
O. Dardha and J. Rot (Eds.): Combined Workshop on Expressiveness in

Concurrency and Structural Operational Semantics (EXPRESS/SOS 2020).

EPTCS 322, 2020, pp. 33–50, doi:10.4204/EPTCS.322.5

c© M.S. Bouwman, et al.

This work is licensed under the

Creative Commons Attribution License.

A process algebra with global variables

Mark Bouwman Bas Luttik Wouter Schols Tim A.C. Willemse

Eindhoven University of Technology
Eindhoven, The Netherlands

m.s.bouwman@tue.nl s.p.luttik@tue.nl w.r.m.schols@student.tue.nl t.a.c.willemse@tue.nl

In standard process algebra, parallel components do not share a common state and communicate

through synchronisation. The advantage of this type of communication is that it facilitates compo-

sitional reasoning. For modelling and analysing systems in which parallel components operate on

shared memory, however, the communication-through-synchronisation paradigm is sometimes less

convenient. In this paper we study a process algebra with a notion of global variable. We also pro-

pose an extension of Hennessy-Milner logic with predicates to test and set the values of the global

variables, and prove correspondence results between validity of formulas in the extended logic and

stateless bisimilarity and between validity of formulas in the extended logic without the set opera-

tor and state-based bisimilarity. We shall also present a translation from the process algebra with

global variables to a fragment of mCRL2 that preserves the validity of formulas in the extended

Hennessy-Milner logic.

1 Introduction

Communication between parallel components in real world systems takes many forms: packets over

a network, inter-process communication, communication via shared memory, communication over a

bus, etcetera. Process algebras usually offer an abstract message passing feature. Not all forms of

communication fit well in a message passing paradigm, in particular, global variables and other forms of

shared memory do not fit in well. In some cases it would be desirable to have global variables as first

class citizens. To illustrate this we introduce a small example.

Example 1. Consider a traffic light and a car approaching a junction. If the light is green the car performs

an action drive and moves past the junction. If the light is red the car performs an action brake and stops.

Once the traffic light is green again the car performs the action drive. The specification should result in

the following LTS.

drive

changered

brake

changegreen changegreen changered changeredchangegreen

drive

It would be natural to model the car and the traffic light as two parallel components. The car and

the traffic light need to communicate so that the car can make a decision to drive or brake depending

on the current state of the traffic light. Typically, such global information is modelled by introducing

an extra parallel component that maintains the global information, in this case the colour of the traffic

light. However, taking that approach we obtain a different LTS, which has an extra transition modelling

http://dx.doi.org/10.4204/EPTCS.322.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

34 A process algebra with global variables

the communication of car and traffic light with the extra component. Moreover, one must take care that

decisions to drive or brake are made on the basis of up-to-date information, e.g., by implementing a

protocol that locks the additional component. In many cases it is realistic that the observed value is no

longer up to date and in some cases we are also interested in analysing the consequences of this. In other

cases however, we might want to abstract from such complications. When the information is constantly

available to the observers, as is the case with a traffic light, we have even more reason to not introduce

separate transitions communicating the global information.

In some process algebras it is possible to define a communication function that specifies that a drive

action is the result of a communication between two actions of parallel components, e.g. a drive i f green

action from the car and a signal green action from the traffic light. This is somewhat unnatural as the

traffic light does not really actively participate in the driving of the car. Moreover, if we introduce a sec-

ond car that only wants to drive when the traffic light is red we would need to change the communication

function, even though the communication of information does not essentially change. It would be better

to let the colour of the traffic light be in a global variable. In that way the behaviour of the traffic light

and cars acting upon information from the traffic light is more separated, we obtain a better separation

of concerns.

In the early days of process algebra, doing away with global variables in favour of message pass-

ing and local variables was an important step to further develop the field [2]. Since then there have,

nevertheless, been some efforts to reintroduce notions of globally available data.

In [1] propositional signals and a state operator are presented. The state operator tracks the value of

some information. Based on the current value a number of propositions can be signalled to the rest of

the system. In the example of the traffic lights the process modelling the traffic light could track the state

of the light, emitting signals such as lightGreen and ¬lightRed, which can in turn be used as conditions

in the process modelling the car. In this approach the value of the global variable is not communicated

directly, which restricts conditions based on global variables to propositional logic.

Other approaches, such as the one presented in [11, Chapter 19], model global variables as separate

parallel processes and use a protocol to ensure only one process accesses a global variable at the time.

This approach introduces extra internal steps, which increase the statespace. Moreover, it introduces

divergence when a process locks a global variable, reads the value, concludes that it cannot make a step

and unlocks the variable again.

Formalisms based on Concurrent Constraint Programming (CCP) [12] have global data at their core.

In CCP a central store houses a set of constraints. Concurrent processes may tell a constraint, adding it to

the global store or ask a constraint, checking whether it is entailed by the constraints in the store. An ask

will block until other processes have added sufficient constraints to the store. Process calculi based on

the coordination language LINDA [10] also use global data. In these process calculi there is a global set

of data elements. Similarly to CCP, processes may tell a data element (adding it to the global set) or ask

a data element (checking whether it is in the set). Additionally, processes may get an element, removing

it from the data set. LINDA does not have a concept of variables, just a central set of data elements.

Generally, process calculi based on CCP or LINDA do not allow asking a constraint/data element and

acting upon the information in a single step.

The goal of our work is to propose and study (i) a process calculus with global variables (ii) a modal

logic that can refer to the values of global variables (iii) an encoding in an existing process calculus

and logic with tool support. In this paper we propose a simple process calculus where every component

of the system can access the current value of global variables directly. We define appropriate notions

of equivalence for our process calculus. Our first contribution is an extension of the Hennessy-Milner

M.S. Bouwman, et al. 35

Logic (HML) with two new operators that is strong enough to differentiate non-equivalent process ex-

pressions. Our second contribution is an encoding of our process algebra in mCRL2 and our extended

logic in standard HML. This encoding is such that the translated formula holds for the translated process

expression if and only if the original formula holds for the original process expression.

This paper is organised as follows. In Section 2 we define a simple process algebra with global

variables. In Section 3 we give appropriate notions of equivalence for our process algebra. We continue

by defining an extension of the Hennessy-Milner Logic in Section 4 and relating it to our equivalence

notions in Section 5. In Section 6 we show how our process algebra with global variables can be encoded

in mCRL2. Sections 7 and 8 discuss the results and conclude this work.

2 A simple process algebra with global variables

In this section we will introduce a process algebra with global variables and its semantics. For conve-

nience we will, in this paper, assume a single data domain D. We will use Var to denote the finite set of

global variable names.

We presuppose a set of actions Act and derive a set of transition labels T L
def
= Act∪{assign(v,d) | v ∈

Var∧d ∈ D}. We also presuppose a set of process names PN. The set of process expressions P is gen-

erated by the following grammar containing action prefix, inaction, choice, parallelism, encapsulation,

recursion and conditionals:

P := λ .P | δ | P+P | P‖P | ∂B(P) | X | (v = d)−→ P,

where λ ∈ T L, B ⊆ Act, X ∈ PN, v ∈ Var and d ∈ D. Inaction is similar to the process constant 0 in,

for example, CCS [8] and TCP [1]. Our process algebra supports recursion because we also define a

recursive specification E defining the process names. Let a recursive equation be an equation of the form

X
def
= t with X ∈ PN and t a process expression in P . A recursive specification contains one recursive

equation X
def
= t for every X ∈PN. Every recursive specification should be guarded. This means that every

occurrence of X in t is in the scope of an action prefix. For communication between parallel processes

we use an ACP style communication function. We presuppose a binary communication function on the

set of actions, i.e., a partial function γ : Act ×Act ⇀ Act that is commutative and associative. We only

allow handshakes (communication between two parties): if γ(a,b) = c then γ(c,d) is undefined for every

d.

Let V be the set of all functions Var → D, i.e. the set of all valuations. Let V ∈ V ; we denote by

V [v 7→ d] the assignment defined, for all v′ ∈Var by:

V [v 7→ d](v′) =

{

d if v′ = v

V (v′) if v′ 6= v

In Definition 2 we give the usual definition of Labelled Transition Systems (LTSs).

Definition 2. A Labelled Transition System (LTS) is a tuple (S,L,−→,s), where

• S is a set of states,

• L is a set of transition labels,

• →⊆ S×L×S is the transition relation,

• s ∈ S is the initial state.

36 A process algebra with global variables

(PREF)
〈a.P,V 〉

a
−→ 〈P,V 〉

(ASGN)

〈assign(v,d).P,V〉
assign(v,d)
−→ 〈P,V [v 7→ d]〉

(CON)
〈P,V 〉

λ
−→ 〈P′,V ′〉

〈(v = d)→ P,V 〉
λ

−→ 〈P′,V ′〉
V (v) = d (REC)

〈P,V 〉
λ

−→ 〈P′,V ′〉

〈X ,V 〉
λ

−→ 〈P′,V ′〉
X

def
= P

(SUM-L)
〈P,V 〉

λ
−→ 〈P′,V ′〉

〈P+Q,V 〉
λ

−→ 〈P′,V ′〉
(SUM-R)

〈Q,V 〉
λ

−→ 〈Q′,V ′〉

〈P+Q,V 〉
λ

−→ 〈Q′,V ′〉

(PAR-L)
〈P,V 〉

λ
−→ 〈P′,V ′〉

〈P‖Q,V〉
λ

−→ 〈P′ ‖Q,V ′〉
(PAR-R)

〈Q,V 〉
λ

−→ 〈Q′,V ′〉

〈P‖Q,V〉
λ

−→ 〈P‖Q′,V ′〉

(COMM)
〈P,V 〉

a
−→ 〈P′,V 〉 〈Q,V 〉

b
−→ 〈Q′,V 〉

〈P‖Q,V〉
c

−→ 〈P′ ‖Q′,V 〉
γ(a,b) = c

(ENC)
〈P,V 〉

λ
−→ 〈P′,V ′〉

〈∂B(P),V 〉
λ

−→ 〈∂B(P
′),V ′〉

λ /∈ B

Table 1: Structural operational semantics.

We now want to associate an LTS with the process algebra. As the behaviour of a process expression

depends on the valuation of global variables a state is a pair 〈P,V 〉 of a process expression P and a

valuation function V . The set of states is P ×V . The transition relation is the least relation on states

satisfying the rules of the structural operational semantics (see Table 1).

Note that we only allow processes to synchronise on actions and not on assignments. This design

decision was made since assignments change the valuation function, whereas actions cannot change the

valuation. When two processes synchronise on assignments then it is not clear what the resulting effect

on the value of the variable should be.

Example 3. Consider the interaction between a car and a traffic light controller (TLC). The TLC sets the

colour of a traffic light which the driver of the car acts upon. There is one global variable t and the data

domain consists of two elements D = {green,red}. The recursive specification consists of two process

equations, given below.

CAR
def
= ((t = green) −→ drive.δ) + ((t = red)−→ brake.((t = green)→ drive.δ))

T LC
def
= ((t = green) −→ assign(t,red).T LC)

+((t = red)−→ assign(t,green).T LC)

Using the SOS we can derive an LTS with 〈CAR||T LC,V 〉 as initial state, where V (t) = green. Note that

this LTS is isomorphic to the LTS presented in Example 1. We only show the states reachable from the

initial state. The initial state is marked with an arrow pointing to it.

M.S. Bouwman, et al. 37

〈CAR‖T LC,V 〉

〈CAR‖T LC,V [t 7→ red]〉
〈(t = green) → drive.δ
‖T LC,V [t 7→ red]〉

〈(t = green) → drive.δ
‖T LC,V 〉

〈δ‖T LC,V [t 7→ red]〉

〈δ‖T LC,V 〉

drive

assign(t,red)

brake

assign(t,
green)

assign(t,green) assign(t,red)
assign(t,

red)
assign(t,green)

drive

3 Equivalence of process expressions

We will examine equivalence relations in the context of global variables. To start we note that we can

examine equivalence on two levels: on the level of process expressions and on the level of pairs of

process expression together with an initial valuation (from which we can derive an LTS). We begin by

exploring the equivalence of process expressions.

We require of the equivalence relation on process expressions that if P and Q are equivalent then we

can safely replace P with Q in any larger process expression. In other words, the equivalence relation on

process expressions should be a congruence for the process algebra.

Typically, equivalence of process expressions is established by a notion of bisimilarity. Most variants

of bisimulation only consider the labels on transitions. Strong bisimilarity (defined in Definition 4) is,

however, not a congruence for our process algebra, which we will demonstrate with an example.

Definition 4. Strong bisimilarity: A relation R ⊆ S×S, where S is the set of states of an LTS, is a strong

bisimulation relation if and only if for all states s and t and labels λ we have (s, t) ∈ R implies that

• for all states s′: s
λ
−→ s′ implies there exists a state t ′ such that t

λ
−→ t ′ and (s′, t ′) ∈ R,

• for all states t ′: t
λ
−→ t ′ implies there exists a state s′ such that s

λ
−→ s′ and (s′, t ′) ∈ R.

Two states s and t are strongly bisimilar, denoted by s ↔ t, if and only if there exists a strong bisimulation

relation R such that (s, t) ∈ R.

Example 5. Consider process expressions P = (v = 0) → a.δ and Q = a.δ . Note that P and Q are

simply abbreviations of process expressions, not process names. Let V map a global variable v to 0 and

D = {0,1}. The reachable fragments of the LTSs with 〈P,V 〉 and 〈Q,V 〉 as initial state are shown in

Figure 1.

〈P,V 〉

〈Q,V 〉

〈δ ,V 〉

〈δ ,V 〉

P :

Q :

a

a

Figure 1: Part of the transition system space of P and Q

Processes P and Q seem behaviourally equivalent looking at the reachable transitions, the states 〈P,V 〉
and 〈Q,V 〉 are in fact strongly bisimilar. The problem arises when we add a parallel component that can

38 A process algebra with global variables

assign a different value to the global variable. Let us consider the process expression R = assign(v,1).δ .

The reachable fragments of the LTSs with P‖R and Q‖R as initial state are shown in Figure 2. Clearly

P‖R and Q‖R are not strongly bisimilar and therefore strong bisimilarity is not a congruence for our

process algebra.

〈P‖R,V 〉 〈δ‖R,V 〉

〈P‖δ ,V [v 7→ 1]〉 〈δ‖δ ,V [v 7→ 1]〉

〈Q‖R,V 〉 〈δ‖R,V 〉

〈Q‖δ ,V [v 7→ 1]〉 〈δ‖δ ,V [v 7→ 1]〉

P‖R :

Q‖R :

a

assign(v,1) assign(v,1)

a

assign(v,1) assign(v,1)

a

Figure 2: Part of the transition system space of P and Q

We will use the notion of stateless-bisimilarity, defined in [9], as an equivalence relation on process

expressions. In essence, stateless-bisimilarity relates process expressions that behave the same under any

valuation.

Definition 6. Stateless-bisimilarity: A relation Rsl ⊆ P ×P is a stateless bisimulation relation if and

only if for all process expressions P and Q and labels λ we have (P,Q) ∈ Rsl implies that

• for all process expressions P′ and valuation functions V,V ′ ∈ V : 〈P,V 〉
λ
−→ 〈P′,V ′〉 implies there

exists a process expression Q′ such that 〈Q,V 〉
λ
−→ 〈Q′,V ′〉 and (P′,Q′) ∈ Rsl ,

• for all process expressions Q′ and valuation functions V,V ′ ∈ V : 〈Q,V 〉
λ
−→ 〈Q′,V ′〉 implies there

exists a process expression P′ such that 〈P,V 〉
λ
−→ 〈P′,V ′〉 and (P′,Q′) ∈ Rsl .

Two process expressions P and Q are stateless bisimilar, denoted by P ↔sl Q, if and only if there exists

a stateless bisimulation relation Rsl such that (P,Q) ∈ Rsl .

The deduction system of our process algebra is in process-tyft format from which it follows that

stateless-bisimilarity is a congruence [9].

In the case that global variables cannot be changed by the environment and we have a specific initial

valuation in mind we might not care about the behaviour under valuations that will never occur. To that

end we use state-based bisimilarity [9], which is defined on states rather than process expressions.

Definition 7. State-based bisimilarity: A relation Rsb ⊆ (P×V)× (P×V) is a state-based bisimula-

tion relation if and only if for all states 〈P,V1〉 and 〈Q,V2〉 and labels λ we have (〈P,V1〉,〈Q,V2〉) ∈ Rsb

implies that V1 =V2 and

• for all process expressions P′ and valuation functions V ′: 〈P,V1〉
λ
−→ 〈P′,V ′〉 implies there exists a

process expression Q′ such that 〈Q,V2〉
λ
−→ 〈Q′,V ′〉 and (〈P′,V ′〉,〈Q′,V ′〉) ∈ Rsb,

M.S. Bouwman, et al. 39

• for all process expressions Q′ and valuation functions V ′: 〈Q,V2〉
λ
−→ 〈Q′,V ′〉 implies there exists a

process expression P′ such that 〈P,V1〉
λ
−→ 〈P′,V ′〉 and (〈P′,V ′〉,〈Q′,V ′〉) ∈ Rsb.

Two states 〈P,V1〉 and 〈Q,V2〉 are state-based bisimilar, denoted by 〈P,V1〉 ↔sb 〈Q,V2〉, if and only if

there exists a state-based bisimulation relation Rsb such that (〈P,V1〉,〈Q,V2〉) ∈ Rsb.

State-based bisimilarity is not a congruence for our process algebra, the problem shown in Example

5 applies.

There is a relation between stateless-bisimilarity and state-based bisimilarity. For any two process

expressions P and Q we have that if P ↔sl Q then also 〈P,V 〉 ↔sb 〈Q,V 〉 for all valuations V ∈ V [9].

State-based bisimilarity distinguishes LTSs on the valuation that is in a state: two states that are

strongly bisimilar may not be state-based bisimilar due to differences in valuations in reachable states.

This takes into account that the value of global variables may be essential to the modelled system and

may be visible to the environment.

4 Hennessy-Milner logic

In order to reason about properties of a process expression or system specification we define a logic.

Standard Hennessy-Milner Logic (HML) [7] is insufficient for our purpose, for two reasons. The first

reason is that we would like to conveniently refer to global variables in the logic. The second reason for

extending the logic is that we want a correspondence between the logic and stateless bisimilarity. Process

expressions a.δ and (v = 0) −→ a.δ are not stateless bisimilar but in the case that we have a valuation

function V that maps v to 0 then states 〈a.δ ,V 〉 and 〈(v = 0) −→ a.δ ,V 〉 cannot be distinguished using

HML.

We extend HML with two new operators. The first operator is the check operator (v = e). This

operator returns a boolean which is true if and only if a global variable v has value e. The second

operator is the set operator ↓ (v := e). The set operator sets the value of a global variable v to e. This

results in the following syntax for our logic:

φ := true | f alse | (v = e) | ¬φ | φ ∧φ | φ ∨φ | 〈T 〉φ | [T]φ | ↓ (v := e)φ

where T is a nonempty finite set of transition labels. Depending on whether we include the check

operator, the set operator or both, we will refer to the logic with HMLcheck, HMLset or HMLcheck+set ,

respectively.

The formula true holds in every state and f alse holds in no states. The operators ¬,∧,∨ have their

usual meaning. The diamond operator 〈T 〉φ is true in a state s if and only if a transition s
λ
−→ s′ exists

where φ holds in s′ and λ ∈ T . The box operator [T]φ holds in a state s if and only if for every state s′

and transition label λ ∈ T we have s
λ
−→ s′ implies φ holds in s′.

The check operator (v= e) is true in a state 〈P,V 〉 if and only if V (v) = e. The set operator ↓ indicates

that ↓ (v := e)φ is true in all states 〈P,V 〉 if and only if φ is true in 〈P,V [v 7→ e]〉. Note that the set operator

allows us to reason about parts of an LTS that are not reachable from the initial state. Further note that

the set operator allows us to distinguish 〈a.δ ,V 〉 and 〈(v = 0) −→ a.δ ,V 〉 even if V (v) = 0 the formula

↓ (v := 1)〈{a}〉true distinguishes them. We will use the notation ↓ (V), V ∈ V , to set the value of all

global variables to the value specified by V . This is a shorthand for a sequence of regular set operations.

Note that the number of global variables is finite and the order of set operations is irrelevant in the

sequence of set operations as each sets a different variable.

40 A process algebra with global variables

4.1 Semantics

In this section we will define semantic rules to obtain all states that satisfy a HMLcheck+set formula. We

have obtained the semantics of standard HML from [6]. Let φ be a modal formula, let (S,L,−→,s) be

an LTS. We inductively define the interpretation of φ , notation JφK, where JφK contains all states u ∈ S

where φ is true. Note that the check and set operators are only defined for LTSs where states consist of

both a process expression and a valuation.

JtrueK = S

J f alseK = /0

Jv = eK = {〈P,V 〉 ∈ S | V (v) = e}
J¬φK = S\ JφK
Jφ ∧φ ′K = JφK∩ Jφ ′K
Jφ ∨φ ′K = JφK∪ Jφ ′K

J〈T〉φK = {u ∈ S | ∃u′ ∈ JφK,λ ∈ T : u
λ
−→ u′}

J[T]φK = {u ∈ S | ∀u′ ∈ S,λ ∈ T : (u
λ
−→ u′)⇒ u′ ∈ JφK}

J↓ (v := e)φK = {〈P,V 〉 ∈ S | 〈P,V [v 7→ e]〉 ∈ JφK}

5 Relation logic and bisimilarity

There is a nice correspondence between strong bisimilarity and HML: two states in an LTS are strongly

bisimilar if and only if they satisfy the same HML formulas [7]. This correspondence is often called

the Hennessy-Milner theorem. We would like a similar correspondence between process expressions

and states and the extended HML. First, we introduce the notion of an image-finite process. As an LTS

contains all possible process expressions (and valuations) we want to impose image-finiteness only for

reachable states and process expressions, so we start by defining reachability.

Definition 8. Reachability states: A state s′ is reachable from a state s if there exist states s0, . . . ,sn and

labels λ1, . . . ,λn such that s = s0 ∧ s0
λ1−→ s1 ∧ ·· ·∧ sn−1

λn−→ sn ∧ sn = s′.

Definition 9. Reachability process expressions: Process expression P′ is reachable from a process ex-

pression P if there exist processes P0, . . . ,Pn and labels λ1, . . . ,λn such that P = P0 ∧∃V0,V1
〈P0,V0〉

λ1−→

〈P1,V1〉∧ · · ·∧∃Vn−1,Vn
〈Pn−1,Vn−1〉

λn−→ 〈Pn,Vn〉∧Pn = P′.

Definition 10. Image-finiteness: A state 〈P,V 〉 is image finite if and only if the set {〈P′,V ′〉|〈P,V 〉
λ
−→

〈P′,V ′〉} is finite for every label λ . A process expression P is image finite if and only if for every process

expression P′ reachable from P and every valuation V the state 〈P′,V 〉 is image-finite.

An example of a state that is not image finite is 〈A,V 〉, with A
def
= a.δ ||A.

We can now prove the following two correspondences on the level of process expressions and states.

Theorem 11. Let P and Q be two image-finite process expressions. Then P ↔sl Q if and only if for all

valuations V and all HMLcheck+set formulas φ we have that 〈P,V 〉 ∈ JφK ⇔ 〈Q,V 〉 ∈ JφK.

Proof. We prove the two implications separately. To prove the implication from left to right assume

P ↔sl Q. The proof that for some HMLcheck+set formula φ we have that 〈P,V 〉 ∈ JφK if and only if

〈Q,V 〉 ∈ JφK is straightforward by induction on the structure of φ .

M.S. Bouwman, et al. 41

For the implication from right to left we assume that 〈P,V 〉 and 〈Q,V 〉 satisfy exactly the same

formulae in HMLcheck+set . We shall prove that 〈P,V 〉 ↔sl 〈Q,V 〉. To this end, note that it is sufficient to

show that the relation

Rsl = {(T,U)|T,U ∈ P and ∀V∈V 〈T,V 〉 and 〈U,V 〉 satisfy the same HMLcheck+set formulae}

is a stateless bisimulation relation. Assume that TRslU and 〈T,V 〉
λ
−→ 〈T ′,V ′〉 for some valuation V .

We shall now argue that there is a process U ′ such that 〈U,V 〉
λ
−→ 〈U ′,V ′〉 and T ′RslU

′. Since Rsl is

symmetric, this suffices to establish that Rsl is a stateless bisimulation relation.

Now assume, towards a contradiction, that there is no 〈U ′,V ′〉 such that 〈U,V 〉
λ
−→ 〈U ′,V ′〉 and for

all valuations V ∈ V , 〈U ′,V 〉 satisfies the same HMLcheck+set formulas as 〈T ′,V 〉. Since 〈U,V 〉 is image

finite, the set of processes that 〈U,V 〉 can reach by performing a λ -labelled transition is finite, say

{〈U1,V1〉, . . . ,〈Un,Vn〉} with n ∈N. For every i ∈ {1 . . .n}, there exist a formula φi and valuation V ′
i such

that 〈T ′,V ′
i 〉 ∈ JφiK and 〈Ui,V

′
i 〉 /∈ JφiK or valuations Vi and V ′ differ for variable v.

We are now in a position to construct a formula that is satisfied by 〈T,V 〉 but not by 〈U,V 〉, contra-

dicting our assumption that 〈T,V 〉 and 〈U,V 〉 satisfy the same formulae.

We define for each i ∈ {1 . . .n} : re f ute(i) =

{

↓ (V ′
i)φi if 〈T ′,V ′

i 〉 ∈ JφiK and 〈Ui,V
′

i 〉 /∈ JφiK
(v =V ′(v)) if the valuations of V ′ and V ′

i differ for v

The formula 〈λ 〉(re f ute(1)∧ re f ute(2)∧ ·· · ∧ re f ute(n)) is satisfied by 〈T,V 〉 but not by 〈U,V 〉.

Theorem 12. Let 〈P,V 〉 and 〈Q,V 〉 be states in some LTS (S,T L,−→,s) and let all states reachable from

〈P,V 〉 and 〈Q,V 〉 be image-finite. Then 〈P,V 〉 ↔sb 〈Q,V 〉 if and only if for all HMLcheck formulas φ we

have that 〈P,V 〉 ∈ JφK ⇔ 〈Q,V 〉 ∈ JφK.

Proof. The proof is very similar to the one given for Theorem 11. We will only provide the distinguishing

formula.

Let 〈T,V 〉
λ
−→ 〈T ′,V ′〉 and let {〈U1,V1〉, . . . ,〈Un,Vn〉} be the set of states 〈U,V 〉 can reach with a λ -

labelled transition. For every i∈ {1 . . .n}, there exists a formula φi such that 〈T ′,V ′〉 ∈ JφiK and 〈Ui,Vi〉 /∈
JφiK or valuations Vi and V ′ differ for variable v.

We define for each i ∈ {1 . . .n} : re f ute(i) =

{

φi if 〈T ′,V ′〉 ∈ JφiK and 〈Ui,Vi〉 /∈ JφiK
(v =V ′(v)) if the valuations of V ′ and Vi differ for v

The formula 〈λ 〉(re f ute(1)∧ re f ute(2)∧ ·· · ∧ re f ute(n)) is satisfied by 〈T,V 〉 but not by 〈U,V 〉.

Note that for process expressions we need the set operator in the logic, whereas for states we can

only have the check operator on top of regular HML. Intuitively, we need the set operator on the level of

process expressions to say something about the behaviour of the process for any valuation.

6 Translation to mCRL2

For process algebras without global variables it might be the case that global variables can be modelled

using different language constructs. Modelling global variables then often requires a protocol to regu-

late the access to global variables. In this section we explore how a process expression in our process

42 A process algebra with global variables

algebra with global variables can be translated to mCRL2 without introducing extra internal activity.

The resulting mCRL2 specification induces an LTS that is isomorphic to the LTS of the original process

expression, save some selfloops signalling information on the valuation of that state. We also give a

translation from HMLcheck to the modal µ-calculus, which is the logic that is used in mCRL2 to express

properties. We show that a HMLcheck formula holds for the original process expression if and only if the

translated formula holds for the translated process expression.

6.1 Introduction of mCRL2

We will introduce the syntax and semantics of the fragment of mCRL2 that is needed to encode global

variables. In particular, we will introduce actions parametrised with data and multi-actions. We will not

go into the details of the data language itself. It suffices that there exists a semantic interpretation function

J.K that maps data expressions to elements of the data domain. We declare a set of data expressions D

and a set of Boolean expressions B of which the interpretation is an element of D or {true, f alse},

respectively. We also presuppose an equality relation ≈ on data expressions. For more information on

the syntax and semantics of mCRL2 we refer the reader to [6]. Multi-actions in combination with the

allow operator were first proposed in [13].

We presuppose a set of action names Λ, each with an associated arity. An action label a(d1, . . . ,dn)
consists of an action name a ∈ Λ of arity n and a list of data parameters d1, . . . ,dn. We denote by Λ the

set of action labels. If α ∈ Λ, then we denote by α its name (e.g., a(2,3, true) = a).

The set of multi-actions M is generated by the following grammar:

α := α |α | τ | a(d1, . . . ,dn),

where a(d1, . . . ,dn) ∈ Λ and d1 to dn are data expressions or Boolean expressions. Also for each multi-

action α we define α :

τ = τ

a(d1, ...,dn) = a

α |β = α |β .

The set of multi-actions where each action label in the multi-action is in Λ is M.

We define a multi-set over A, (A,m), where m : A → N is a function assigning a multiplicity to each

element of A. We define a ∈ (A,m) to be true if and only if m(a) > 0. As notation we use HI where

the elements are listed together with their multiplicity, e.g. Ha : 2,b : 3I. Over multi-sets (A,m) and

(A,m′) we define a binary operator addition, denoted by +, that results in a multi-set (A,m′′), where for

all a in A it is the case that m′′(a) = m(a)+m′(a). Similarly, we define a binary operator subtraction,

denoted by −, such that it results in a multi-set (A,m′′), where for all a ∈ A we have that m′′(a) =
max(m(a)−m′(a),0). Furthermore, we define inclusion, denoted by ⊆, to hold if and only if for all

a ∈ A we have that m(a) ≤ m′(a). For multi-sets over labels we define (Λ,m) = (Λ,m′), where for all

a ∈ Λ it holds that m(a) = m′(a).
Given a multi-action α we inductively associate a semantic multi-action JαK with it:

JτK = HI

Ja(d1, ...,dn)K = Ha(Jd1K, ...,JdnK) : 1I

Jα |β K = JαK+ Jβ K

M.S. Bouwman, et al. 43

The set of all semantic multi-actions is M . The set PmCRL2 of process expressions of the fragment

of mCRL2 that we need in the translation is generated by the following grammar:

P := λ .P | δ | P+P | P‖P | ∇M(P) | X(d1, ...,dn) | ∑
d:D

P | τI(P) | ΓC(P),

where λ ∈M, M a set of multi-action names, M ⊆M, X is a process name, I is a set of action names,

I ⊆ Λ, and C is set of renamings from a set of multi-action names to an action name, notation a|...|b → c.

We introduce a function γC(α), where α is a semantic multi-action that applies communications in

C to α , e.g. Γ{a|b→c}Ha : 2,b : 3I = Hb : 1,c : 2I. A communication can only be performed when the

parameters of action labels match. For the exact semantics of γC(α) we refer the reader to [6].

We define a function θI((Λ,m)), such that it results in a multi-set (Λ,m′) such that

∀a∈Λm′(a) =

{

0 if a ∈ I

m(a) if a /∈ I

The sum operator facilitates a non-deterministic choice over a data domain. For example, in the case

the data domain D is the natural numbers, ∑n:D a(n).P can make an a(0) step to process P[n := 0], an

a(1) step to process P[n := 1], etcetera.

(PREF)

α.P
JαK
−→ P

(PAR)
P

α
−→ P′ Q

β
−→ Q′

P‖Q
α+β
−→ P′ ‖Q′

(REC)
P[d1 := t,...,dn := tn]

α
−→ P′ X(d1 : D1, ...,dn : Dn)

def
= P

X(t1, ..., tn)
α

−→ P′

(SUM-L)
P

α
−→ P′

P+Q
α

−→ P′
(SUM-R)

Q
α

−→ Q′

P+Q
α

−→ Q′

(SUM)
P[d := te]

α
−→ P′ te ∈ D

∑d:D P
α

−→ P′
(HIDE)

P
α

−→ P′

τI(P)
θI (α)
−→ τI(P

′)

(PAR-L)
P

α
−→ P′

P‖Q
α

−→ P′ ‖Q
(PAR-R)

Q
α

−→ Q′

P‖Q
α

−→ P‖Q′

(COMM)
P

α
−→ P′

ΓC(P)
γC(α)
−→ ΓC(P

′)

(ALLOW)
P

α
−→ P′

∇M(P)
α

−→ ∇M(P′)
JαK ∈ M

Table 2: Structural operational semantics of our fragment of mCRL2.

An LTS (S,M ,−→,P) can be associated to a process expression P. The set of states is the set of

process expressions, S = PmCRL2. The set of transitions is generated by the proof system based on the

structural operation semantics (see Table 2).

44 A process algebra with global variables

6.2 Translation of process expressions and valuations

Recall that a specification in the process algebra with global variables consists of the following: a data

domain D, a set of variable names Var, a set of action labels Act, a set of process names PN and their

defining equations, a communication function γ , and an initial state consisting of a process expression

and an initial valuation V . We consider a restricted grammar for the translation.

Sequential components The set of sequential process expressions PSeq is generated by the following

grammar (with v ranging over Var, d ranging over D, X ranging over PN and λ ranging over T L):

Seq := Seq+Seq | (v = d)−→ Seq | λ .Seq | δ | λ .X .

By a sequential recursive specification E we mean a set of defining equations X
def
= t, with t a sequen-

tial process expression, including precisely one such equation for every X ∈ PN.

Parallel-sequential processes Presupposing a sequential recursive specification E , the set of parallel-

sequential process expressions PPar over E is generated by the following grammar (with X ranging over

PN and Seq ranging over sequential process expressions):

Par := Par‖Par | X | Seq.

We assume that the recursive specification E is sequential and that the process expression under

consideration for translation is of the shape ∂B(P), where P is parallel-sequential process expression and

B ⊆ Act. For the sake of readability, in our explanations below we restrict our attention to the case that

there is one global variable g. In Section 7 we explain how to generalise the translation to any number of

variables. Now that the input for the translation is clear, we show how it is translated to mCRL2.

The value of global variables is tracked by a dedicated process Globs, defined below.

Globs(d : D) =
checkG(d, true).Globs(d)
+checkG(d, true)|checkG(d, true).Globs(d)
+Σnew:D.checkG(d, true)|assignG(g,new).Globs(new)
+value(g,d).Globs(d);

The process can communicate the current value of the global variable with a checkG action, of which the

first parameter is of type D and the second a constant of type Bool. It can perform a checkG action twice

in a multi-action to facilitate informing two parallel processes in one step. Since our process algebra

with global variables only allows handshaking communication there can never be more than two parallel

processes that participate in a transition. It facilitates changing the value of the global variable with an

assignG action, with one parameter of type D carrying the new value. It can emit the current value of a

global variable with a value action, with a single parameter of type D.

We translate the recursive specification E to a recursive mCRL2 specification E ′, which includes

defining equations for all the process names in PN and additionally a defining equation for Globs. Let

℘(A) denote the powerset of A. We introduce a function χ : PSeq ×℘(D) → PmCRL2, which we will

define shortly. For every defining equation X
def
= t in E there is a defining equation X

def
= χ(t, /0) in E ′. The

function χ is defined below, where ε ⊆ D is a set of constraints on the global variable that is eventually

transformed into an appropriate checkP action.

M.S. Bouwman, et al. 45

χ(P1 +P2,ε) = χ(P1,ε)+ χ(P2,ε)
χ((g = d)−→ P1,ε) = χ(P1,ε ∪{d})
χ(a.P1,ε) = (∑d1:D a|checkP(d1,

∧

d∈ε d1 ≈ d)).χ(P1, /0)
χ(assign(g,d′).P1,ε) = (∑d1:D assignP(g,d′)|checkP(d1,

∧

d∈ε d1 ≈ d)).χ(P1, /0)
χ(X ,ε) = X

χ(δ ,ε) = δ

We define a set of communications Cγ , such that a|b→ c∈Cγ or b|a→ c∈Cγ if and only if γ(a,b)= c

(we should include only one of a|b → c and b|a → c in Cγ to satisfy the requirement that the left-hand

sides of communications in Cγ are disjoint). We define an extended set of communications that includes

communications with Globs: CGγ =Cγ ∪{assignP|assignG → assign,checkP|checkG → check}. Given

a set of encapsulated actions B we define a set of allowed actions AB = (Act \B)∪{value,assign}. We

extend χ to parallel-sequential process expressions in the following way.

χ(P1||P2, /0) = χ(P1, /0)||χ(P2, /0)

We translate the process expression ∂B(P), with an initial valuation V,V (g) = d, to the mCRL2

process expression ∇AB
(τ{check}(ΓCGγ

(χ(P, /0)||Globs(d)))), which we abbreviate to Ψ(P,V).

6.3 Translation of formula

The selfloops labelled with value provide information on the values of global variables in every state,

which we will exploit in the translation of HMLcheck formulas. Given a HMLcheck formula we eliminate

each occurrence of the check operator of the shape (v = e) by substituting it with 〈value(v,e)〉true. We

denote this substitution function with θ , which we define inductively:

θ(true) = true,

θ(f alse) = f alse,

θ(v = e) = 〈value(v,e)〉true,
θ(¬φ) = ¬θ(φ),
θ(φ1 ∧φ2) = θ(φ1)∧θ(φ2),
θ(φ1 ∨φ2) = θ(φ1)∨θ(φ2),
θ(〈T 〉φ) = 〈T 〉θ(φ),
θ([T]φ) = [T]θ(φ).

6.4 Correctness of translation

From here on, when we consider the translation of some state 〈P,V 〉 to Ψ(P,V) we assume that the context

of the process expression, such as the data domain D, the set of actions and a recursive specification have

been encoded in mCRL2 as described in the previous section.

We will prove that a HMLcheck formula φ holds in a state 〈P,V 〉 if and only if θ(φ) holds for Ψ(P,V).
To achieve this we use a stepping stone. In Definition 13 we define a relation between LTSs with and

without a valuation function in the state, called variable consistency. We prove that the LTSs induced

by 〈P,V 〉 and Ψ(P,V) are variable consistent, which we use in Theorem 23 to prove that any HMLcheck

formula φ holds for 〈P,V 〉 if and only if θ(φ) holds for Ψ(P,V)

Definition 13. Let L1 = (S1,T L1,→1,s1) be an LTS such that S1 = P×V , and let L2 = (S2,T L2,→2

,s2) be an LTS such that S2 = PmCRL2. We say that L2 is variable-consistent with L1 if there exists a

mapping ℓ : S1 → S2 such that whenever some state s′1 is reachable from s1 in L1, then ℓ(s′1) is reachable

from ℓ(s1) in L2 and

46 A process algebra with global variables

1. for all states s′1,s
′
2 ∈ S2 reachable from s2 and such that s′1

λ
−→ s′2 we have that λ ∈ T L∪{value(v,d) |

v ∈Var∧d ∈ D},

2. for all 〈P,V 〉 ∈ S1,s
′ ∈ S2,v ∈Var,d ∈ D we have that ℓ(〈P,V 〉)

value(v,d)
−−−−−→ s′ if and only if V (v) = d

and ℓ(〈P,V 〉) = s′,

3. for all λ ∈ T L1 and reachable states s′1,s
′
2 ∈ S1 we have that s′1

λ
−→ s′2 if and only if ℓ(s′1)

λ
−→ ℓ(s′2).

For the first property of variable consistency we prove the following lemma.

Lemma 14. For all parallel-sequential process expressions P, process expression P′ ∈ PmCRL2, valua-

tions V , α ∈M and B ⊆ Act we have that Ψ(P,V)
α

−→ P′ implies α ∈ T L∪{value(g,d) | d ∈ D}.

Proof. This follows immediately from the allow operator in Ψ(P,V), which does not allow multi-actions

that are not in T L∪{value(g,d) | d ∈ D}.

Towards proving the second property of variable consistency we prove the following lemma.

Lemma 15. For all parallel sequential process expressions P, process expression P′ ∈PmCRL2, valuation

V , d ∈ D, B ⊆ Act we have that Ψ(P,V)
value(g,d)
−−−−−→ P′ if and only if V (g) = d and Ψ(P,V) = P′.

Proof. The process expression Ψ(P,V) contains a parallel component Globs(d). The Globs process can

make a value(g,d) transition where V (g) = d. Moreover, all such value(g,d) transitions are self-loops.

Finally, the Globs process is the only sub process in Ψ(P,V) that is able to produce a value transition.

Towards proving the third property of variable consistency we first provide a number of auxiliary lemmas.

Lemma 16. For all sequential process expressions P, process expression P′ ∈ PmCRL2, λ ∈ Act ∪

{assignP(g,d) | d ∈ D}, d1 ∈ D we have that χ(P, /0)
λ |checkP(d1 ,true)
−−−−−−−−−−→ P′ implies that there exists P′′ such

that χ(P′′, /0) = P′.

Proof. From the definition of χ it follows that if χ(P, /0) can make a λ |checkP(d1, true) labelled transition

then there exists some Q and P1 such that χ(P, /0) = Q+ (∑d1:D λ |checkP(d1,
∧

d∈ε d1 ≈ d)).χ(P1, /0).
Hence after making the λ |checkP(d1, true) labelled transition we end up in χ(P1, /0).

Lemma 17. For all parallel-sequential process expressions P, α ∈M we have that Ψ(P,V)
α
−→ P′ implies

that there exists P′′ and V ′ such that Ψ(P′′,V ′) = P′.

Proof. By Lemma 14 we conclude that α ∈ T L∪{value(g,d) | d ∈ D}. In the case that α is a value

transition it is a selfloop and ends in Ψ(P,V). In any other case Ψ(P,V) makes a step that includes

a contribution from one or more of the parallel components of P. From the definition of χ it follows

that any contribution of a parallel component is of the shape λ |checkP(d1,b), where d1 ∈ D and b ∈
{true, f alse}. The checkP must communicate with a checkG, otherwise the action will be blocked by

the allow operator. Hence b = true, enabling us to use Lemma 16 to conclude that for every parallel

component contributing to α there exists some process expression Pseq such that the parallel component

ends in χ(Pseq, /0). The parallel components of Ψ(P,V) that do not contribute to α remain in a shape such

that there exists some process expression Pseq such that the parallel component is χ(Pseq, /0). The Globs

process remains unchanged or its valuation is updated, in which case there exists some valuation V ′ that

reflects the updated value. The allow, hide and communication operators remain unchanged. Hence,

after any α step Ψ(P,V) ends in a state Ψ(P′′,V ′).

M.S. Bouwman, et al. 47

Lemma 18. For all sequential process expressions P,P′, DD ⊆ D , a ∈ Act and assign(g,d′) ∈ T L we

have that ∀V∈V (
∧

d∈DD V (g) = JdK) =⇒ 〈P,V 〉
a

−→ 〈P′,V 〉 if and only if ∃d1∈Dχ(P, /0)
a|checkP(d1 ,true)
−−−−−−−−−→

χ(P′, /0)∧
∧

d∈DD d1 = JdK and we have that ∀V∈V (
∧

d∈DD V (g) = JdK) =⇒ 〈P,V 〉
assign(g,d′)
−−−−−−→ 〈P′,V [g 7→

d′]〉 if and only if ∃d1∈Dχ(P, /0)
assignP(g,d′)|checkP(d1 ,true)
−−−−−−−−−−−−−−−−→ χ(P′, /0)∧

∧

d∈DD d1 = JdK.

Proof. This can be proven by induction on the structure of P, the induction hypothesis is that the bi-

implication holds for every direct subprocess of P and for every defining equation of process names. The

key insight is the second field of the checkP action is only true when the condition for the data value in

the first field of checkP, constructed by χ , is true.

Lemma 19. For any parallel-sequential process expression P, process expression P′, λ ∈ T L and val-

uations V,V ′ we have that 〈∂B(P),V 〉
λ

−→ 〈∂B(P
′),V ′〉 implies P′ is again a parallel-sequential process

expression.

Proof. Any step made from ∂B(P) leaves the ∂B operator and the parallel composition intact. One or

more of the parallel components make a step. By the structure of parallel-sequential process expressions

these parallel components are either a process name or a sequential process. Since we also assume

that the defining equations of every process name is a sequential process expression the process name

will make a step as such. By the structure of sequential process expressions they can make a step to a

sequential process expression or a process name. Hence, after any step P is again a parallel composition

with process names and sequential process expressions.

Lemma 20. For all valuations V and V ′, λ ∈ T L, parallel-sequential process expressions P, B ⊆ Act we

have that 〈∂B(P),V 〉
λ
−→ 〈∂B(P

′),V ′〉 if and only if Ψ(P,V)
λ
−→ Ψ(P′,V ′).

Proof. Both directions of the bi-implication can be proven with a case distinction on the type of transition

using three cases: an action from Act stemming from one of the parallel components, a handshake

stemming from two parallel components and an assignment. To prove the implication from left to right

Lemma 18 can be used to prove that for each contribution by a parallel component of 〈∂B(P),V 〉 the step

can be matched with an appropriate step from a parallel component of Ψ(P,V). Lemma 19 ensures that

after taking a transition we end in the translation of a parallel-sequential process again. To prove the

implication from right to left Lemma 16 and Lemma 18 can be used to prove that for each contribution

by a parallel component of Ψ(P,V) the step can be matched with an appropriate step from a parallel

component of 〈∂B(P),V 〉.

Theorem 21. For all parallel-sequential process expressions P, valuations V , we have that the LTSs

induced by 〈P,V 〉 and Ψ(P,V) are variable consistent.

Proof. For every state 〈P′,V ′〉 reachable from 〈P,V 〉 we define ℓ(〈P′,V ′〉) = Ψ(P′,V ′). Lemma 14 proves

condition 1, Lemma 15 proves condition 2 and Lemma 20 together with Lemma 17 proves condition

3.

Corollary 22. For all parallel-sequential process expressions P,Q and valuations V1,V2 we have that

〈P,V1〉 ↔sb 〈Q,V2〉 if and only if Ψ(P,V1) ↔ Ψ(Q,V2).

48 A process algebra with global variables

Proof. This follows immediately from the definition of variable consistency. The difference between

state-based bisimilarity and strong bisimilarity is only that state-based bisimilarity requires that the val-

uation in states is equal. By condition 2 of variable consistency the valuations V1 and V2 are equal if and

only if Ψ(P,V1) and Ψ(Q,V2) have the same value labelled self-loops on states.

Theorem 23. Let (S,T L,−→,s) be an LTS where S = P × V , let (S′,T L′,−→′,s′) be an LTS where

S′ = PmCRL2 and let these two LTSs be variable consistent. A HMLcheck formula φ holds in some state

〈P,V 〉 ∈ S if and only if θ(φ) holds in ℓ(〈P,V 〉) ∈ S′.

Proof. The proof is by induction on the structure of φ with the induction hypothesis that any subformula

φ ′ of φ holds for 〈P,V 〉 ∈ S if and only if θ(φ ′) holds for ℓ(〈P,V 〉). In the case φ = (v = e) condition 2 of

variable consistency is necessary to relate the valuation in a state and the value labelled selfloops. Con-

dition 3 of variable consistency is needed for the case φ = 〈T 〉φ ′ and φ = [T]φ ′ to show that transitions

can be mimicked. Furthermore, in the case φ = [T]φ ′ we also need condition 1 of variable consistency

to show that ℓ(〈P,V 〉) does not have more λ labelled transitions.

7 Discussion

For the encoding in mCRL2 and subsequent correctness proofs we have made the assumption that there

is only one global variable, which is rather restrictive. To generalize the translation to handle any number

of global variables we would need to adjust the following. The Globs process should be adjusted to track

more global variables by making the parameter of the process a mapping from variable names to values.

Upon performing an assignG(v,d) action Globs should update the mapping such that v maps to d. To

communicate the values of global variables in a check(d1, . . . ,dn, true) action we need an ordering on

the global variables: d1 is given the value of variable one, d2 is given the value of variable two, etcetera.

The condition determining the last parameter of the checkP action should also be adjusted to use this

ordering, e.g. when χ gathers a requirement (v,d) and variable v is the ith variable then the condition in

checkP should include a conjunct di ≈ d.

We intend to continue researching process algebras with global variables. One research direction

is to extend mCRL2 with global variables. The simple process algebra presented in this paper only

allows for very simple conditions on global variables: checking whether a variable has a specific value.

If global variables could be integrated into mCRL2 we could use its powerful data language to specify

complex conditions. We would also like to research scoped shared variables, including creation and

scope extrusion.

8 Conclusion

In this paper we have presented a simple process calculus with global variables and studied various as-

pects of it. To start we examined appropriate notions of equivalence: stateless bisimulation for process

expressions and state-based bisimulation for states. Then, for our first contribution we presented a logic

extending HML with a check and a set operator and proved that HMLcheck is strong enough to differen-

tiate states that are not state-based bisimilar and HMLcheck+set is strong enough to differentiate process

expressions that are not stateless bisimilar. Finally, for our second contribution we give a translation to

mCRL2, using the multi-action concept, preserving HMLcheck formulas. Translating to mCRL2 allows

us to reuse the already existing tools. The translation mostly preserves the syntactic structure and, in

particular, the parallel composition (adding one extra parallel process).

M.S. Bouwman, et al. 49

When analysing whether a distributed system satisfies a liveness property, it is necessary to define

through a completeness criterion which runs of the system should be considered in the analysis. Recently,

justness was proposed as a suitable completeness criterion that takes into account the component struc-

ture of the system [5] and excludes unrealistic runs. Modelling shared variables as separate components

hampers a straightforward definition of justness [4, 3]. Since global variables need not be modelled as

separate components in the process algebra proposed in Section 2, it may facilitate a more elegant analy-

sis of liveness properties under justness assumptions for distributed systems that rely on shared variables

for the communication between components.

Acknowledgements

For the presentation of the semantics of mCRL2, and in particular for the semantics of multi-actions,

we have benefited from work by Maurice Laveaux. We would also like to extend our gratitude to the

anonymous reviewers. Their comments led to Corollary 22.

References

[1] J. C. M. Baeten, T. Basten & M. A. Reniers (2009): Process Algebra: Equational Theories of Com-

municating Processes. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press,

doi:10.1017/CBO9781139195003.

[2] J.C.M. Baeten (2005): A brief history of process algebra. Theoretical Computer Science 335(2-3), pp. 131–

146, doi:10.1016/j.tcs.2004.07.036.

[3] Mark Bouwman, Bas Luttik & Tim A. C. Willemse (2020): Off-the-shelf automated analysis of liveness

properties for just paths. Acta Informatica 57(3-5), pp. 551–590, doi:10.1007/s00236-020-00371-w.

[4] Victor Dyseryn, Rob J. van Glabbeek & Peter Höfner (2017): Analysing Mutual Exclusion using Process

Algebra with Signals. In Kirstin Peters & Simone Tini, editors: Proceedings Combined 24th International

Workshop on Expressiveness in Concurrency and 14th Workshop on Structural Operational Semantics and

14th Workshop on Structural Operational Semantics, EXPRESS/SOS 2017, Berlin, Germany, 4th September

2017., EPTCS 255, pp. 18–34, doi:10.4204/EPTCS.255.2.

[5] Rob J. van Glabbeek & Peter Höfner (2015): CCS: It’s not fair! - Fair schedulers cannot be implemented in

CCS-like languages even under progress and certain fairness assumptions. Acta Inf. 52(2-3), pp. 175–205,

doi:10.1007/s00236-015-0221-6.

[6] Jan Friso Groote & Mohammad Reza Mousavi (2014): Modeling and analysis of communicating systems.

MIT press, doi:10.7551/mitpress/9946.001.0001.

[7] Matthew Hennessy & Robin Milner (1985): Algebraic Laws for Nondeterminism and Concurrency. J. ACM

32(1), pp. 137–161, doi:10.1145/2455.2460.

[8] Robin Milner (1989): Communication and concurrency. PHI Series in computer science, Prentice Hall.

[9] Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso Groote (2005): Notions of bisimulation and

congruence formats for SOS with data. Inf. Comput. 200(1), pp. 107–147, doi:10.1016/j.ic.2005.03.002.

[10] Rocco De Nicola & Rosario Pugliese (1996): A Process Algebra Based on LINDA. In: COORDINATION,

Lecture Notes in Computer Science 1061, Springer, pp. 160–178, doi:10.1007/3-540-61052-9 45.

[11] A. W. Roscoe (2010): Understanding Concurrent Systems. Texts in Computer Science, Springer,

doi:10.1007/978-1-84882-258-0.

[12] Vijay A. Saraswat, Martin C. Rinard & Prakash Panangaden (1991): Semantic Foundations of Concurrent

Constraint Programming. In: POPL, ACM Press, pp. 333–352, doi:10.1145/99583.99627.

http://dx.doi.org/10.1017/CBO9781139195003
http://dx.doi.org/10.1016/j.tcs.2004.07.036
http://dx.doi.org/10.1007/s00236-020-00371-w
http://dx.doi.org/10.4204/EPTCS.255.2
http://dx.doi.org/10.1007/s00236-015-0221-6
http://dx.doi.org/10.7551/mitpress/9946.001.0001
http://dx.doi.org/10.1145/2455.2460
http://dx.doi.org/10.1016/j.ic.2005.03.002
http://dx.doi.org/10.1007/3-540-61052-9_45
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1145/99583.99627

50 A process algebra with global variables

[13] Muck van Weerdenburg (2008): Process Algebra with Local Communication. Electron. Notes Theor. Com-

put. Sci. 215, pp. 191–208, doi:10.1016/j.entcs.2008.06.028.

http://dx.doi.org/10.1016/j.entcs.2008.06.028

	1 Introduction
	2 A simple process algebra with global variables
	3 Equivalence of process expressions
	4 Hennessy-Milner logic
	4.1 Semantics

	5 Relation logic and bisimilarity
	6 Translation to mCRL2
	6.1 Introduction of mCRL2
	6.2 Translation of process expressions and valuations
	6.3 Translation of formula
	6.4 Correctness of translation

	7 Discussion
	8 Conclusion

