
O. Dardha and J. Rot (Eds.): Combined Workshop on Expressiveness in

Concurrency and Structural Operational Semantics (EXPRESS/SOS 2020).

EPTCS 322, 2020, pp. 3–11, doi:10.4204/EPTCS.322.2

c© B. Luttik

This work is licensed under the

Creative Commons Attribution License.

Divergence-Preserving Branching Bisimilarity

Bas Luttik

Eindhoven University of Technology
The Netherlands

s.p.luttik@tue.nl

This note considers the notion of divergence-preserving branching bisimilarity. It briefly surveys

results pertaining to the notion that have been obtained in the past one-and-a-half decade, discusses

its role in the study of expressiveness of process calculi, and concludes with some suggestions for

future work.

1 Introduction

Branching bisimilarity was proposed by van Glabbeek and Weijland as an upgrade of (strong) bisimilar-

ity that facilitates abstraction from internal activity [16]. It preserves the branching structure of processes

more strictly than Milner’s observation equivalence [21], which, according to van Glabbeek and Weij-

land, makes it, e.g., better suited for verification purposes. A case in point is the argument by Graf and

Sifakis that there is no temporal logic with an eventually operator that is adequate for observation equiv-

alence in the sense that two processes satisfy the same formulas if, and only if, they are observationally

equivalent [17]. The crux is that observation equivalence insufficiently takes into account the intermedi-

ate states of an internal computation. Indeed, branching bisimilarity requires a stronger correspondence

between the intermediate states of an internal computation.

Branching bisimilarity is also not compatible with a temporal logic that includes an eventually op-

erator, because it abstracts to some extent from divergence (i.e., infinite internal computations). Thus,

a further upgrade is necessary, removing the abstraction from divergence. De Nicola and Vaandrager

show that divergence-sensitive branching bisimilarity coincides with the equivalence induced by satis-

faction of formulas of the temporal logic CTL∗
−X [6]. (CTL∗ [8] is an expressive state-based logic that

includes both linear time and branching time modalities; CTL∗
−X refers to the variant of CTL∗ obtained

by omitting the next-state modality, which is incompatible with abstraction from internal activity.)

Divergence-sensitive branching bisimilarity still has one drawback when it comes to verification:

it identifies deadlock and livelock and, as an immediate consequence, is not compatible with parallel

composition. It turns out that the notion of divergence-preserving branching bisimilarity1, which is the

topic of this note, has all the right properties: it is the coarsest equivalence that is compatible with parallel

composition, preserves CTL∗
−X formulas, and distinguishes deadlock and livelock [15]. Moreover, on

finite processes divergence-preserving branching bisimilarity can be decided efficiently [18].

In [16], a coloured-trace characterisation of divergence-preserving branching bisimilarity is provided.

In [13], relational and modal characterisations of the notion are given. For some time it was simply as-

sumed that these three characterisations of the notion coincide, but this was only proved in [14]. To

establish that the relational characterisation coincides with the coloured-trace and modal characterisa-

tions, it needs to be proved that the relational characterisation yields an equivalence relation that satisfies

1For stylistic reasons we prefer the term “divergence-preserving branching bisimilarity” over “branching bisimilarity with

explicit divergence”, which is used in earlier articles on the topic.

http://dx.doi.org/10.4204/EPTCS.322.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

4 Divergence-Preserving Branching Bisimilarity

the so-called stuttering property, and this is surprisingly involved. A similar phenomenon is observed

in the proof that a rooted version of divergence-preserving branching bisimilarity is compatible with the

recursion construct µX . [12]. Due to the divergence condition, Milner’s ingenious argument in [23] that

strong bisimilarity is compatible with recursion required several novel twists.

In this note we shall give a survey of results pertaining to divergence-preserving branching bisim-

ilarity that were obtained in the past one-and-a-half decade. in Section 2 we shall present and discuss

a relational characterisation of the notion. In Section 3 we comment on modal characterisations of the

notion, and discuss the relationship with the temporal logic CTL∗
−X . In Section 4 we briefly discuss to

what extent the notion is compatible with familiar process algebraic operators. In Section 5, we explain

how it plays a role in expressiveness results. In Section 6 we arrive at some conclusions and mention

some ideas for future work.

2 Relational characterisation

We presuppose a set A τ of actions including a special element τ , and we presuppose a labelled transition

system (S,−→) with labels from A τ , i.e., S is a set of states and −→⊆ S×A τ ×S is a transition relation

on S. Let s,s′ ∈ S and α ∈ A τ ; we write s
α

−→ s′ for (s,α ,s′) ∈ −→ and we abbreviate the statement

‘s
α

−→ s′ or (α = τ and s = s′)’ by s
(α)
−→ s′. We denote by →+ the transitive closure of the binary relation

τ
−→, and by ։ its reflexive-transitive closure. A process is given by a state s in a labelled transition

system, and encompasses all the states and transitions reachable from s.

Definition 1. A symmetric binary relation R on S is a branching bisimulation if it satisfies the following

condition for all s, t ∈ S and α ∈ A τ :

(T) if s R t and s
α

−→ s′ for some state s′, then there exist states t′ and t′′ such that t−։ t′′
(α)
−→ t′, s R t′′

and s′ R t′.

We say that a branching bisimulation R preserves (internal) divergence if it satisfies the following con-

dition for all s, t ∈ S:

(D) if s R t and there is an infinite sequence of states (sk)k∈ω such that s = s0, sk
τ

−→ sk+1 and sk R t

for all k ∈ ω , then there is a state t′ such that t−→+ t′, and sk R t′ for some k ∈ ω .

States s and t are divergence-preserving branching bisimilar (notation: s ↔∆
b t) if there is a divergence-

preserving branching bisimulation R such that s R t.

The divergence condition (D) in the definition above is slightly weaker than the divergence condition

used in the relation characterisation of divergence-preserving branching bisimilarity presented in [13],

which actually requires that t admits an infinite sequence of τ-transitions and every state on this sequence

is related to some state on the infinite sequence of τ-transitions from s. Nevertheless, as is established

in [14], the notion of divergence-preserving branching bisimilarity defined here is equivalent to the one

defined in [13]. In [14] it is also proved that ↔∆
b is an equivalence, that the relation ↔∆

b is itself a

divergence-preserving branching bisimulation, and that it satisfies the so-called stuttering property: if

t0
τ

−→ ·· · tn, s ↔∆
b t0 and s ↔∆

b tn, then s ↔∆
b ti for all 0 ≤ i ≤ n.

Let us say that a state s is divergent if there exists an infinite sequence of states (sk)k∈ω such that

s = s0 and sk
τ

−→ sk+1 for all k ∈ ω . It is a straightforward consequence of the definition that divergence-

preserving branching bisimilarity relates divergent states to divergent states only, i.e., that we have the

following proposition.

Proposition 2. If s ↔∆
b t, then s is divergent only if t is divergent.

B. Luttik 5

Proof. Suppose that s ↔∆
b t and s is divergent. Then there exists an infinite sequence of states (sk)k∈ω

such that s = s0 and sk
τ

−→ sk+1 for all k ∈ ω . We inductively construct an infinite sequence of states

(tℓ)ℓ∈ω such that t = t0, tℓ
τ

−→ tℓ+1, together with a mapping σ : ω → ω such that sσ(ℓ) ↔
∆
b tℓ for all

ℓ ∈ ω ;

• We define t0 = t and σ(0) = 0; note that sσ(0) = s ↔∆
b t = t0.

• Suppose that the sequence (tℓ)ℓ∈ω and the mapping σ have been defined up to ℓ. Then, in particular,

sσ(ℓ) ↔
∆
b tℓ. We distinguish two cases:

If sσ(ℓ)+k ↔
∆
b tℓ for all k ∈ ω , then by (D) there exists tℓ+1 such that tℓ

τ
−→ tℓ+1 and sσ(ℓ)+k ↔

∆
b tℓ+1

for some k ∈ ω ; we can then define σ(ℓ+1) = k.

Otherwise, there exists some k ∈ ω such that sσ(ℓ)+k ↔
∆
b tℓ and sσ(ℓ)+k+1 6↔

∆
b tℓ. Since sσ(ℓ)+k

τ
−→

sσ(ℓ)+k+1 it follows by (T) that there exist tℓ
′′ and tℓ+1 such that tℓ−։ tℓ

′′ (τ)
−→ tℓ+1, sσ(ℓ)+k ↔

∆
b tℓ

′′

and sσ(ℓ)+k+1 ↔
∆
b tℓ+1. Clearly, we have that tℓ 6= tℓ+1, so tℓ−→

+ tℓ+1 and we can define σ(ℓ+1) =
σ(ℓ)+ k+1.

From the existence of an infinite sequence of states (tℓ)ℓ∈ω such that t = t0 and tℓ
τ

−→ tℓ+1 it follows that

t is divergent, as was to be shown.

As the following example illustrates, however, a symmetric binary relation on S relating states that

satisfies (T) of Definition 1 and relates divergent states to divergent states only is not necessarily included

in a divergence-preserving branching bisimulation relation. In other words, a symmetric binary relation

on S that satisfies (T) and only relates divergent states to divergent states may relate states that are not

divergence-preserving branching bisimilar.

s

s1 s2

t

t1 t2

τ

τ

τ

a τ

τ

a

Figure 1: An example transition system illustrating that (D) cannot be replaced by the requirement that

R relates divergent states to divergent states.

Example 3. Consider the transition system depicted in Figure 1. The symmetric closure of the relation

R = {(s, t),(s1, t2),(s2, t2)} satisfies (T) and it relates divergent states to divergent states only. It does

not, however, satisfy (D), for s R t and defining sk = s for all k ∈ ω we get an infinite sequence of states

(sk)k∈ω such that sk
τ

−→ sk+1 and sk R t for all k ∈ ω , while there does not exist a t′ such that t−→+ t′ and

sk R t′ for some k ∈ ω . Note that s admits a complete path at which a is continuously (weakly) enabled,

whereas t does not admit such a complete path.

3 Modal characterisations

As shown in [13], to get an (action-based) modal logic that is adequate for branching bisimilarity one

could take an adaptation of standard Hennessy-Milner logic replacing, for all actions α ∈ A τ in the

6 Divergence-Preserving Branching Bisimilarity

usual unary may and must modalities 〈a〉 and [a] by a binary just-before modality a. A state s satisfies

the formula ϕ a ψ if, and only if, there exist states s′′ and s′ such that s−։ s′′
(α)
−→ s′, ϕ holds in s′′ and ψ

holds in s′. To get an adequate logic for divergence-preserving branching bisimilarity, it suffices to add

a unary divergence modality ∆ such that s satisfies ∆ϕ if, and only if, there exists an infinite sequence of

states (sk)k∈ω such that s−։ s0, sk
τ

−→ sk+1 and ϕ holds in sk for all k ∈ ω .

Let Φ be the class of formulas generated by the following grammar:

ϕ ::= ¬ϕ |
∧

Φ′ | ϕ α ϕ | ∆ϕ (α ∈ A τ , ϕ ∈ Φ, Φ′ ⊆ Φ) .

We then have that states s and t are divergence-proving branching bisimilar if, and only if, s and t

satisfy exactly the same formula in Φ [14]. We may restrict the cardinality of Φ′ in conjunctions to the

cardinality of the set of states S.

Example 4. Consider again the transition system depicted in Figure 1. States s and t are not divergence-

preserving branching bisimilar. The formula ∆(⊤a⊤) (in which ⊤ abbreviates
∧

/0) expresses the exis-

tence of a divergence on which the action a is continuously enabled. It is satisfied by state s, but not by

t.

There is also an intuitive correspondence between branching bisimilarity and the state-based temporal

logic CTL∗
−X (CTL∗ without the next-state modality) [7]. The standard semantics of CTL∗

−X is, however,

with respect to Kripke structures, in which states rather than transitions have labels and the transition

relation is assumed to be total. To formalise the correspondence, De Nicola and Vaandrager devised a

framework of translations between labelled transition systems and Kripke structures [6]. The main idea

of the translation from labelled transition systems to Kripke structures is that

1. every transition s
a

−→ t (a 6= τ) is replaced by two transitions s −→ ta and ta −→ t, where ta is a

fresh state that is labelled with {a};

2. every transition s
τ

−→ t gives rise to a transition s −→ t; and

3. for every state s without outgoing transitions (i.e., every deadlock state of the labelled transition

system) a transition s −→ s is added to satisfy the totality requirement of Kripke structures.

s

s1 s2,a

s2

t

t1 t2,a

t2

{a} {a}

Figure 2: Result of apply De Nicola and Vaandrager’s translation to the labelled transition system in

Figure 1.

Example 5. If we apply the translation sketched above to the labelled transition system depicted in

Figure 1, then we get the Kripke structure depicted in Figure 2. Note that by clause 3 of the translation

state s2 gets a transition to itself, whereas it is a deadlock state in the orginal transition system. Clearly,

there is no CTL−X formula that distinguishes, e.g., between s1 and s2, although in the labelled transition

system depicted in Figure 1 these states are not divergence-preserving branching bisimilar.

B. Luttik 7

De Nicola and Vaandrager propose a notion of divergence-sensitive branching bisimilarity on finite

LTSs and establish that two states in an LTS are divergence-sensitive branching bisimilar if, and only

if, in the Kripke resulting from the translation sketched above they satisfy the same CTL∗
−X formulas.

Divergence-sensitive branching bisimilarity coincides with divergence-preserving branching bisimilarity

on deadlock-free LTSs. In fact, the only difference between divergence-sensitive branching bisimilarity

and divergence-preserving branching bisimilarity is that the latter distinguishes between deadlock and

livelock states, whereas the former does not.

To preserve the distinction between deadlock and livelock, a modified translation is proposed in [15],

obtained from the translation sketched above by replacing clause 3 by

3′. add a fresh state d labelled with {δ}, and for every state s without outgoing transitions a transition

s −→ d.

s

s1 s2,a

s2

t

t1 t2,a

t2

{a} {a}

d

{δ}

Figure 3: Result of apply the deadlock preserving translation to the labelled transition system in Figure 1.

Example 6. Applying the modified translation on the labelled transition in Figure 1, we get the Kripke

structure in Figure 3. Note that s1 does not satisfy the CTL∗
−X formula EFδ , while s2 does.

Two states in a labelled transition system are divergence-preserving branching bisimilar if they satisfy

the same CTL∗
−X formulas in the Kripke structure that results from the modified transition [15].

4 Congruence

An important reason to prefer divergence-preserving branching bisimilarity over divergence-sensitive

branching bisimilarity is that the former is compatible with parallel composition, whereas the latter is

not.

s1 ‖ t

s2 ‖ t

t s1

s2

t′ s1 ‖ t′

s2 ‖ t′
τ

a a a

τ

τ

Figure 4: Divergence-sensitive branching bisimilarity is not compatible with parallel composition.

8 Divergence-Preserving Branching Bisimilarity

Example 7. Consider the transition system in Figure 4. States s1 ‖ t and s2 ‖ t represent the parallel

compositions of states s1 and t, and of states s2 and t, respectively. Similarly, states s1 ‖ t′ and s2 ‖ t′

represent the parallel compositions of states s1 and t′, and of states s2 and t′, respectively. Recall that

divergence-sensitive branching bisimilarity does not distinguish deadlock (state t) and livelock (state

t′), so we have that t and t′ are divergence-sensitive branching bisimilar. States s1 ‖ t and s1 ‖ t′ are,

however, not divergence-sensitive branching bisimilar. Note that s1 ‖ t′ has a complete path on which a is

continuously enabled, whereas s1 ‖ t does not have such a complete path, and so these two states do not

satisfy the same CTL∗
−X formulas.

Divergence-preserving branching bisimilarity is the coarsest equivalence included in divergence-

sensitive branching bisimilarity that is compatible with parallel composition [15]. Hence, it is also the

coarsest congruence for parallel composition relating only processes that satisfy the same CTL∗
−X for-

mulas.

It is well-known that branching bisimilarity is not compatible with non-deterministic choice, and

that the coarsest behavioural equivalence that is included in branching bisimilarity and that is compatible

with non-deterministic choice, is obtained by adding a so-called root condition. The same holds for

divergence-preserving branching bisimilarity.

Definition 8. Let R be a divergence-preserving branching bisimulation. We say that R satisfies the root

condition for s and t if, whenever

(R1) if s
α

−→ s′ for some state s′, then there exists a state t′ such that t
α

−→ t′ and s′ R t′.

(R2) if t
α

−→ t′ for some state t′, then there exists a state s′ such that s
α

−→ s′ and s′ R t′.

States s and t are rooted divergence-preserving branching bisimilar if there is a divergence-preserving

branching bisimulation relation R satisfying the root condition for s and t such that that s R t.

In [11], formats for transition system specifications are presented that guarantee that divergence-

preserving branching bisimilarity and its rooted variant are compatible with the operators defined by the

transition system specification. These formats relax the requirements of the branching bisimulation and

rooted branching bisimulation formats of [10]. The relaxation of the formats is meaningful: the process-

algebraic operations for priority [1] and sequencing [5, 4, 3], with which (rooted) branching bisimilarity

is not compatible, are in the rooted divergence-preserving branching bisimulation format. So, in contrast

to its divergence-insensitive variant, rooted divergence-preserving branching bisimilarity is compatible

with priority and sequencing.

The structural operational rule for the recursion operator µX . , which was considered in the context

of observation equivalence by Milner [22] and in the context of divergence-sensitive variants of observa-

tion equivalence by Lohrey, D’Argenio and Hermanns [19], is not in the format for rooted divergence-

preserving branching bisimilarity. Nevertheless, rooted divergence preserving branching bisimilarity is

compatible also with this operator [12]. The proof of this fact requires an adaption of the up-to technique

used by Milner in his argument that (strong) bisimilarity is compatible with recursion [23].

5 Expressiveness of process calculi

Phillips showed that abstraction from divergence can be exploited to prove that every recursively enu-

merable transition system is branching bisimilar to a boundedly branching computable transition sys-

tem [25]2. In contrast, there exist recursively enumerable transition systems that are not divergence-

2Phillips actually claimed the correspondence modulo observation equivalence, but it is easy to see that his proof also works

modulo branching bisimilarity.

B. Luttik 9

preserving branching bisimilar to a computable transition system (cf., e.g., Example 3.6 in [2]). Hence,

in a theory that aims to integrate computability and concurrency, divergence preservation is important.

In [2], interactivity is added to Turing machines by associating an action with every computation

step. This so-called reactive Turing machine has a transition system semantics and can be studied from

a concurrency-theoretic perspective. A transition system is called executable if it is behaviourally equiv-

alent to the transition system associated with a reactive Turing machine. The notion of executability

provides a way to characterise the absolute expressiveness of a process calculus. If every transition

system that can be specified in the calculus is executable, then the calculus is said to be executable. Con-

versely, if every executable transition system can be specified in the calculus, then the calculus is said to

be behaviourally complete.

A calculus with constants for deadlock and successful termination, unary action prefixes, binary

operations for non-deterministic choice, sequencing and ACP-style parallel composition, iteration and

nesting is both executable and behaviourally complete up to divergence-preserving branching bisimilarity

[3]. The π-calculus is also behaviourally complete up to divergence-preserving branching bisimilarity.

Since it allows the specification of transition systems with unbounded branching, it is, however, not

executable up to divergence-preserving branching bisimilarity; it is nominally orbit-finitely executable

up to the divergence-insensitive variant of branching bisimilarity [20].

The aforementioned results illustrate the role of divergence in the consideration of the absolute ex-

pressiveness of process calculi. Preservation of divergence is also widely accepted as an important crite-

rion when comparing the relative expressiveness of process calculi [24].

6 Conclusions

We have discussed ther relational and modal characterisations of divergence-preserving branching bisim-

ilarity, commented on its compatibility with respect to process algebraic operations and on its role in the

study of the absolute expressiveness. We conclude by briefly mentioning some directions for future work.

Sound and complete axiomatisations for the divergence-sensitive spectrum of observation congru-

ence for basic CCS with recursion are provided in [19]. The congruence result in [12] can serve as

a stepping stone for providing similar sound and complete axiomatisations for divergence-preserving

branching bisimilarity. Then, it would also be interesting to consider the axiomatisation of divergence-

preserving branching bisimilarity for full CCS with recursion, although that would first require a non-

trivial extension of the congruence result.

Ad hoc up-to techniques for divergence-preserving branching bisimilarity have already been used,

e.g., in the congruence proof in [12] and in proof that the π-calculus is behaviourally complete [20].

Recently, several more generic up-to techniques for branching bisimilarity were proved sound [9]. An in-

teresting direction for future work would be to consider extending those up-to techniques for divergence-

preserving branching bisimilarity too.

References

[1] J. C. M. Baeten, J. A. Bergstra & J. W. Klop (1986): Syntax and defining equations for an interrupt mecha-

nism in process algebra. Fundamenta Informaticae 9(2), pp. 127–167.

[2] J. C. M. Baeten, B. Luttik & P. van Tilburg (2013): Reactive Turing machines. Inf. Comput. 231, pp. 143–166,

doi:10.1016/j.ic.2013.08.010.

http://dx.doi.org/10.1016/j.ic.2013.08.010

10 Divergence-Preserving Branching Bisimilarity

[3] J. C. M. Baeten, B. Luttik & F. Yang (2017): Sequential Composition in the Presence of Intermediate Ter-

mination (Extended Abstract). In K. Peters & S. Tini, editors: Proceedings Combined 24th International

Workshop on Expressiveness in Concurrency and 14th Workshop on Structural Operational Semantics, EX-

PRESS/SOS 2017, Berlin, Germany, 4th September 2017, EPTCS 255, pp. 1–17, doi:10.4204/EPTCS.255.

1.

[4] A. Belder, B. Luttik & J. C. M. Baeten (2019): Sequencing and Intermediate Acceptance: Axiomatisation

and Decidability of Bisimilarity. In M. Roggenbach & A. Sokolova, editors: 8th Conference on Algebra

and Coalgebra in Computer Science, CALCO 2019, June 3-6, 2019, London, United Kingdom, LIPIcs 139,

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 11:1–11:22, doi:10.4230/LIPIcs.CALCO.2019.

11.

[5] B. Bloom (1994): When is Partial Trace Equivalence Adequate? Formal Asp. Comput. 6(3), pp. 317–338,

doi:10.1007/BF01215409.

[6] R. De Nicola & F. W. Vaandrager (1995): Three Logics for Branching Bisimulation. Journal of the ACM

42(2), pp. 458–487, doi:10.1145/201019.201032.

[7] E. A. Emerson & E. M. Clarke (1982): Using Branching Time Temporal Logic to Synthesize Synchronization

Skeletons. Science of Computer Programming 2(3), pp. 241–266, doi:10.1016/0167-6423(83)90017-5.

[8] E. A. Emerson & J.Y. Halpern (1986): ‘Sometimes’ and ‘Not Never’ revisited: on branching time versus

linear time temporal logic. Journal of the ACM 33(1), pp. 151–178, doi:10.1145/4904.4999.

[9] R. Erkens, J. Rot & B. Luttik (2020): Up-to Techniques for Branching Bisimilarity. In A. Chatzigeorgiou,

R. Dondi, H. Herodotou, C. A. Kapoutsis, Y. Manolopoulos, G. A. Papadopoulos & F. Sikora, editors: SOF-

SEM 2020: Theory and Practice of Computer Science - 46th International Conference on Current Trends in

Theory and Practice of Informatics, SOFSEM 2020, Limassol, Cyprus, January 20-24, 2020, Proceedings,

Lecture Notes in Computer Science 12011, Springer, pp. 285–297, doi:10.1007/978-3-030-38919-2_24.

[10] W. J. Fokkink, R. J. van Glabbeek & P. de Wind (2012): Divide and congruence: From decomposition of

modal formulas to preservation of branching and η-bisimilarity. Inf. Comput. 214, pp. 59–85, doi:10.1016/

j.ic.2011.10.011.

[11] W. J. Fokkink, Glabbeek R. J. van & B. Luttik (2019): Divide and congruence III: From decomposition of

modal formulas to preservation of stability and divergence. Inf. Comput. 268, doi:10.1016/j.ic.2019.

104435.

[12] R. J. van Glabbeek, B. Luttik & L. Spaninks (2020): Rooted Divergence-Preserving Branching Bisimilarity

is a Congruence. CoRR abs/1801.01180. Available at http://arxiv.org/abs/1801.01180. Submitted.

[13] R. J. van Glabbeek (1993): The Linear Time – Branching Time Spectrum II; The semantics of sequential

systems with silent moves (extended abstract). In E. Best, editor: Proceedings 4th International Conference

on Concurrency Theory, CONCUR’93, Hildesheim, Germany, August 1993, LNCS 715, Springer, pp. 66–81,

doi:10.1007/3-540-57208-2_6.

[14] R. J. van Glabbeek, B. Luttik & N. Trčka (2009): Branching Bisimilarity with Explicit Divergence. Funda-

menta Informaticae 93(4), pp. 371–392, doi:10.3233/FI-2009-109.

[15] R. J. van Glabbeek, B. Luttik & N. Trčka (2009): Computation Tree Logic with Deadlock Detection. Logical

Methods in Computer Science 5(4), doi:10.2168/LMCS-5(4:5)2009.

[16] R. J. van Glabbeek & W. P. Weijland (1996): Branching time and abstraction in bisimulation semantics.

Journal of the ACM 43(3), pp. 555–600, doi:10.1145/233551.233556.

[17] S. Graf & J. Sifakis (1987): Readiness Semantics for Regular Processes with Silent Actions. In T. Ottmann,

editor: Automata, Languages and Programming, 14th International Colloquium, ICALP87, Karlsruhe, Ger-

many, July 13-17, 1987, Proceedings, Lecture Notes in Computer Science 267, Springer, pp. 115–125,

doi:10.1007/3-540-18088-5_10.

[18] J. F. Groote, D. N. Jansen, J. J. A. Keiren & A. J. Wijs (2017): An O(m log n) Algorithm for Computing Stut-

tering Equivalence and Branching Bisimulation. ACM Trans. Comput. Logic 18(2), doi:10.1145/3060140.

http://dx.doi.org/10.4204/EPTCS.255.1
http://dx.doi.org/10.4204/EPTCS.255.1
http://dx.doi.org/10.4230/LIPIcs.CALCO.2019.11
http://dx.doi.org/10.4230/LIPIcs.CALCO.2019.11
http://dx.doi.org/10.1007/BF01215409
http://dx.doi.org/10.1145/201019.201032
http://dx.doi.org/10.1016/0167-6423(83)90017-5
http://dx.doi.org/10.1145/4904.4999
http://dx.doi.org/10.1007/978-3-030-38919-2_24
http://dx.doi.org/10.1016/j.ic.2011.10.011
http://dx.doi.org/10.1016/j.ic.2011.10.011
http://dx.doi.org/10.1016/j.ic.2019.104435
http://dx.doi.org/10.1016/j.ic.2019.104435
http://arxiv.org/abs/1801.01180
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.3233/FI-2009-109
http://dx.doi.org/10.2168/LMCS-5(4:5)2009
http://dx.doi.org/10.1145/233551.233556
http://dx.doi.org/10.1007/3-540-18088-5_10
http://dx.doi.org/10.1145/3060140

B. Luttik 11

[19] M. Lohrey, P. R. D’Argenio & H. Hermanns (2005): Axiomatising divergence. Inf. Comput. 203(2), pp.

115–144, doi:10.1016/j.ic.2005.05.007.

[20] B. Luttik & F. Yang (2020): The π-Calculus is Behaviourally Complete and Orbit-Finitely Executable. CoRR

abs/1410.4512v8. Available at http://arxiv.org/abs/1410.4512.

[21] R. Milner (1980): A Calculus of Communicating Systems. Lecture Notes in Computer Science 92, Springer,

doi:10.1007/3-540-10235-3.

[22] R. Milner (1989): A Complete Axiomatisation for Observational Congruence of Finite-State Behaviors. Inf.

Comput. 81(2), pp. 227–247, doi:10.1016/0890-5401(89)90070-9.

[23] R. Milner (1990): Operational and Algebraic Semantics of Concurrent Processes. In Jan van Leeuwen,

editor: Handbook of Theoretical Computer Science (Vol. B), MIT Press, Cambridge, MA, USA, pp. 1201–

1242. Available at http://dl.acm.org/citation.cfm?id=114891.114910.

[24] K. Peters (2019): Comparing Process Calculi Using Encodings. In J. A. Pérez & J. Rot, editors: Proceedings

Combined 26th International Workshop on Expressiveness in Concurrency and 16th Workshop on Structural

Operational Semantics, EXPRESS/SOS 2019, Amsterdam, The Netherlands, 26th August 2019, EPTCS 300,

pp. 19–38, doi:10.4204/EPTCS.300.2.

[25] I. Phillips (1993): A Note on Expressiveness of Process Algebra. In G. L. Burn, S. J. Gay & M. Ryan, edi-

tors: Proceedings of the First Imperial College Department of Computing Workshop on Theory and Formal

Methods, Isle of Thorns Conference Centre, Chelwood Gate, Sussex, UK, 29-31 March 1993, Workshops in

Computing, Springer, pp. 260–264.

http://dx.doi.org/10.1016/j.ic.2005.05.007
http://arxiv.org/abs/1410.4512
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1016/0890-5401(89)90070-9
http://dl.acm.org/citation.cfm?id=114891.114910
http://dx.doi.org/10.4204/EPTCS.300.2

	1 Introduction
	2 Relational characterisation
	3 Modal characterisations
	4 Congruence
	5 Expressiveness of process calculi
	6 Conclusions

