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Besides respecting prescribed protocols, communicatioric systems should never “get stuck”.
This requirement has been expressed by liveness propsutibsas progress or (dead)lock freedom.
Several typing disciplines that ensure these propertiesnfubile processes have been proposed.
Unfortunately, very little is known about the precise riglaship between these disciplines—and the
classes of typed processes they induce.

In this paper, we compar&’ and.%, two classes of deadlock-free, session typed concurrent
processes. The clas® stands out for its canonicity: it results naturally fromeirgretations of
linear logic propositions as session types. The cl#§sobtained by encoding session types into
Kobayashi’'s usage types, includes processes not typabtbén type systems.

We show that¥? is strictly included inz". We also identify the precise condition under which
£ and.# coincide. One key observation is that ttiegree of sharindpetween parallel processes
determines a new expressiveness hierarchy for typed mese$Ve also provide a type-preserving
rewriting procedure of processes.iinto processes . This procedure suggests that, while
effective, the degree of sharing is a rather subtle criferiaistinguishing typed processes.

1 Introduction

The goal of this work is to formally relate different type ®ms for therm-calculus. Our interest
is in session-based concurrency type-based approach to communication correctnesgdies be-
tween participants are structured irgessionsbasic communication units; descriptions of interaction
sequences are then abstractedsession typefil2] which are checked against process specifications.
We offer the first formal comparison between different typstems that enforcédead)lock freedom
the liveness property that ensures session communicateres “get stuck”. Our approach relates the
classes of typed processes that such systems induce. Enmthisve identify a property on the structure
of typed parallel processes, thdegree of sharingwhich is key in distinguishing two salient classes of
deadlock-free session processes, and in shedding lighieamformal underpinnings.

In session-based concurrency, types enforce correct coimations through different safety and
liveness properties. Basic correctness properties@ramunication safetgndsession fidelitywhile the
former ensures absence of errors (e.g., communication amgias), the latter ensures that well-typed
processes respect the protocols prescribed by session tyfmgeover, a central (liveness) property for
safe processes is that they should never “get stuck”. Thiseisvell-knownprogressproperty, which
asserts that a well-typed term either is a final value or cehdureducel[17]. In calculi for concurrency,
this property has been formalizeddesadlock freedor('a process is deadlock-free if it can always reduce
until it eventually terminates, unless the whole processrdies” [15]) or adock freedon(“a process is
lock free if it can always reduce until it eventually termties, even if the whole process diverges”|[13]).
Notice that in the absence of divergent behaviors, deadladkdock freedom coincide.

(Dead)lock freedom guarantees that all communicationsewv@ntually succeed, an appealing re-
quirement for communicating processes. Several advarygeddisciplines that ensure deadlock-free
processes have been proposed (see, elgl| 2, 3,5]10/[16/28]). Unfortunately, these disciplines con-
sider different process languages and/or are based omn diffegent principles. As a result, very little
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2 Comparing Deadlock-Free Session Typed Processes

is known about how they relate to each other. This begs dene=march questions: What is the formal
relationship between these type disciplines? What class#sadlock-free processes do they induce?

In this paper, we tackle these open questions by compatthgnd .7, two salient classes of
deadlock-free, session typed processes (Defiritidn 4.2):

e ¥ contains all session processes that are well-typed acgptdithe Curry-Howard correspondence
of linear logic propositions as session types [2, 3, 21].sHiffices, because the type system derived
from such a correspondence ensures communication sa#esjon fidelity, and deadlock freedom.

e 7 contains all session processes that enjoy communicatfetysend session fidelity (as ensured by
the type system of Vasconcelags [19]) and are (dead)loekiisecombining Kobayashi's type system
based orusageq13,15] with Dardha et al.’'s encodability reslilt [8].

There are good reasons for consideriffgand.”2". On the one hand, due to its deep logical foundations,
% appears to us as tleanonicclass of deadlock-free session processes, upon whichhalt otasses
should be compared. Indeed, this class arguably offers ¢ pnincipled yardstick for comparisons. On
the other hand, 7 integrates session type checking with the sophisticatadeudiscipline developed by
Kobayashi forrr-calculus processes. This indirect approach to deadlegdom (first suggested in [14],
later developed in [4,7]8]) is fairly general, as it may captsessions with subtyping, polymorphism,
and higher-order communication. Also, as informally shawf#], .7 strictly includes classes of typed
processes induced by other type systems for deadlock freédsessions [5, 10, 16].

One key observation in our development is théatorresponds to tamily of classes of deadlock-free
processes, denotedy, 71, -, %y, Which is defined by thelegree of sharindbetween their parallel
components. Intuitively, %5 is the subclass of#'with independent parallel compositionfor all
processe® | Q € #p, subprocesseB andQ do not share any sessions. The# is the subclass of
2 which contains’g but admits also processes with parallel components that sihanost one session.
Then, %, contains deadlock-free session processes whose paitglonents share at massessions.

Contributions. In this paper, we present three main contributions:
1. We show that the inclusion between the constituent cass is strict (Theoreni4.4). We have:

Ho C HLC Hp C - CJn C (1)

Although not extremely surprising, the significance of ttésult lies in the fact that it talks about
concurrency (via the degree of sharing) but implicitly adout the potential sequentiality of parallel
processes. As such, processesipare necessarily “more parallel” than those’i#, 1. Interestingly,
the degree of sharing irfg, . . ., %5 can be defined in a very simple way, via a natural conditiohén t
rule for parallel composition in Kobayashi’s type systemdeadlock freedom.

2. We show that? and.#; coincide (Theorerh 416). That is, there are deadlock-fresise processes
that cannot be typed by systems derived from the Curry-Hovderpretation of session types|[2, 3,
21], but that can be admitted by the (indirect) approach pfT8is result is significant: it establishes
the precise status of systems based &n [3,21] with resppot¥mus (non Curry-Howard) disciplines.
Indeed, it formally confirms that linear logic interpretats of session types naturally induce the most
basic form of concurrent cooperation (sharing of exactlg session), embodied as the principle of
“composition plus hiding”, a distinguishing feature of bunterpretations.

3. We define a rewriting procedure of processes#iinto . (Defintion[5.T). Intuitively, due to our
previous observation and characterization of the degreshaifing in session typed processes, it is
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quite natural to convert a process.#iinto another, more parallel process#. In essence, the pro-
cedure replaces sequential prefixes with representatiadigdacomponents. The rewriting procedure
satisfies type-preservation, and enjoys the composiftgreahd operational correspondence criteria
as stated il [11] (cf. Theorermhs 5.8 and 5.10). These pregartt only witness the significance of the
rewriting procedure; they also confirm that the degree afishas a rather subtle criteria for formally
distinguishing deadlock-free, session typed processes.

To the best of our knowledge, these contributions define theffirmal comparison between fundamen-

tally distinct type systems for deadlock freedom in sessmmmunications. Previous comparisons, such
as the ones in [4] and][3, §86], are informal: they are base@presentative “corner cases”, i.e., examples
of deadlock-free session processes typable in one systenobin some other.

The paper is structured as followd.]§ 2 summarizes the seastalculus and associated type system
of [19]. In 83 we present the two typed approaches to deadieedom for sessions.[§ 4 defines the
classes? and.#, formalizes the hierarchy{1), and shows ti¥tand.#; coincide. In &5 we give the
rewriting procedure of#;, into .# and establish its properties.[]§ 6 collects some concludingarks.
Due to space restrictions, details of proofs are omittegly tan be found onliné [9].

2 Sessiomnr-calculus

Following Vasconcelos [19], we introduce the sessipoalculus and its associated type system which
ensures communication safety and session fidelity. Thesysfiven in Figuréll (upper part). LEtQ
range over processasy over channels andover values; for simplicity, the set of values coincideshwit
that of channels. In examples, we often nge denote a terminated channel that cannot be further used.

Procesx(v).P denotes the output afalongx, with continuationP. Dually, procesx(y).P denotes
an input alongx with continuationP, with y denoting a placeholder. Processl;.P usesx to selectl;
from a labelled choice process, beixg{l; : P }ici, S0 as to triggeP;; labels indexed by the finite skt
are pairwise distinct. We also have the inactive processoteel0), the parallel composition d® andQ
(denotedP | Q), and the (double) restriction operator, notecty)P: the intention is thak andy denote
dual session endpoinis P. We omit0 whenever possible and write, e &(n) instead o&(n).0. Notions
of bound/free variables in processes are standard; we fw(i®y to denote the set of free namesRf
Also, we writeP[V/Z] to denote the (capture-avoiding) substitution of free a@mces oz in P with v.

The operational semantics is given in terms of a reductitaiios, noted® — Q, and defined by the
rules in Figuré Il (lower part). It relies on a standard notbstructural congruence, noted(see [19]).
We write —* to denote the reflexive, transitive closure-ef Observe that interaction involves pre-
fixes with different channels (endpoints), and always cgdéarthe context of an outermost (double)
restriction. Key rules arer:Com) and R-Case), denoting the interaction of output/input prefixes and
selection/branching constructs, respectively. RukeBsR), (R-Res), and R-Str) are standard.

The syntax of session types, ranged OVeg, .. ., is given by the following grammar.

T,Su=end | 7.8 | ITS| &{li:S}ia | ®{l:Sha

Above, end is the type of an endpoint with a terminated protocol. Theet$p.S is assigned to an
endpoint that first receives a value of typeand then continues according to the protocol described
by S. Dually, type T.Sis assigned to an endpoint that first outputs a value of Typad then continues
according to the protocol described By Type ©{li : S}ici, aninternal choice generalizes output
types; type &l; : S}ici, anexternal choicegeneralizes input types. Notice that session types descri
sequencesf structured behaviors; they do not admit parallel contpmsioperators.
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PQ:= X(V).P (output) 0 (inaction)
x(y).P (input) P|Q  (composition)
x<lj.P (selection) (vxy)P (session restriction)
x> {li : R}iei (branching)
Vi= X (channel)
(R-Com)  (vxy)(X(v).P | y(2).Q) — (vxy)(P | Q[Y/2) (R-mrR)  P—>Q=P|R—=QJ|R

(R-Casg) (vxy)(x<lj.P|y>{li:R}ici) = (vxy)(P|Pj) jel (R-Res) P— Q= (vxy)P — (vxy)Q
(R-STR) P=P,P=>Q, Q@=Q=P =

Figure 1: Sessiom-calculus: syntax and semantics.

(T-Par) (T-RES) (T-IN)
(T-NiL) FibstP Tobgr Q FX:T,y:Thsr P FXx:Sy:TrgP
x:endkgr O MolaksTP|Q I Fst (Vxy)P I,x:?T.Sksr X(y).P
(T-OurT) (T-BRCH) (T-SEL)
M x:Skgr P MNx:SkgrB Viel Mx:SksrP Jjel

Fx:IT.Sy: T Fsrx(y).P F,x:&{li: Stial Fsrxe {li : R}ia F,x: @{li - S}ier Fsrxalj.P
Figure 2: Typing rules for ther- calculus with sessions.
A central notion in session-based concurrenaguiality, which relates session types offering opposite

(i.e., complementary) behaviors. Duality stands at thesliHEommunication safety and session fidelity.
Given a session typg, its dual typeT is defined as follows:

(1>

IT.S

TS ?T.S IT.S
ofli : Stia end

&{li : S}liel &{li:Stia = ®{li:Ska nd £ end

L
L

Typing contexts, ranged over by, are sets of typing assignmentsT. Given a contexf and a
process$, a session typing judgement is of the foFrsy P. Typing rules are given in Figuké 2. Rule (
NiL) states thad is well-typed under a terminated channel. Rule4r) types the parallel composition of
two processes by composing their corresponding typingestsusing a splitting operator, noted19].
Rule (T-Res) types a restricted process by requiring that the two emdpdiave dual types. Rules-(
IN) and (T-ourT) type the receiving and sending of a value over a charnedspectively. Finally, rules
(T-BrcH) and (-SeL) are generalizations of input and output over a labelledfptocesses.

The main guarantees of the type system @mmunication safetgnd session fidelityi.e., typed
processes respect their ascribed protocols, as reprddgngession types.

Theorem 2.1(Type Preservation for Session TypeB)I gy P and P— Q, thenl g1 Q.
The following notion of well-formed processes is key to $ingut meaningful typed processes.

Definition 2.2 (Well-Formedness for Sessionsh process iswvell-formed if for any of its structural
congruent processes of the fofwxy) (P | Q) the following hold.

e If P and Q are prefixed at the same variable, then the varialeldgoms the same action (input or
output, branching or selection).
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e If P is prefixed in xand Q is prefixed injywhere xy; € Xy, then P Q —.

It is important to notice that well-typedness of a processsdwot imply the process is well-formed.
We have the following theorem:

Theorem 2.3(Type Safety for Sessions [19])f +gr P then P is well-formed.

We present the main result of the session type system. Tlog/foh theorem states that a well-typed
closed process does not reduce to an ill-formed one. Itvfslionmediately from Theorenis 2.1 dnd|2.3.

Theorem 2.4( [19]). If Fgr P and P—* Q, then Q is well-formed.

An important observation is that the session type systemngabove does not excludeadlocked
processesi.e., processes which reach a “stuck state.” This is bectgsinterleaving of communication
prefixes in typed processes may create extra causal demesl@ot described by session types. (This
intuitive definition of deadlocked processes will be madecjge below.) A particularly insidious class
of deadlocks is due to cyclic interleaving of channels incpsses. For example, consider a process such
asP £ (vxy)(vwz)(x(n).w(n) | z(t).y(s)): it represents the implementation of two (simple) inde@etd
sessions, which get intertwined (blocked) due to the ngstiduced by input and output prefixes. We
have thanh : endtsr P even ifP is unable to reduce. A deadlock-free varianPafould be, e.g., process
P’ £ (vxy)(vwz)(X(n).w(n) | y(s).z(t)), which also is typable ifsr.

We will say that a process teadlock-freaf any communication action that becomes active during
execution is eventually consumed; that is, there is a cooreding co-action that eventually becomes
available. Below we define deadlock freedom in the sessioalculus; we follow[[18, 15] and consider
fair reduction sequences! [6]. For simplicity, we omit the synria&ases for input and branching.

Definition 2.5 (Deadlock Freedom for SessienCalculus) A process Pis deadlock-freef for any fair
reduction sequenceyR> P, — P, — ..., we have that

1. P = (vXy)(X(v).Q | R), for i > 0, implies that there exists a i such that
(vXY)((v).Q| ¥(2).Ry | Rp) and Ry1 = (vXY)(Q| RulY/Z) | Ry);
(VXy): )(x<lj.Q| R), fori > 0, implies that there exists » i such that
(vxy)(x<13.Q[ y> {lk: Rtkerugy | S) and Ry = (vxy)(Q| Ry | S).

2P|

3 Two Approaches to Deadlock Freedom

We introduce two approaches to deadlock-free, sessiom tgpecesses. The first one, given in §3.1,

comes from interpretations of linear logic propositionseassion types [1+3, 21]; the second approach,
summarized in 8312, combines usage types for the starmar@culus with encodings of session pro-

cesses and typels/[8]. Based on these two approachds, in § #l wefime the classes” and % .

3.1 Linear Logic Foundations of Session Types

The linear logic interpretation of session types was intoadl by Caires and Pfenning [3], and developed
by Wadler [21] and others. Initially proposed for intutitistic linear logic, here we consider an interpre-
tation based on classical linear logic with mix principlEslowing a recent presentation by Caires [1].
The syntax and semantics of processes are aklin § 2 excepeftliowing differences. First, we
have the standard restriction constr(iex)P, which replaces the double restriction. Second, we have a
so-calledforwarding processdenotedx <« Y|, which intuitively “fuses” names andy. Besides these
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Pltec A

(T-1) ——————— (T-id) —
OFcy X® Plcy Xo,A X< Y] Feg XA YA

(T-9) (T-®) (T-cut)

Pleu A YA XB Pleu A YA QF A, x:B Plca A XA QFcy A, XA

X(Y).P Fex A, X A5 B X(y).(P| Q) Fea AN, XA B (vX)(P| Q) Feu A, A

(T-®) (T-&) (T-mix)
PFcr A, X:Aj J el P ey A, XA Viel Pt A Qlcy N

X<lj.Pleg A, x @ {li : A tiel xe{li : Blier For A, x&{li : A }iel P|Qlcu AN

(T-1)

Figure 3: Typing rules for ther-calculus with C-types.

differences in syntax, we have also some minor modificationsduction rules. Differences with respect
to the language considered ifl§ 2 are summarized in the fiigpw

P.Q:= (vx)P (channelrestriction) | [x«y] (forwarding)
(R-cHCoM) X(V).P | x(2).Q — P | Q[v/Z (R-FwD) (vX)([x<>y] | P) — P[Y/X|
(R-cHcase) x«<lj.P[x>{li:R}ticr =P|P jel (R-CHRES) P — Q= (VX)P — (vX)Q

Observe how interaction of input/output prefixes and siefiiranching is no longer covered by an
outermost restriction. As for the type system, we consitlerso-called C-types which correspond to
linear logic propositions. They are given by the followingugmar:

AB:=1|1|A2B| A%B | @{li:Alia | &{li: Alia

Intuitively, L and1 are used to type a terminated endpoint. T¥peB is associated to an endpoint that
first outputs an object of typ& and then behaves accordingBo Dually, typeA» B is the type of an
endpoint that first inputs an object of typeand then continues & The interpretation ofo{l; : A }icl
and &{l;i : Ai}ic| as select and branch behaviors follows as expected.

We define a full duality on C-types, which exactly correspotaithe negation operator 6f.L (-)*.
Thedual of type A, denotedA, is inductively defined as follows:

I=1 I =1 ofli :Atia = &{li:Alia
A®B = AvB AB = A®B &{li:Atiar = @{li:Atia

Recall thatA—B £ A’ B. As explained in[[1], considering mix principles means atimg | —1 and
1— 1, and thereforeL. = 1. We writee to denote either. or 1, and decree that=e.

Typing contexts, sets of typing assignmenrtsA, are ranged oveh,A’,.... The empty context is
denoted ‘’. Typing judgments are then of the forft-cxz A. Figure[3 gives the typing rules associated
to the linear logic interpretation. Salient points inclutie use of bound outpuwvy)x(y).P, which is
abbreviated ag(y)P. Another highlight is the “composition plus hiding” primte implemented by
rule (T-cut), which integrates parallel composition and restrictioraisingle rule. Indeed, there is no
dedicated rule for restriction. Also, rulg-ix) enables the typing ohdependent parallel compositions
i.e., the composition of two processes that do not sharéossss

We now collect main results for this type system; seel[1, Bffetails. For anyP, definelive(P) if
and only ifP = (vi)(11.Q | R), wherertis an input, output, selection, or branching prefix.
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U= 22U (usedininput) 0 (not usable)
!§.l~J (used in output) (U1 |U2) (used in parallel)
T:= UI[T] (channeltypes) (I:T)ier (variant type)

Figure 4: Syntax of usage types for threcalculus.

Theorem 3.1(Type Preservation for C-Typeslf P -z A and P— Q then Q¢y A.
Theorem 3.2(Progress) If P ¢y - and livegP) then P— Q, for some Q.

3.2 Deadlock Freedom by Encodability

As mentioned above, the second approach to deadlock-fssemaegrocessesiisdirect, in the sense that
establishing deadlock freedom for session processeslafgpesage types for the-calculus[13,15], for
which type systems enforcing deadlock freedom are wedlbdished. Formally, this reduction exploits
encodings of processes and types: a session processP is encoded into a (standardicalculus
process[I']+ Fgg [P]:. Next we introduce the syntax of standamecalculus processes with variant
values (§3.2]1), the discipline of usage typels (§8.2.2) tha encodings of session processes and types
into standardt-calculus processes and usage types, respectively (8.3.2.3

3.2.1 Processes

The syntax and semantics of thecalculus with usage types build upon those in § 2. We recgorae
modifications. First, the encoding of terms presented i2&3requires polyadic communication. Rather
than branching and selection constructs, thealculus that we consider here includesaseconstruct
casevof{l;_x>R }ic| that usevariant value |_v. Moreover, we consider the standard channel restriction,
rather than double restriction. These modifications arensamzed below:

P.Q:= (vx)P (channelrestriction) | casevof{lix>P}ic; (case)
vi= |l (variant value)

(Rm-Com)  X(V).P|x(2).Q P | QY2

(Rm-Res) P — Q= (VX)P — (vx)Q

(R]T—CASE) Canj_VOf{h_Xi I>P|}i6| — Pj [V/Xi] ] el
The definition of deadlock-freedom for thecalculus follows[[18, 15]:

Definition 3.3 (Deadlock Freedom for StandardCalculus) A process Pis deadlock-freeunder fair
scheduling, if for any fair reduction sequencg-P P, — P, — --- the following hold

1. if B = (vX)(X(V).Q | R) fori > 0, implies that there exists 1 i such that
Ph= (VX (X(V).Q | X(2)-Ry | Re) and R.1 = (vR)(Q | Ru[Y/Z | Re);

2. if R = (vX)(x(2).Q | R) fori > 0, implies that there exists 1 i such that
Pr= (VR)(X(2).Q| X(¥).Ry | Re) and R = (vO)(QY/Z | Rt | Ry).

3.2.2 Usage Types

The syntax of usage types is defined in Fidure 4. For simplivie leta range over input ? or output
I actions. The usage 0 describes a channel that cannot deatisf. We will often omit 0, and so we
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will write U instead ofU.0. Usages 2U and .U describe channels that can be used once for input
and output, respectively and then used according to thancmtion usage). The obligation oand
capability k range over the set of natural numbers. The us&geU, describes a channel that is used
according tdJ; by one process and, by another processes in parallel.

Intuitively, obligations and capabilities describe intdrannel dependencies:

e An obligation of leveln must be fulfilled by using only capabilities of ledeks than nSaid differently,
an action of obligatiom must be prefixed by actions of capabilities less than

e For an action with capability of leved, there must exist a co-action with obligation of leleds than
orequalton

Typing contexts are sets of typing assignments and are damger I,[’. A typing judgement is of the
form I ¢y P: the annotatiom explicitly denotes the greatedegree of sharingdmitted in parallel pro-
cesses. Before commenting on the typing rules (given inrE[§) we discuss some important auxiliary
notions, extracted from [13, 15]. First, the compositioriaion on types (denotef, and used in rules
Tr-(Par), and Ti-(0ur)) is based on the composition of usages and is defined awfollo

Ui :Tdier | (i Tdier = (i s Tidier Ua[T] | Ua[T] = (Ur | Up)[T]

The generalization of| to typing contexts, denote; | I'2)(x), is defined as expected. The unary
operationt! applied to a usagé lifts its obligation levelup to t it is defined inductively as:

1o=0 tagUu=a?u 1 (U1|Us)=(1"Ur| 1'Up)

The1! is extends to types/typing contexts as expecBaghlity on usage types simply exchanges ? and !:

o-0) RUM-KUT RUF-%0T

Operator “; " inA=x: [T]ag ; ', used in rules{r-In) and ([-0OuT), is such that the following hold:

dom(A) = {x} Udom(I") A(X) =

{ alU[T] if F(x)=UI[T] Ay) =t T (y) if y#£x

al[T]  if x¢ domT)
The final required notion is that ofraliable usage It builds upon the following definition:

Definition 3.4. Let U be a usage. The input and outmlidligation levelgresp. capability level¥ of U,
written ob,(U) andob; (U) (resp.cap,(U) andcap,(U)), are defined as:

obg(agU) = o capg(aRU) = K
obg(Uy |Uz) = min(obg(U1),0bg(Us2)) capy (U1 |U2) = min(capgy(U1),capy(U2))

The definition of reliable usages depends on a reductiotioelan usages, notdd — U’. Intuitively,
U — U’ means that if a channel of usageis used for communication, then after the communication
occurs, the channel should be used according to usagehus, e.g., 2U1 | ?,';',.Uz reduces tdJ; | U,.

Definition 3.5 (Reliability). We write cong (U) whenobg(U) < cap,(U). We writecon(U) when
con,(U) andcon;(U) hold. Usage U iseliable notedrel(U), if con(U’) holdsVU’ such that U—*U’.
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(Tm-PARp)
(TreRes) MiFwP Tk Q  (Tmin)
(Tre-NiL) rx:U[T] I—QB P rel(U) IFiNTg <n ry:T I—QB P
X:0] Rz 0 M HRs (VX)P M| MaFEP|Q x: R[T]; T Fl x(§).P
(Tm-CASE)
(Trout) (Tr-LVAL) F1bgg Ve {ii Tiel
Fll—{(‘BV/:T FZI—QBP FI—QBV:TJ- djel Fz,xi:Til—IQBP, Viel

X QT (M1 M) Fge X(W.P T hgg ljvi (I T 1,72 Fgp casevof {li X >R }iel

Figure 5: Typing rules for ther-calculus with usage types with degree of sharing

Typing Rules. The typing rules for the standamit calculus with usage types are given in Figule 5.
The only difference with respect to the rules in Kobayas$ystems|[13, 15] is that we annotate typing
judgements with the degree of sharing, explicitly statediie (T -Par,)—see below. Ruler(r-NiL) states
that the terminated process is typed under a terminatechehaRule - Res) states that procegex)P
is well-typed if the usage foris reliable (cf. Definitioi 3.5). Rulesr@In) and (Tr-0ur) type input and
output processes in a typing context where the “ ; " operatarsied in order to increase the obligation
level of the channels in continuatidh Rules {r-LvaL) and (T Case) type a choice: the first types a
variant value with a variant type; the second types a cassepsousing a variant value as its guard.

Given a degree of sharing rule (Tr-Par,,) states that the parallel composition of proced3asndQ
(typable under contexts; andl ,, respectively) is well-typed under the typing contéxt| "> only if
IF1NT 2] < n. This allows to simply characterize the “concurrent coafien” betweerP andQ. As a
consequence, ® Hy; thenP H§B, for anyk < n. Observe that the typing rule for parallel composition
in [13[15] is the same ag {-Par,), except for conditionl"; NI 2| < n, which is not specified.

The next theorems imply that well-typed processes by the system in Figurel5 are deadlock-free.

Theorem 3.6(Type Preservation for Usage Types) ' Hiz P and P— Q, thenl™ H¢; Q for somel™’
such that™ — .

Theorem 3.7(Deadlock Freedom)If 0 -, P and either P= (vX)(x(2).Q | R) or P= (vX)(X(V).Q | R),
then P— Q, for some Q.

Corollary 3.8. If 03, P, then P is deadlock-free, in the sense of Definitioh 3.3.

Theorenm 3.R (progress for the linear logic system) and Téra@.7T (deadlock freedom for the stan-
dardr-calculus) have a rather similar formulation: both proigsrstate that processes can always reduce
if they are well-typed (under the empty typing context) aaslhan appropriate structure (i.e., condition
live(P) in Theoren 3.2 and conditioR = (vX)(x(2).Q | R) or P = (vX)(X(V).Q | R) in Theoreni3.7).

3.2.3 Encodings of Processes and Types

Encoding of Processes. To relate classes of processes obtained by the differeatdystems given so
far, we rewrite a session typed or C-typed process into seuyagd process by following a continuation-
passing style: this allows us to mimic the structure of aisass C-type by sending its continuation as
a payload over a channel. This idea, suggested in [14] arelajed in[[8], is recalled in Figufé 6.
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[X(v).PTt = (ve)Fu(v,€). [Pt {x-sc) x> {li: RYials = fu(y). caseyof {li c> [R]t e} ier
[[X(y)-P]]f S fx(%&)-ﬂpﬂt{x»—w} [[(VXV)P]]f = (VC) [[P]]f.{x.y»—m}
[x<ljPls = (ve)ix(lj ). [Pt pxocy [P| QI = [P]+ | [QI
Figure 6: Encoding of session processes mtalculus processes.
[[endﬂsu = (DH [[end]}c = e
[[?T'Sﬂsu = ’?:.;[[[T]]sm [[S]SU] Hwﬂ]c = [[Tﬂc? [[S]c
[[!T-Sﬂsu = !2[[[T]]sm [[Q]SU] [[!T-S]c = [[THC® [[Sﬂc
[&{li: Stials = %[ [S]su)iel] [&{li: S}ia]le = &{li:[S]c}iel
[ef{li:Stials = 'R0 : [Slsu)ial [®{li:S}tiale = @{li:[Slc}ia

Figure 7: Encodings of session types into usage types (apft)C-types (Right).

Encoding of Types. We formally relate session types and logic propositionsstige types by means
of the encodings given in Figuié 7. The former one, denotetkasted]-|s,, is taken from[[8].

Definition 3.9. LetI" be a session typing context. The encodjrjg into usage typing context arfd].
into C-typing context is inductively defined as follows:

[0]¢ =[0]. £ 0 Ir,x: Tl 2 [T+, fx: [T]su IMx:Tle = [Me,x: [T]e

Lemma 3.10(Duality and encoding of session typed)et T, S be finite session types.
Then: () T =Sifand only if T]c = [§c; (i) T =S if and only iff sy = [su-

On Deadlock Freedom by Encoding. The next results relate deadlock freedom, typing and engodi
Proposition 3.11. Let P be a deadlock-free session process, flitdn is a deadlock-freet-process.

Proof. Follows by the encoding of terms given in Figlte 6, DefiniflbB and Definitioh 3.3. O

Next we recall an important result relating deadlock freedmd typing, by following([4].
Corollary 3.12. Letl-gr P be a session process.Hf; [P] is deadlock-free then P is deadlock-free.

4 A Hierarchy of Deadlock-Free Session Typed Processes

Preliminaries. To formally define the classe¥ and.#", we require some auxiliary definitions. The
following translation addresses minor syntactic diff@@sn between session typed processes (Cf. §2)
and the processes typable in the linear logic interprataifcsession types (cf.[§3.1). Such differences
concern output actions and the restriction operator:

Definition 4.1. Let P be a session process. The translaffol} is defined as

x) P} = x@.(zoy | {P}) flvxyP} = (vw){PRW/X[W/y w¢fn(P)

and as an homomorphism for the other process constructs.
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Let [-] denote the encoding of session types into linear logic itipas in Figurd 7 (right). Recall
that[-]+ stands for the encoding of processes gifig, for the encoding of types, both definedin [8], and
given here in Figurgl6 and Figure 7 (left), respectively. Wayrthen formally define the languages under
comparison as follows:

Definition 4.2 (Typed Languages)The languages? and .7, (n > 0) are defined as follows:

& = {P|Ar. (TFsrPA{P} e [F]c)}
o = {P|3M . (Tt PA M i [P]1)}

Main Results. Our first observation is that there are processe&irbut not inJ#7:
Lemma 4.3. ¢ C .

Proof. %, contains (deadlock-free) session processes not capturég. iA representative example is:

P> = (vagby) (vaghy)(ag(x). a(X) | br(n). bx(2))

This process is not io#; because it involves the composition of two parallel proessghich share two
sessions. As such, it is typabletifl, (with n > 2) but not int-5. O

The previous result generalizes easily, so as to define arbigr of deadlock-free, session processes:
Theorem 4.4. For all n > 1, we have that#, C 1.

Proof. Immediate by considering one of the following processesiclwlyeneralize procesB, in

Lemmd4.3B:

Por = (varby)(vaghy): - (vaniibnia)(@a(X). @(X). -+ . @nealy) | ba(n). bo(2). -+ bnia(2))
Qui1 = (varhy)(vagh): - (vaniibni1)(@a(X). @(X). - . anea(y) | ba(n). b2(2). -+ bnia(n))

To distinguishz;, 1 from 77, we considelP, 1 if n+ 1 is even and), .1 otherwise. O

One main result of this paper is th& and.#; coincide. Before stating this result, we make the
following observations. The typing rules for processesAndo not directly allow free output. How-
ever, free output is representable (and typable) by linegic Itypes by means of the transformation in
Definition[4.1. Thus, considered processes are not syoédigtequal. InZ there is cooperating compo-
sition (enabled by ruleT{cut) in Figure[3); independent composition can only be enabjedile (T-mix).
Arbitrary restriction is not allowed; only restriction oaallel processes.

The following property is key in our developments: it coniseour encodings of (dual) session
types into usage types with reliability (Definitibn B.5), entral notion to the type system for deadlock
freedom in Figurél5. Recall that, unlike usage types, theen@ iparallel composition operator at the level
of session types.

Proposition 4.5. Let T be a session type. Thesh([T]s, | [T]s.) holds.

Proof (Sketch).By induction on the structure of session typand the definitions of-], and predicate
rel(-), using Lemm&3.10 (encodings of types preserve sessiordtygiity). Seel[9] for details. O

We then have the following main result, whose proof is dethih [9]:
Theorem 4.6. . = .
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Therefore, we have the following corollary, which attedtattthe class of deadlock-free session
processes naturally induced by linear logic interpretetiof session types is strictly included in the class
induced by the indirect approach of Dardha et(dl. [8] (¢f.2.3.

Corollary 4.7. & C 4, n> 1.

The fact that (deadlock-free) processes suchdsf. Lemmd 4.8) are not it is informally discussed
in [3, 86]. However,[[3] gives no formal comparisons with@tltlasses of deadlock-free processes.

5 Rewriting J%, into .

The hierarchy of deadlock-free session processes establlsy Theorerh 414 isubtlein the following
sense: ifP € 1 but P & 7 (with k > 1) then we know that there is a subproces® dat needs to
be “adjusted” in order to “fit in".#%. More precisely, we know that such a subproces8 ofust become
more independent in order to be typable under the lesseedefisharing.

Here we propose eewriting procedurethat converts processes J#p, into processes in#; (that
is, .Z, by Theoreni_4J6). The rewriting procedure follows a simpleai. given a parallel process as
input, return as output a process in which one of the comperisrkept unchanged, but the other is
replaced by parallel representatives of the sessions imggited in it. Such parallel representatives are
formally defined as characteristic processes and catalyrgroduced next. The rewriting procedure is
type preserving and satisfies operational correspondeficéieorems 518 arid 5.110).

5.1 Preliminaries: Characteristic Processes and Catalyzs

Before presenting our rewriting procedure, let us firstidtrce some preliminary results.
Definition 5.1 (Characteristic Processes of a Session Type} T be a session type (cf[182). Given a
name x, the set atharacteristic processe§ T, denoted]| T [}*, is inductively defined as follows:

{end}* = {P|Ptczxe}

{7r.sp = {x(¥).P|Prcay:[T]e,x[S]c}

{18 = {X(y).(P|Q) [P {TPYAQe {S}*}
{&{li: Stial* = {x>{li:R}ic |Viel.Re{S}*}
{e{li:stal* = Uea {x<li.R|Re{S}}

Definition 5.2 (Catalyzer) Given a session typing context we define its associatechtalyzeras a
process contextr[-], as follows:

%ol = [ Crat[] = (v(Gr[][P) withPe{T}*

We record the fact that characteristic processes are waaitin the system of[§3.1:
Lemma5.3. Let T be a session type. For all®{T[}*, we have: B-¢y X: [T]

We use{T [}* Fcu X: [T]c to denote the set of procesdes { T [}* such thaP ey X [T]e.
Lemma 5.4(Catalyzers Preserve Typabilityletl gt P andl’ C I'. Then%r [P] Fer [T\ [T]e-
Corollary 5.5. Let[ t-gr P. Therér [P] cq 0.
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5.2 Rewriting %3 in £

We start this section with some notations. First, in orderefresent pseudo-non deterministic binary
choices between two equally typed processes, we introdigcmiiowing:

Notation 5.6. Let R, P, be two processes such thatZkn(Py,P,). We write R ||x P> to stand for the
process(VK)(k<inx.0| k>{inl : P, inr : P,}), where labelinx stands for eithetinl or inr.

Clearly, since session execution is purely deterministatationP; ||x P, denotes that eithe?, or
P> will be executed (and that the actual deterministic chogcaat relevant). It is worth adding that
Caires has already developed the technical machineryreghjto include non deterministic behavior
into the linear logic interpretation of session types; $He [Casting our rewriting procedure into the
typed framework ofi[1], so as to consider actual non detestinchoices, is interesting future work.

We find it convenient to annotate bound names in processassession types, and writexy: T)P
andx(y : T).P, for some session typ€. When the reduction relation involves a left or right choice
in a binary labelled choice, as in reductions due to pseumioeleterministic choices (Notatién 5.6), we
sometimes annotate the reduction-a&! or —i**, We letC denote grocess context.e., a process with
a hole. And finally, for a typing context, we shall write{l"|} to denote the proceqg.m)er {Ti}"
We are now ready to give the rewriting procedure fréffato .Z.

Definition 5.7 (Rewriting. %, into .£). Let Pe J#, such thal Fgr P, for somd. The encodingl™ g1 P)
is a process ofZ inductively defined as follows:

(x:endkFgr 0) 20
(M Fsr X(V).P') £X(2).([v> 7 | (T, x: Sks1 P)) r=r',x:!ITsv:T
(FEstx(y:T).P)Ex(y).(,x:Sy: T s P') Fr=r'x:7T.S
(I st x<lj P) £ x«l (]I' X:§ Fst P) F=r"x:®{li:S}a
(F Fsrxe{li 1 Pliar) £ xe{li s (7, § Fst R) Yie =T x:&{li: S}ic
(M Fsr (VRY: S)(P| Q)) 2 {2} | €,5[(M 1, X Sksr P)[FK] F=T10ly AT1,X: Sker P

ATl [ Gy [(F2. 9V Fsr QET] T2.¥:VEssQAVi=§

We illustrate the procedure in][9]. Notice that the rewntiprocedure given in Definition 5.7 sat-
isfies the compositionality criteria given ih [11]. In padilar, it is easy to see that the rewriting of
a composition of terms is defined in terms of the rewriting tef tonstituent subterms. Indeed, e.g.,
(F10T2 kst (vxy: S)(P| Q)) depends on a context including bdffy,x : Sksr P) and(2,y : Stksr Q).

We present two important results about our rewriting pracedFirst, we show it is type preserving:

Theorem 5.8(Rewriting is Type Preserving)Let (I sy P) € . Then, (I Fst P) Feg [M]e.

Notice that the inverse of the previous theorem is triviafddjowing the definition of typed encoding.
Theoren 5.8 is meaningful, for it says that the type interfata process (i.e., the set of sessions im-
plemented in it) is not modified by the rewriting proceduréafis, the procedure modifies the process
structure by closely following the causality relations atésed by (session) types. Notice that causality
relations present in processes, but not described at thkdétypes, may be removed.

The rewriting procedure also satisfies an operational spaiedence result. Let us write-gr Py, P>
whenever bothi Fgr Pp andl” Fgr P> hold. We have the following auxiliary definition:
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Definition 5.9. Let BP’ be such thafl gy P,P’. Then, we write P= P’ if and only if P= C[Q] and
P’ = ¢c[Q/], for some context, and there i’ such that™ 51 Q,Q'.

Theorem 5.10(Operational Correspondencd)et P< %, such that™ sy P for somd™. Then we have:
[) If P — P’ then there exist Q, G.t. (i) ([ Fsr P) =™ —*=Q; (i) Q = Q'; (i) ([ Fgr P) —»** Q.
) If (I Fgp P) —i*—*= Q then there exists’B.t. P— P" and Q= (I gt P/).

6 Concluding Remarks

We have presented a formal comparison of fundamentallindisiype systems for deadlock-free, session
typed processes. To the best of our knowledge, ours is theviork to establish precise relationships of
this kind. Indeed, prior comparisons between type systemddadlock freedom are informal, given in
terms of representative examples typable in one type syistemot in some other.

An immediate difficulty in giving a unified account of differetyped frameworks for deadlock free-
dom is the variety of process languages, type structurebkfyguing rules that define each framework.
Indeed, our comparisons involve: the framework of sessiongsses put forward by Vasconcelos|[19];
the interpretation of linear logic propositions as sessjqes by Caired [1]; ther-calculus with usage
types defined by Kobayashi in [13]. Finding some common gidian comparing these three frame-
works is not trivial—several translations/transformasownere required in our developments to account
for numerous syntactic differences. We made an effort toviothe exact definitions in each framework.
Overall, we believe that we managed to concentrate on éasksaantic features of two salient classes
of deadlock-free session processes, ndtédnd.7 .

Our main contribution is identifying thdegree of sharin@s a subtle, important issue that underlies
both session typing and deadlock freedom. We propose assichlracterization of the degree of shar-
ing: in essence, it arises via an explicit premise for thentypule for parallel composition in the type
system in[[18]. The degree of sharing is shown to effectiwatitice a strict hierarchy of deadlock-free
session processes.d’, as resulting from the approach bf [8]. We showed that thet elesnentary (and
non trivial) member of this hierarchy precisely correspotal.¥—arguably the most canonical class of
session typed processes known to date. Furthermore, bigitaxgian intuitive rewriting procedure of
processes ioZ” into processes i, we demonstrated that the degree of sharing is a subtleiarite
distinguishing deadlock-free processes. As such, evar ifexhnical developments are technically sim-
ple, in our view they substantially clarify our understarglof type systems for liveness properties (such
as deadlock freedom) in the contextrotalculus processes.

As future work, we would like to obtaisemantic characterizationsf the degree of sharing, in
the form of, e.g., preorders on typed processes that digihgvhen one process “is more parallel”
than another. We plan also to extend our formal relatiorsshdpcover typing disciplines witinfinite
behavior We notice that the approach 601 [8] extends to recursive\behf/] and that infinite (yet non
divergent) behavior has been incorporated into logic-thasssion types [18]. Finally, we plan to explore
whether the rewriting procedure given ial8 5 could be adajtiedadeadlock resolutioprocedure.
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