doi.org/10.1007/978-1-4612-1844-9
http://dx.doi.org/10.1016/j.tcs.2004.07.024
http://dx.doi.org/10.1016/S0304-3975(00)00056-6
http://dx.doi.org/10.1109/LICS.2008.43
http://dx.doi.org/10.1109/LICS.1997.614955

	1 Introduction
	2 Preliminaries
	2.1 Algebras and monads
	2.2 Coalgebras and comonads
	2.3 GSOS and coGSOS laws
	2.4 Distributive laws

	3 BiGSOS laws and mixed-GSOS specifications
	4 Queue machines
	5 From queue machines to stream specifications
	6 Labelled transition systems
	7 Related work

