Distributive Laws
and Decidable Properties of SOS Specifications

Bartek Klin Beata Nachyta
University of Warsaw Institute of Computer Science, Polish Academy of Sciences
klin@mimuw.edu.pl beatanachyla@gmail.com

Some formats of well-behaved operational specificatioogiespond to natural transformations of
certain types (for example, GSOS and coGSOS laws). Thassfdranations have a common gener-
alization: distributive laws of monads over comonads. Weverthat this elegant theoretical gener-
alization has limited practical benefits: it does not tratesto any concrete rule format that would be
complete for specifications that contain both GSOS and cd&iB@s. This is shown for the case of
labeled transition systems and deterministic stream sysste

1 Introduction

Distributive laws (see [14,]8] for more information) are dsi@act approach to several kinds of well-
behaved operational specifications. For example, for a Bgeé of labels, a family of inference rules

a / a
X—X y—Y
XQY -5 X QY

(foracA)

that define synchronous compoaosition over labeled tramsi#tystems (LTSs), can be presented as a natural
transformatiom : 2B = BX (a distributive law ofx overB), whereXX = X x X andBX = Z,(A x X)
are functors on the catego8etof sets and functions. Similarly, a family of rules

xx y-2y
(fora,be A)

x>4y1>y’>4x’

that define an alternating composition operatoon infinite streams of labels, can be understood as a
transformatiom : 2B — BX wherezZX = X x X again, andBX = A x X.

Typically Z is a polynomial functor arising from an algebraic signati8pecifications that give rise
to distributive laws ofz over B enjoy several desirable properties: they indud&@oalgebra (e.g. an
LTS) on the carrier of the initiat-algebra (the algebra &-terms) so that bisimilarity is a congruence,
and they provide an interpretation of the signature on tta Brcoalgebra (provided that it exists).

These desirable properties extend to other, more expeesgies of laws, including:

(a) GSOS lawe : 2(B x Id) = BZ*, whereX* is the free monad ovex (see Section 211),
(b) coGSOS lawp : 5B* — B(Id + X), whereB” is the cofree comonad ovBr(see Sectioh 212),

(c) distributive laws of monads over comonais., natural transformations : 2*B* — B*Z* sub-
ject to a few axioms. (In this paper we only consider distiilmilaws of free monads over cofree
comonads, see Sectibn2.4.)

*This work was supported by the Polish National Science @MNCN) grant 2012/07/E/ST6/03026.

J. Borgstrom, S. Crafa (Eds.): Combined Workshop on Exgiresess in © B. Klin & B. Nachyta
Concurrency and Structural Operational Semantics (EXPRESS 2014) This work is licensed under the
EPTCS 160, 2014, pp. 719393, doi:10.4204/EPTCS.160.8 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.160.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

80 Distributive Laws and Decidable Properties of SOS

GSOS and coGSOS laws are incomparable, i.e., there ardisations that conform to one type but not
the other, and distributive laws of monads over comonads @@mmon generalization of both. From
now on, for brevity, we shall call them simpdiistributive laws

For standard examples 8f GSOS and coGSOS laws corresponduie formats i.e., syntactic re-
strictions on the form of inference rules that are allowed gpecification for it to define a corresponding
type of law. FoBX = &7,,(A x X), whereZ,, is the finite powerset functor, it was observed.in/[14] that
GSOS laws correspond to previously known GSQOS [2] spedibiesit(hence the name of the law type),
that allow rules such as:

a1 .2 &, i,
X1—Y11 X1—>Y12 -+ X —Vij - X57L>

f(Xl,...,Xk) —b>t

where variables; can be tested for the presence and/or absence of tranditibeled with different
labels, and the resulting transition can go to an arbitremyt built over the variableg; andy; ;. On the
other hand, coGSOS laws for the same fun&are induced bygafe ntredb, [14] specifications, where
additionally lookaheadis allowed, i.e., variables that are targets of premisesttimms can be further
tested for other transitions as in the rule:

a b
X—Yy—1Z
£(x) — g(2)

On the other hand, coGSOS is restricted in that the target tein the conclusion must be either a
variable or a flat term built of a single operation symbol aadables.

Both GSOS and coGSOS laws, are generalized by distribudiws. | In fact, desired properties of
systems induced by GSOS and coGSOS laws were proved in [BHdwying first that these laws induce
distributive laws, and then proving those properties ferltiter, more general laws. This is tantalizing,
as it suggests that for standard funct8rene could find new, more expressive syntactic rule formats
that would correspond to distributive laws and hence guaeeagood properties of specifications. The
problem of finding such a format was left open(ini[14] and nmaed as still open in later works|[1, 8].

The purpose of this paper is to suggest a negative answeattpribblem. Specifically, we claim that
there is no rule format that would adequately recognizedispecifications that induce distributive laws
of monads over comonads, within a class of specificationsetttands both GSOS and coGSOS.

This claim is rather vague, and we must make it precise beferattempt to prove it. First of all,
there is no hope to prove it for all monads and comonads;lgléar some trivial monads and comonads
all distributive laws are easily enumerated, and even faresnontrivial comonads a complete description
of distributive laws is knowri [7]. Therefore in this paper glall consider lawg : 2*B* — B*%* for ~*
the free monad over a polynomial functbrandB” the cofree comonad ov&X = A x X, pertaining to
stream systems, @&X = &, (A x X), pertaining to labeled transition systems. Hopefully &@lshe clear
how our arguments for the lack of expressive formats forehe® behaviour functors, might extend to
other standard functors used to model transition systegeboraically.

To make our claim precise, the first question we need to answerhat is a format?In positive
results about GSOS and coGSOS laws mentioned above, therawsws easy: one simply formulated
some “syntactic forms” of rules and provided ways of defirlengs from sets of rules that conformed to
them. Now that we want a negative result, we need to quantidy all “syntactic forms”, so we need to
understand what a syntactic form is in general. We opt fomegg and permissive answerformat is a
decidable property of specificationsdeed, no matter what a “format” may be, it should be effetyi
checkable whether a specification conforms to it.

B. Klin & B. Nachyta 81

This leads to another questiowhat is a specificationBome definitions of this term would imme-
diately invalidate our claim; for example, if we say that feesification is either a GSOS specification or
a coGSOS specification”, then every specification inducestahliitive law as described already in [14]
and the problem is trivially decidable. However, we areneséed in more permissive notions of speci-
fication that would allow a more substantial combination &@5 and coGSOS features. We therefore
focus onmixed-GSOS specificatignghere every rule is either a GSOS or a coGSOS rule.

Note that there are other interesting notions of specificatvhere the claim becomes false. For
example, as proved im [13], in the context of LTSs one may idensso-called (positivedyft/tyxt [4]
specifications, and guarantee the existence of a distréblatw for every specification. However, tyft/tyxt
specifications extend neither full GSOS nor coGSOS, so thes dot match the abstract observation that
distributive laws generalize both GSOS laws and coGSOS. laws

There is still one vague point in our claimvhat does it mean for a specification to induce a dis-
tributive law? In positive results about GSOS and coGSOS specificatioriBA]8.one simply provides
particular ways of inducing distributive laws from spedtions that look so natural that everybody is
convinced. Here, to show undecidability, we shall need tuv@rthat some instances awt induce
distributive laws, so we need to quantify over all possibiays of inducing laws”, a vague notion itself.

We approach this problem by observing that every mixed-GS@ification induces, in a very
natural way, a natural transformatign: ZB” =— BZ* which we call abiGSOS law Then we define
(Definition[13) what it means for a distributive ladvto extenda biGSOS lawp; essentiallyA must
restrict top when composed with obvious inclusions and projections. claim then becomes:

Claim. Itis undecidable whether a given mixed-GSOS specificattands to a unique distributive law.

One may worry whether our insistence on a unique extensioot isverly restrictive. Indeed, perhaps
sometimes a specification may extend to several distribdéiws, but one of these laws is somehow
better than the other ones, for example (in the LTS setthmg)dast one, or canonical in some other way?
However, as will be evident from our proofs, this is not a peofr all our instances of specifications
will either extend to one distributive law or to none at dtletefore no matter what notion of “canonical
extension” one may come up with, the problem remains undbtzd

We prove undecidability by reduction from the halting pehl of a variant of queue machines de-
fined in Sectiom¥. Then, in Sectibh 5, we prove the Claim ferdase of stream systems (Theoter 24),
and in Sectiofl6 we explain how the proof is adapted to the aflSESs (Theorerh 29).

2 Preliminaries

The reader should be familiar with notions of category thiesarch as functors and natural transforma-
tions, see e.gl[11]. All functors we consider are endoforscon the category of sets and functions.

2.1 Algebras and monads

An algebrafor a functorX is a setX (the carrier) together with a functiorg : 2X — X (the structure.
An algebra morphism frorg: 2X — X toh: 2Y — Y is a functionf : X — Y such thatf og=ho X f.
Algebras forZ and their morphisms form a category. Of particular inteneghis category are initial
objects, i.e., initiak-algebras.

Assume that, for any s&, an initial algebra for the functdx(—) 4 X exists, denote its carriér*X
and its structure by:

Yx nx

22X X X.

82 Distributive Laws and Decidable Properties of SOS

ThenZX*, defined on functions using initiality, becomes a functad gn: 2>* — >* andn : ld = =*
are natural transformations. MoreovEf,is amonad i.e., it is equipped with a natural transformation
U Z*X* = 2* such that the following diagrams commute:

\ ﬂu / uz*ﬂ ﬂu (1)
2 * rY* % >*.

>* is called théree monadverX. Another relevant transformationiis 2 = >* defined by = yo2n;
it further satisfies the equatiagph = po12*.

Example 1 Any algebraic signaturég;)ici, where eachy; is an operation symbol of arity; € N, gives

rise to an endofunctoEX = [[;., X"™. ThenZX-algebras are algebras for the signature in the sense of
universal algebra, ang-algebra morphisms are exactly algebra homomorphismseder,2*X is the

set of terms over the signature with variables taken fram interprets variables as termg,andu glue
together terms built of terms, amdnterprets terms built of single operation symbols as terms

2.2 Coalgebras and comonads

The following development is dual to the one for algebras modads; we include it for completeness
and to introduce some basic terminology and notation. Faoenmbormation about coalgebras, seel[12].
A coalgebrafor a functorB is a seX (thecarrier) together with a functiog : X — BX (thestructure.
A coalgebra morphism frorg: X — BXtoh:Y — BYis a functionf : X — Y such thaho f =Bfog.
Coalgebras foB and their morphisms form a category.

Assume that, for any s&, a final coalgebra for the funct®(—) x X exists, denote its carri@”X
and its structure by:

BBX <2 B*X —%. X.

ThenB™, defined on functions using finality, becomes a functor &n@®” — BB and¢ : B* —> Id
are natural transformations. MoreovBf, is acomonadi.e., it is equipped with a natural transformation
0 : B® = B®”B” such that diagrams dual tb] (1) commutB® is called thecofree comonaaver B.
Another relevant transformation 15: B®* = B defined by = Be o 0; it further satisfies the equation
0 =mnB*00.

Example 2 Let BX = A x X, for a fixed setA of labels B-coalgebras arstream systems.e., setsX

(of state$ equipped with functions té and toX again; the intuition is that a state produces a label and
transforms into another state. The cofree comonad Bvsmiven byB*X = (X x A)®; we will depict
elements 0B*X as streams of labeled transitions:

a a
B®X 3 0 = Xo —2 X1 —%5 Xp —25 Xg 25 ...

with % € X anda; € A. For anyn € N, by (™ € B*X denote ther-th tail of g, i.e., the substream af
that starts ax,. Natural transformations explained above are then given by

(0,0
6)((0-):(gﬂ>o'(l)i>g(2)i>g(3)_>) 7'5((0'):(30,)(1)

X
Q
i
&
2
S
i

B. Klin & B. Nachyta 83

One may look at elements Bf°X as streams of labels “colored” with elements{gfelements oB*B*X
are then streams colored by streams, &) is the stream that arises fromby coloring each node
with the substream af that starts in it.

Example 3 Let &2, denote the finite powerset functor, and BX = (A x X), for a fixed setA
of labels. B-coalgebras aréfinitely branching) labeled transition system$he cofree comonad over
B is a functorB® that maps a seX to the set of finitely branching, but possibly infinitely deteges,
edge-labeled with elements Afand node-colored by elements Xf quotiented by a version of strong
bisimilarity that takes into account both edge labels ardermlors.

Natural transformations listed above are defined by analo@xampld 2. For a tree € B*X:

e &x(T) € X is the color of the root node df,
e Ox(T) € B*B*X arises fronT by coloring every node with the subtree rooted in it,

e Ox(T) € BB*X is the set of immediate subtrees of the root together witkl$abf the edges that
lead to these subtrees,

e 7i(T) € BXis similar, but with the immediate subtrees replaced by thiers of their roots.

A little care is needed to show that components of theseftsamations are well-defined on bisimilarity
classes of trees. For exampleTifandT, are related by a bisimulation, thég(T1) anddx (T2) also are,
as bisimilar nodes get assigned the same colors (here eobtssimilarity classes of trees).

2.3 GSOS and coGSOS laws

Algebras, coalgebras, monads and comonads can be combidetributive laws of various kinds. We
only recall a few basic definitions and examples here; for eersomprehensive treatment see [8].
For any functorB, denoteB = Id x B.

Definition 4 Given endofunctor& andB such that the free monaxd over X exists, aGSOS lawis a
natural transformatiop : 2B — BX*.

Example 5 ConsiderBX = A x X, and letzX = X x X arise from a sighature with a single binary
function symbokip. A family of rules

xx y-2y

= (fora,be A)
Zip(X, y) — Zip(y7 X/)

together defines a GSOS law by:

Px (zip((x,(a,X)), (% (b,Y)))) = (a,zip(y.X))

for anyx,x,y,y € X anda,b € A.

Dually, for any functorz, denote= = Id + .

Definition 6 Given endofunctor& andB such that the cofree comon&3 overB exists, a&toGSOS law
is a natural transformatiop : 2B* —> BX.

84 Distributive Laws and Decidable Properties of SOS

Example 7 ConsiderBX = A x X, and letZX = X arise from a signature with a single unary function
symbolq. The family of rules (that define a unary operation that d®gsy second label from a given
stream):

;) R
X—)X =X’

m (forag,ap € A)

together defines a coGSOS law by:

px(a(x =X 2 X' 25) = (83,q(X))
for anyx,x,X”,... € X anday,ap, as,... € A.

Example 8 Now, consider the LTS behaviour functBiX = &7,,(A x X), and letzX = X as in Exam-
ple[d. The rules:

X -2y) 2y x X -2y L
a:
a) "= q(x) g > q(x)

(forag,ax € A)

define a coGSOS law : £B* —> BS, wherepy (q(T)) is the set of pairga, q(x)) such thaf has (1) a
two-step path from the root to a node coloredxyith the second step labeled hyor (2) a single step,
labeled witha, to a leaf (i.e. a node without successors), and the rodti®tolored byx.

2.4 Distributive laws

In [14] it was noticed that both GSOS and coGSOS laws are gkped by distributive laws of monads
over comonads; in this paper we call them simglilstributive laws

Definition 9 A distributive law of a monadZ*, n, u) over a comonadB®, €, d) is a natural transforma-
tion A : Z*B*” = B”X* subject to the following four axioms:

B oo S5 Be =4, srBeys AZ gryty
anﬂ 0 uswﬂ (i) ﬂB‘”u
S B = Bo5* B> A B 5+
& z*aﬂ (W) ﬂaz*

'B°B® —> B"S'B” —= B"B"Y’

Example 10 ConsiderBX = A x X as in Exampl€]2, and a functaX = quQX = Qx X arising as in
Exampl€l from an algebraic signature consisting of a sehafyuoperation symbol® = {qz,...,qx}-
ThenB*X = (X x A)® andX*X = Q* x X; for t € Q*, we shall writet(x) instead of(t,x) € Z*X, and
simply x instead ofe(x), for the empty string € Q*.

For a distributive lam : 2*B” = B*%*, the naturality condition means that if

)‘X(t(xoﬂﬂliﬂz&%”)):Toﬁﬂlﬂﬂgﬁwu

B. Klin & B. Nachyta 85

then for alli € N one hash = ¢, andy € X*Y arises fromt; € X*X by substituting eaclx; by the
corresponding;. Informally, the value olx ont(o) essentially depends only on the tetrand on the
labels in the streano, and the colorx; in o are merely rearranged into termgindependently from
their identity or structure. This also implies that all eksmts fromX present il (t(o)) must have been
present ino.

Further, the four axioms of Definitidd 9 amount to:

(l) AX()(Oﬂ>X1i>X22>-'-) :xoﬂn(li))(zi)...'

(i) if Ax(t(%0 2% % 2) =102 1 2152 thento = t(x),
(iii) if Ax(s(0 2% %2)) =020 5n 2. and
Aex(8(0 251 21 2) =Sy 2. then

)\x(ts(xoﬂmlimz& 1)) = Voi> y1i> yziw--
Informally, A is defined compositionally with respectIeterms.

(V) if A (800 S x1 Lo 2)) =101 21, 2. thenforevenyi € N,

— i bi _ 0 . . .
Mx(T) =1 L> Ti 1 —> -, whereT;, € Z*B*X arises fromr; € Z*X by replacing every; with
the stream starting at it. Informallyty is defined “decompositionally” with respect to streams.

3 BIGSOS laws and mixed-GSOS specifications

In [14] it was proved that (1) every GSOS law induces a distile law and (2) every coGSOS law
induces a distributive law. The two ways of inducing digitie laws explained there are both natural
and convincing, but formally different. We wish to study theblem of inducing distributive laws
from specifications that would generalize both GSOS and &@&Bws, so we need to have a general
understanding of what it means to induce a distributive 1aw.this end, we consider the following
simple generalization of GSOS and coGSOS:

Definition 11 Given endofunctor& and B such that the free monad® over X exists and the cofree
comonadB” over B exist, abiGSOS laws a natural transformatiop : >B” — BX*.

GSOS and coGSOS laws give rise to biGSOS laws by compositgnjéictions or projections:

WilEem _~ . w P ae BN ey

3B” — B——= BX*, >B” — B —— Bx*.
wherep' is a GSOS law ang” is a coGSOS law. (Note that, 1) : B — Band[n, 1] : £ = =* are
natural transformations.) As a result, biGSOS laws geizeréiloth GSOS and coGSOS laws. However,
they offer much more flexibility. In particular, for the casestream systems and LTSs, we consider:

Definition 12 A stream (or LTS) specification mixed-GSO¥ every rule in it is either a GSOS rule or
a coGSOS rule, and moreover, for any operdtomules that defing (i.e., those that have on the left
side of the conclusion) are either all GSOS or all coGSOS.

Note that we allow coGSOS-defined operations in conclustdn3SOS rules (and vice versa), so
that e.g. the specification in Examplg 14 below is mixed-GSOS

One could also define mixed GSOS more abstractly, by parnititipthe signature into two disjoint
subsignatures, = Zgsos+ Zcogsos and requesting two natural transformations:

pesos: Zeso = B* PeoGsos: ZeocsoB” = BZ,

86 Distributive Laws and Decidable Properties of SOS

one responsible for the GSOS, the other one the coGSOS pédwe specification. It is then clear how
a mixed-GSOS specification induces a biGSOS law, by compadacsand pcocsoscomposed with
suitable injections and projections. Note that biGSOS lallesv still more flexibility than allowed by
mixed-GSOS, as they allow rules that combine complex cemmtuterms as in GSOS, with lookahead
as in coGSOS.

It may not be evident what it means for a biGSOS law to indudstailolitive law, but it is clear how a
given distributive law may extend a biGSOS law, by composiith relevant injections and projections:

Definition 13 A distributive law A : 2*B® = B”X* extendsa biGSOS lawp : 3B” — BX* if the

following diagram commutes:

sB* —2 . Bs*

@ﬂ %*)

>'B® = B*Z*

In other wordsA extendsp if it equalsp when its arguments are restrictecdderms of depth 1 and
results projected tB-behaviours of depth 1.

As the following examples show, not every biGSOS law exta@ndsdistributive law, and those that
do may not extend uniquely.

Example 14 ForBX = A x X with a chosen element&A, consider syntax with one constahand one
unary operationy, so thattX = 1+ X andB*X = (X x A)“. Considerp : 2B* —> BX* defined by rules:

a b ,
X=X =X (fora,be A)

$ b
C—q(C) q(®¥)—q(x)

Consider any distributive law : ¥*B* —> B*XZ*, and presemd(C) as:
A€ = ¢35 n%.. e B0 ®3)

with eacht; € Z*0 anda; € A.
If A extendsp then, by [(2) applied t€ € ZB*0, we haveay = $ and1; = q(C). SinceA is a
distributive law, by axioms (ii) and (iv) of Definitiodn 9 as@ained in Examplé_10, froni{3) we get

M(a(€) = q(€)-Hp-2 (4)
Now, by (2) applied taj(Ao(C)) € ZB*Z*0, we have:
As+0(q(A0(C))) = Asro(q(C 2% 11 5 1 25 -+)) = q(C) 5 q(T2) — -+ (5)

(only the first step of the stream on the right is determinésiway). By axiom (iii) of Definition 9 as
explained in Example_10, the stredm (5) is equdllo (4) (orempeecisely, it is mapped to it by pointwise
application oftp); as a resultr, = q(12). However, there is no such term and, as a consequence, a
distributive lawA that extendg does not exist.

Example 15 Consider the previous example with the rightmost rule gijgmodified to:

VLI
XXX forabeA)

a(x) = X"

B. Klin & B. Nachyta 87

If, say, A= {$,€}, then the corresponding can be extended e.g. to distributive lais\’ such that:

Mo(C) =¢ - q(c) 2 q(c) S q0) -
Aj©) =c -2 q(c) =5 q(c) S5 q(0) S -

This example shows that distinct distributive ladvs\’ : Z*B* = B*Z* can sometimes be equalized
by composing with bothB* : 2B* — 2*B* and nz* : B*Z* — BZ* (see Definitiori_113). However,
distinct distributive laws cannot be equalized by compgsiith only one of these transformations:

Lemma 16 For any distributive lawa ,A’ : Z*B® — B*Z*:
(@) ifAoIB®=A’01B” thenA = A’, and (b) ifmZ*oA = nZ* oA’/ thenA = A’.

It makes sense to say that a biGSOS famduces a distributive law if there is a unique distributive
law that extend®. This is consistent with known results about GSOS and coGIa®@§ which, as has
been understood sinde |14], induce distributive laws:

Theorem 17 For every GSOS lay : 5B — BZ*, and for every coGSOS lag : 5B® — BZ there is
a unique distributive law : 2*B* = B*X* that extends the associated biGSOS law.

Proof sketch. For the existence of, constructions of distributive laws from GSOS and coGSQ& la
were given already iri_[14], and later explained more eldgant[10]. It is not difficult to prove that
those constructions extend the respective GSOS and coGB@3%1 the sense of Definitign 11.3.

For the uniqueness af, Lemmd 16 is used. O

4 Queue machines

We shall prove that it is undecidable whether a given biGS@&uUniquely extends to a distributive law.
To this end, we use the undecidability of the halting probtdmueue machines.

A queue machine (QM) is a deterministic finite automaton @althlly equipped with a first-in-first-
out queue to store letters. A machine can read letters of§tiseie, and depending on their contents
change their state while adding new letters to the queueetthe classical definition [9], a QM in each
transition (a) removes exactly one letter from the queue(bhddds some (possibly zero) letters to it.
For our purposes, it will be convenient to consider insteaarant of QMs that, in each step: (a) remove
zero, one or two letters from the queue, and (b) add exactyletter to it. Formally:

Definition 18 A queue machin€QM) .7 = (Q,A,$, 01, d, o1, ;) consists of a finite se) of states, a
finite alphabeA with a chosen symbol & A, a starting statg; € Q, and three partial transition functions:

:Q—QxA n:QxA—-QxA X QOxAxA—QxA

that are disjointly defined and jointly total, i.e., suchttf@ eachq € Q anda,b € A, exactly one of
&(Q), 41(q,a) or &(q,a,b) is defined. Aconfigurationof . is a pair(g,w) € Q x A*; the machine
induces a transition functior-> on the set of configurations by:

(aw)—> (g ,we) if &(q)=(d,c)
(g,aw) —> (g, wc) if d(q) undefined and, (g,a) = (¢, c)
(g,abw) —> (¢, wc) if d(q) andd,(g,a) undefined and,(q,a,b) = (d,c).

88 Distributive Laws and Decidable Properties of SOS

Note that an MQM never makes a queue empty, and it terminizgesl ionly if it reaches a configuration
(g,a) with a single lettem in the queue, such tha@(q) andd; (q,a) are undefined.

Theorem 19 It is undecidable whether a given QM terminates from the goméition(q;,$), called the
initial configuration

Proof. As is well known, it is undecidable whether a classical Q#las defined in [9] terminates on its
initial configuration. For every classica¥ one constructs a QM# as in Definitior 18 that terminates
on its initial configuration if and only if# does. O

5 From gqueue machines to stream specifications

Given a QM. = (Q,A,$,a1, %, 91,5), consider a signature with a single constargnd a family of
unary operation symbolg | g € Q}, and a family of rules:

a
X—Y

a b
Xy X—y—z
a(x) — q'(y)

(©) g
q(X) — 4'(2)

S - (RO
¢ qu(C) a0 —> q'(X) (R0

(R1) R2) (6)

for all g,d € Q anda,b,c € A subject to the following conditions:
e ROis included wherd(q) = (d,c),
e R1lisincluded wheryy(q) is undefined and, (g,a) = (¢, c), and
e R2is included when)y(q) andd;(q,a) are undefined and:(q,a,b) = (¢, c).

These rules are mixed GSOS, so they define a biGSOSlpw XB” —> BX*, whereBX = Ax X
andZX = 1+ Q x X. We shall now prove, in a sequence of lemmas, that uniquely extends to
a distributive law if and only if.# doesnot terminate from the initial configuration. Our argument
relies on the following correspondence between partiad afn# and prefixes of streams produced by
distributive laws that extend_;:

Lemma 20 For everyn > 0, if a QM .# makesn— 1 steps from the initial configuration:
O1, W1 —> O, W2 —> O3, W3 —=> - -+ —> Qn, Wh

(wherew; = $) then every distributive law that extend , maps the constant symbok *B*0 to a
streamAg(C) € B*Z*0 that begins with

$ a an_
To— T —25 Tp 25 T3 = ... 2y,

where
e eachg € Ais the last letter ofvi 1, i.e., the letter added to the queue in thh step of. 7,
e To=_C, andry,..., Ty € 2*0 are such that eadh= q;(7;), where 0< j < i is such that — j = |w;|.

(Note that from these properties it follows tta@h; 1---a_1 = W;.)

B. Klin & B. Nachyta 89

Proof. We proceed by induction om For the base case= 1, if A extendsp , then, thanks to rul€,
the stream\o(C) must begin with:

which satisfies the inductive statement.
For the inductive step, assume th#t makesn steps:
01, W1 —> Oz, W2 —> O3, W3 —> + -+ —> On, Wn —> On4-1, Wh1

By the inductive assumption, for arythat extendg,_,, the streamy(C) must begin with:

To—om A, B B A 7)
wheret, = qn(Tj) such than— j = |wp|, andw, = a;aj418j42- - 8n—1.

There are three cases to consider, depending on how the watiom (gn 1, Wn 1) is derived from
(qﬂvwﬂ):
e &(0n) = (On+1,an) @andw, 1 = Wha,, for somea, € A. Thenp , includes a corresponding rule

RO, and if A extendsp_, then the initial part[(7) imo(C) is necessarily extended with, oy
Tn+1 = dn+1(Tj), and the inductive statement is preserved.

e &(gn) is undefined, andy(gn,aj) = (Gn+1,8n) aNdWn, 1 = &j118j42- - - an—18n, for somea, € A.
Thenp_, includes a corresponding rull, and if A extendsp, , then the initial part(([7) im\o(C)
is necessarily extended witiy Sn, Tnt1 = dn+1(Tj+1), and the inductive statement is preserved.

* X(0h) anddi(n,a;j) are undefined, and(dn, aj,@j+1) = (Gn+1,an) ANdWn+1 = Aj1+2- - @n-18n,
for somea,, € A. (Note that, since M does not terminate(@, w,), we know thah— j > 2.) Then
p.» includes a corresponding ruR2, and if A extendsp, , then the initial part[(7) iMo(C) is

necessarily extended witlh S, Tn+1 = 9n+1(Tj+2), and the inductive statement is preserved.
O

Lemma 21 For any QM. that does not terminate from the initial configuration, trensformation
0.y 1s extended by at most one distributive law.

Proof. Consider distributive lawa , A’ : Z*B*® = B*Z* that both extengb ,. For any seX, we wish
to prove that the component functioAg, Ay : Z*B*X — B*Z*X are equal. We prove this by structural
induction on terms € >*B*X.

For the first base case,ti= 0 € B*X thenAx(t) = A4(t) follows immediately from axiom (i) of
Definition[9. For the second base caset, # C then the equality follows from Lemnia 20, sincg
makes arbitrarily many steps from the initial configuration

For the inductive step, we need to prove that for all term&*B*X and stateg € Q, if Ax (t) = A (t)
thenAx(q(t)) = Ax(q(t)). Denote

o = Mt = MO = 0-350n-51-2.. (feX).

We begin by proving that the desired equality holds whenquosposed withs-x : B*Z*X — BZ*X, i.e.,
that the stream&x (q(t)) andAy (q(t)) coincide on their first transitions. This is proved by casalysis
similar to that used in the proof of Lemrhal 20. For exampléy(fy) is undefined and, (q,a) = (d',b)

90 Distributive Laws and Decidable Properties of SOS

for someq € Q andb € A, thenp , includes a relevariR1 rule and ifA andA’ both extendo_, then
Ax(q(t)) andAy (q(t)) must both begin withy (7o) LN q'(11).

We proved that for any terine X*B*X the streama (t) andAy (t) coincide on the first transitions,
i.e.,mx*oA = nZ*oA’. Hence, by Lemma16(b) = A’. O

Lemma 22 If a QM .# does not terminate from the initial configuration, then ¢hexists a distributive
law that extendp .

Proof. Fix a QM .# that does not terminate from the initial configuratitp,$). We shall define a
distributive lawA that extend®_,. For any sei, begin by defining

)\x(C) = T ﬂ) T1 i} T2 i) cee S B¥Z*X

with 7; € Z*X anda; € A such that:
e o= Candag=$,

e for anyi > 0, 1, = q;i(1;), where the-th configuration reached by is (g, w;) andj =i — |w|;
moreoverga,; is the first letter ofw;.

To defineAx on other terms iIx*B*X, note that apart from rul€, the entire specificatiop , is a
coGSOS specification, therefore, by Theoiern 17, thereseatististributive lawA that extends all rules
of p.» apart fromC. For any termt € Z*B”X whereC does not appear, defifg(t) to beAx(t). If C
appears irt, replace it with the streark (C) and useAs-x followed by B L on the term obtained.

It is easy to see that defined in this manner is natural and satisfies axioms {))g{iiDefinition[9
(see also Example110).

The only remaining axiom is (iv), which in principle couldlfd the above procedure, on one of the
termst; present iMx (C), returned a stream that differs from the substreanik@t) starting atr;. This
is, however, not the case, as can be proved by inductidn wsing case analysis similar to that used in
the proof of Lemma20. O

Lemma 23 If a QM . terminates from the initial configuration, then there is igiributive law that
extendsp .

Proof. Assume to the contrary, tha# terminates aften steps in a configuratio(ty,, w,) and there is a
distributive lawA that extendp,_,. By Lemmd 20, the streary(C) begins with:

a & a3 an

where T, = qn(Th—,|). Note that.# can terminate indn,Wn) only if wy has length 1, hence, =
qn(Th—1) andw, = a,; moreover,dy(d,) andd (dn, an) must be undefined.

The remaining argument follows the line of Exaniplé 14. Swegbat the next step Ay(C) is 1, Gt
Tni1, fOr somean 1 € Aandt,1 € 2*0. Sincedy(g,) and d1(gn, &) are undefinedd, (gn, &y, an+1) =
(d',b) must be defined for song € Q andb € A. As a resultp_, contains arR2 rule:

an
x -2y y 2t 5

an(x) = q'(2)

B. Klin & B. Nachyta 91

and, sincel extendsp, 4, instantiatingk to 1,_; we obtainb = a,,; andt,.1 = q'(Th+1), @ contradiction.
O

Note that all rules irp_, are either GSOS or coGSOS rules; we call specifications Wwishproperty
mixed-GSOS specificatiand/e arrive at a proof of our Claim from the Introduction:

Theorem 24 For the case of stream systems, it is undecidable whetheea giixed-GSOS specifica-
tion extends to a unique distributive law.

Proof. Combine Lemmas 21-23 with Theorém 19 O

6 Labelled transition systems

We shall now show how to encode Queue Machines into mixed-&§@cifications for LTSs, to prove
that distributive laws admit no format f@X = &, (A x X) either. Since the general idea and most
technical details are the same as in the case of stream syB@ttion b), we only sketch the differences
between the two cases.

To begin with, note that the set of rulés (6) from Secfibn 5 lsamead as rules in the mixed-GSOS
format forBX = Z,(A x X). However, taking the same rules for a QM would give rise to a biGSOS
law that always extends to some distributive law (a coumteerpf Lemmd 2B would fail). Intuitively,
unlike in the case oBX = A x X, a distributive law forBX = Z,(A x X) is allowed to produce an
empty set of successors for a term that corresponds to artating configuration of# .

Our solution is to extend the specificatidd (6), now undemdtas a mixed-GSOS specification for
the LTS behaviour, with additional rules:

a

X— ya y/— R2')

q(x) = q(x)
for g€ Qanda € A. These new rules are included wheneigig) andd, (g, a) are undefined. We denote
the biGSOS law defined by the extended specificatiopdyy : ¥B* —> BZ*, whereBX = 2, (A x X)
and=X =1+Qx X.

For any QM.Z, the biGSOS lavwpex 1 uniquely extends to a distributive law if and only.# does

not terminate from the initial configuration. The proof ofstifiollows the line of Sectiohl5, and we shall

only explain the main differences here.
The main technical step in Sectibh 5, Lemima 20, holds in a sienjlar form:

Lemma 25 For everyn > 0, if a QM.# makesn— 1 steps from the initial configuration as in Lemma 20,
then every distributive law that extendgext maps the constant symbole >*B*0 to a treeAo(C) €
B*Z*0 that begins with a degenerate tree, i.e., a sequence:

(8)

a an_
o501 Hnn 2. g
wherea, andTt; are as in Lemm@a20.

Proof. By induction onn entirely analogous to the proof of Lemrmal 20. Intuitivelye thitial part of
Ao(C) is degenerate because the specificgtiogy is deterministic, i.e., it only infers one transition from
C, and infers at most one transition f@fx) if x can make at most one transition. O

The next two lemmas are proved entirely analogously to Se

92 Distributive Laws and Decidable Properties of SOS

Lemma 26 For an QM.# that does not terminate from the initial configuration, trensformation
PexT IS extended by at most one distributive law.

Lemma 27 If a QM .# does not terminate from the initial configuration, then ¢hexists a distributive
law that extend®e .

In particular, the distributive law defined in Lemind 27 is@&kaas in the proof of Lemmia22, with
the streams produced in the latter considered as (degehaess.
The only step that requires some care is Lernma 23, which rkes tidne form:

Lemma 28 If a QM . terminates from the initial configuration, then there is igiributive law that
extendspexT.

Proof. Assume to the contrary, tha# terminates aften steps in a configuration and there is a distribu-
tive law A that extendp,,. By Lemme 25, the tredq(C) begins with a sequence:

a a;
(R LN N AP

where, as in the proof of Lemmal28, = qn(Tnh_1), anddy(qn) andd(gn, a,) are undefined.

What successors cam have in the treelg(C)? Assume first that is has no successors. Sihce
extendspex T, by applying a corresponding rul?2’ instantiated t@ = qn, X= 17,_1 anda = a, we infer
that 1, = q(1,-1) indeed does have at least one successor, which is a cotitvadic

Now assume that, has some successors. All these successors are tef8.iome of these suc-
cessors are minimal, i.e., have the smallest depth of mestinperationsy; . Pick one of these minimal

successors and call it. SinceA extendspexT, the transitiont, i> T’ must be derivable from rules
in pexTt. The only rule that can be used to this end is a correspondiledR?2, instantiated ta; = q,
X = Tn_1, Y = T, anda = a,. But this means that, must have a successpsuch thatt’ = q'(z), which
contradicts the minimality of’. O

Thus we prove our Claim from the Introduction for the case Th&:

Theorem 29 For the case of labeled transition systelX & 22,(A x X)), it is undecidable whether a
given mixed-GSOS specification extends to a unique digtvidlaw.

Proof. Combine Lemmals 26-28 and Theorenh 19. O

7 Related work

We have proved, for the case of stream systems and LTSsh#ratis no format for distributive laws
of monads over comonads that would be complete for mixed-&§g&cification, i.e., that would cover
exactly those mixed-GSOS specification that extend to aildisive law. The specifications used in
our proofs are actually coGSOS specifications extendedamihhone GSOS rule that has no premises.
Moreover, the coGSOS rules only uses lookahead of depthd2h@nGSOS rule uses a rule conclusion
of height 2. As a result, there is no complete format evenudohgestricted specifications.

On the other hand, our results do not contradict the existefidormats complete for classes of
specifications that do not cover the mixed-GSOS format. dddes shown in_[13], in the context of
LTSs one can combine GSOS and coGSOS but restrict to sp#orfisavith positive premises only, and

B. Klin & B. Nachyta 93

guarantee the existence of a corresponding distributive (Bote that specifications used in Sectidn 6
rely on negative rule premises.)

Our proofs can be easily modified to show undecidability dieotproblems related to operational
specifications, some of them phrased without referencestaluitive laws. For example, in the case of
LTSs, it is undecidable whether a transition system spetifin (or even a mixed-GSOS specification)
has a supported model, a unique supported model, or a urtigpple snodell[5]; the constructions needed
for these are minor variations of the one used in Se¢fion 6.

In the case of stream systems, our results are related testofithe productivity of stream defini-
tions [3]. Specifications used in Sectioh 5 can be seen asitd@fmin the “pure stream specification
format” of [3]. Indeed, that format is closely related taestm coGSOS extended with premise-less GSOS
rules for constants. I _[3] it was proved that productivifypare stream specifications is decidable for
specifications that are data-oblivious, i.e., natural wépect to transition labels. Our specifications are
not data-oblivious in that sense. It is easy to use the aactgins of Sectionl5 to prove that productivity
of pure stream specifications becomes undecidable wittagatabliviousness.

Acknowledgment. We are grateful to Jurriaan Rot for several helpful disaussi and to anonymous
referees for spotting embarrassing mistakes both in theenband the presentation of our results.

References

[1] F. Bartels (2004):0On Generalised Coinduction and Probabilistic Specificatirmats PhD dissertation,
CWI, Amsterdam.

[2] B. Bloom, S. Istrail & A. Meyer (1995)Bisimulation can't be tracedJournal of the ACMA2, pp. 232—-268,
doi:10.1145/200836.200876.

[3] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara & Joj (2007): Productivity of Stream Definitions
Fundamentals of Computation Theppp. 274—287, doi:0.1007/978-3-540-74240-1_24.

[4] W. Fokkink (1994):The Tyft/Tyxt Format Reduces to Tree RulesProcs. TACSLecture Notes in Computer
Sciencer89, Springer, pp. 440-453, dbix. 1007/3-540-57887-0_109.

[5] W. Fokkink & R. J. van Glabbeek (1996\tyft/ntyxt rules reduce to ntree ruleBiformation and Computa-
tion 126, pp. 1-10, doi:0.1006/inco.1996.0030.

[6] R. J. van Glabbeek (2004Y:he meaning of negative premises in transition system fsgegedns Il J. Log.
Algebr. Program60-61, pp. 229-258, dai0.1016/j.jlap.2004.03.007.

[7]1 M. Kick (2002): Rule Formats for Timed Processda: Proc. CMCIM’'02 ENTCS68, Elsevier, pp. 12-31,
doi;10.1016/S1571-0661(04)80498-5.

[8] B. Klin (2011): Bialgebras for structural operational semantics: An irdtction Theoretical Computer
Sciencet12(38), pp. 5043-5069, dod.1016/j.tcs.2011.03.023. CMCS Tenth Anniversary Meeting.

[9] D. Kozen (1997)Automata and computabilityspringer, doit0.1007/978-1-4612-1844-9.

[10] M. Lenisa, J. Power & H. Watanabe (2009ategory theory for operational semanticEheoretical Com-
puter Scienc827(1-2), pp. 135-154, dai0.1016/j.tcs.2004.07.024.

[11] S. Mac Lane (1998)Categories for the Working Mathematicissecond edition. Springer.

[12] J.J. M. M. Rutten (2000)Jniversal coalgebra: a theory of systen®heoretical Computer Scien2d9, pp.
3-80, doi10.1016/S0304-3975(00) 00056-6.

[13] S. Staton (2008)General Structural Operational Semantics through CateggdiLogic. In: Proc. LICS'08
IEEE Computer Society Press, pp. 166—177,1dni1109/LICS.2008.43.

[14] D. Turi & G. D. Plotkin (1997):Towards a Mathematical Operational Semantits. Proc. LICS’'97 IEEE
Computer Society Press, pp. 280-291, tlpi1109/LICS.1997.614955.

http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1007/978-3-540-74240-1_24
http://dx.doi.org/10.1007/3-540-57887-0_109
http://dx.doi.org/10.1006/inco.1996.0030
http://dx.doi.org/10.1016/j.jlap.2004.03.007
http://dx.doi.org/10.1016/S1571-0661(04)80498-5
http://dx.doi.org/10.1016/j.tcs.2011.03.023
http://dx.doi.org/10.1007/978-1-4612-1844-9
http://dx.doi.org/10.1016/j.tcs.2004.07.024
http://dx.doi.org/10.1016/S0304-3975(00)00056-6
http://dx.doi.org/10.1109/LICS.2008.43
http://dx.doi.org/10.1109/LICS.1997.614955

	1 Introduction
	2 Preliminaries
	2.1 Algebras and monads
	2.2 Coalgebras and comonads
	2.3 GSOS and coGSOS laws
	2.4 Distributive laws

	3 BiGSOS laws and mixed-GSOS specifications
	4 Queue machines
	5 From queue machines to stream specifications
	6 Labelled transition systems
	7 Related work

