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With numerous specialised technologies available to industry, it has become increasingly frequent
for computer systems to be composed of heterogeneous components built over, and using, different
technologies and languages. While this enables developers to use the appropriate technologies for
specific contexts, it becomes more challenging to ensure the correctness of the overall system. In
this paper we propose a framework to enable extensible technology agnostic runtime verification and
we present an extension of polyLarva, a runtime-verification tool able to handle the monitoring of
heterogeneous-component systems. The approach is then applied to a case study of a component-
based artefact using different technologies, namely C and Java.

1 Introduction

Component-based approaches to software and service design are becoming more widespread, allowing
for heterogeneous systems to be compartmentalised into components; these components encapsulate
their internal behaviour while revealing interfaces through which other components may interact. This
approach to system organisation has facilitated the construction of large complex systems, where each
component is allowed to internally employ different technologies, from operating systems and hardware,
to programming languages.

However, the sheer complexity of the systems constructed, together with the decentralised nature of
how these heterogeneous systems are developed, creates new potential points of failure. This, in turn,
increases the need for some form of correctness verification. Runtime monitoring [12] has been shown to
be a viable solution to the verification of large complex systems — by limiting the analysis to the actual
current runtime path, the approach is tractable (for a reasonable choice of specification logic), while
still guaranteeing detection (albeit at runtime) of property violations. Especially in the context of open
systems, where correctness is also partly dependent on interaction with the environment, this approach
has proved to be viable and scalable to real-life industrial systems [1, 3].

An important research question in the field of runtime verification has been how to extend the ap-
proach to handle non-monolithic systems. Much of the work so far has been limited to a high-level view
of such systems, treating components as black boxes and focusing instead on the verification of the com-
ponent interactions and on strategies for engineering monitoring in such distributed settings. To date,
there has been little work that attempts to push verification inside the components so as to verify their
inner workings as part of the wider system. This poses additional challenges to runtime verification, both
practical and theoretical, such as the need for a standardised framework for generating events to be mon-
itored (irrespective of the underlying technology used by the monitored components), or the adaptation
of the monitoring logic (specifying correctness properties) to distinct underlying technologies used by
different components, which may invariably lead to different semantic interpretation of said logics.

A typical example would be an online betting system, which is inherently component-based (e.g.,
the web-portal subsystem, the billing subsystem, the fraud detection subsystem etc.), and where each
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component may use different technologies and resources. Typical operations in this system, such as an
online-betting transaction, may go through different components ranging from the company’s transaction
database, to an internal certified logging component kept for legal purposes, to an external bank system.
Whereas existing verification technologies would typically only be able to monitor external units as black
boxes, thus only referring to the interactions taking place, consistency and correctness properties of such
betting transactions may depend on the inner workings of internal components. For instance, one may
want to ensure that the value written in the certified logging component matches that written in the com-
pany’s transaction database. Such component-spanning properties have to be instrumented on different
components, necessitating direct interaction with the underlying technologies of each component. De-
spite this, the present lack of tools supporting such technology-heterogeneity is a major stumbling block
towards a full adoption of runtime verification techniques for component-based systems.

In this paper we present a novel runtime verification framework which supports the monitoring of
component-based systems, possibly using different technologies. The approach has been implemented
as an extension to the runtime verification tool polyLarva [2], to support the generation and instrumen-
tation of separate monitoring code for multiple components in a system, and from a single property
specification. Furthermore, the property specification language has been designed to be technology and
programming-language agnostic, and hence allows reusability across different technologies. To evaluate
the proposed component-based monitoring framework, polyLarva has been applied to OpenEmm, an open
source web-based e-mail marketing tool.

In the rest of the paper, we first discuss the various design options for the runtime verification of
component-based systems; see Section 2. In Section 3, these issues are then discussed in the context of
multi-technology component-based systems where the monitor needs to access the components’ internal
states. Subsequently, Sections 4 and 5 describe how we support our design decisions through an extensi-
ble monitoring framework, polyLarva. In Section 6 we apply the approach on a case-study, after which
we conclude and discuss related work.

2 Challenges of Component-Based Monitoring

From a monitoring perspective, component-based systems pose particular challenges which go beyond
those present in monolithic systems. While the well-behaved individual components can be dealt with
locally, properties and specifications which span across components so as to express the correctness of
the system as a whole raise various issues, both pragmatic and conceptual. In particular, the cross-cutting
nature of monitoring, which may require access to the internal state of different components, raises issues
regarding the architectural design of the monitors, particularly, if components are built using different
technologies.
Two important issues, which influence choices in the monitoring architecture are:

Orchestrated vs. choreographed monitoring: Different approaches have been proposed in the litera-
ture as regards to the locality (physical or conceptual) of the monitors with respect to the different
components in a system. In an orchestrated monitoring approach (e.g., see [8, 13, 11]), the mon-
itor is a separate unit from the rest of the system, but with privileges to enable it to listen to the
behaviour of the other parts of the system and pass judgement about them. On the other hand,
a choreographed approach (e.g., see [16, 17, 15]) extends the different parts of the system such
that each part locally eavesdrops on its own behaviour, ensuring correct behaviour, and commu-
nicating with other monitors (belonging to other parts of the system) whenever synchronisation
or information regarding the other parts is required. Approaches to split monitors in this manner
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using a static [16] or dynamic [7] orchestration have been proposed. Although most of this work
focuses on distributed systems, the classification applies equally well to general component-based
systems. Orchestration is usually easier to instrument and setup, but adds dependencies between
components which may not be desirable. On the other hand, a choreographed approach respects
locality, but at the cost of more complex instrumentation of monitoring code and specification
slicing. Especially in the case of heterogeneous component-based systems with components using
different technologies, local instrumentation can prove to be particularly challenging, since the
monitoring tool has to be able to instrument code written in different languages.

Intrusiveness of monitoring: Another independent choice is the level of abstraction at which the mon-
itors can eavesdrop the behaviour of the system. Much work, especially in setting of services,
focuses on specifications of messages passed between components [8, 13]. This black-box ap-
proach ensures that the instrumentation of monitors is relatively straightforward since they only
need to hook to the communication channels and process the behaviour appropriately. However,
the approach has serious limitations when specifications refer to the components’ local states or
internal events since, without re-engineering to expose such states and events, their monitoring
would not be possible. In a component-based system setting, such properties would, for instance,
be required to ensure data-consistency across components. A more intrusive approach, to enable
direct access to the state of the system components poses challenges, especially when the compo-
nents are built using different technologies.

Note that these two issues are largely independent of each other. For instance both black-box orches-
trated monitoring [8, 13] and intrusive orchestrated monitoring [11] approaches have been proposed in
the literature. In the next section we investigate how challenges in extending the existing approaches to
technology-diverse component-based systems can be addressed.

3 Intrusive Monitoring of Heterogeneous Component-Based Systems

For a number of applications, checking for specification violations through eavesdropping on component
communication suffices. However, there are situations (e.g., see Section 6) where more intrusive moni-
toring is required. In the case of systems built from components using different technologies, intensional
form of monitoring poses the following challenges.

3.1 Monitoring Architecture

Supporting technology agnosticism using an intrusive choreographed approach limits extensibility since
each technology would have to be potentially coupled with another one. In contrast with an orchestrated
approach, adding support for a new technology only requires adding means to instrument code which
handles communication with the central monitor.

For this reason, we adopt a centralised monitor which receives events and processes them, thus
making it a largely orchestrated approach — with the verification unit of the tool being independent
of the the other components. For every supported technology, the tool can intrusively instrument event
generation into the components.

Since a purely orchestrated, yet intrusive, approach may result in breaches of data and control encap-
sulation within components, our framework gives full control to the user as to the extent of intrusiveness
of the monitoring logic onto the system-side [2]. This allows for manually programmed choreography,
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Figure 1: Architecture of instrumented monitors on components

without sacrificing extensibility, since inter-component coordination still happens through the central or-
chestrated monitor. Fig. 1 shows the general architecture of the system after the monitoring parts are
instrumented onto the components.

3.2 Extensible Technology Support

Through the general monitoring architecture of Fig. 1, adding support for new technologies requires the
possibility of instrumenting monitors into components built using that technology. The responsibility of
the local monitoring code is to (i) generate events to send to the central monitor; and (ii) execute any
local monitoring code specified in the properties.

Since it is desirable to support cross-component properties, it is crucial to support monitoring instru-
mentation from a single specification script; this is the approach adopted for polyLarva. Furthermore,
since extensibility to further technologies is also an essential feature, we have separated the monitoring
instrumentation into different parts (i) the central verification code is generated from the global parts
of the specification using a language-independent part of the runtime verification tool; and (ii) for each
different technology, a separate tool is provided, which generates the automated instrumentation scripts
from a subpart of the specification (as tagged by the user).

The workflow for the usage of polyLarva is depicted in Fig. 2: (i) the specification script is passed
through the language agnostic part of the tool to produce the central monitor (bottom arrow of the fig-
ure); and (ii) for each different component, the appropriate technology tool of polyLarva processes the
specification to produce the instrumentation instructions for event extraction and local monitoring on that
particular component (top arrows in the figure).

The actual instrumentation typically takes place by processing the scripts produced by the polyLarva
language-dependent compilers, and subsequently using additional external tools (such as aspect-oriented
programming compilers).

3.3 Replicated Monitors and Language Agnosticism

Since most systems describe multiple instances of an abstract concept (e.g., multiple users, accounts,
sessions, etc.) frequently, one would desire to replicate a property for each instance. For example, for
each bank transaction, one may want to set up a monitor for a property which states that the incoming and
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outgoing balances cancel out. In practice, the way such concepts are encoded depends on the technology
being used. For instance, if the system is written in Java, a transaction may be encoded as an object,
while if written in Erlang,1 it may correspond to a separate actor process handling the transaction. While
monitoring tools for single-technology monolithic systems associate such replication in correspondence
with the technology, in a language agnostic system one needs to be more general. In component-based
systems, this poses further challenges when the concept’s lifetime spans across different components. To
support such replication, one solution is to demarcate concept instances’ lifetimes by identifying events
marking their start and those marking their end. Furthermore, all events related to such an instance are
tagged with an identifier which indicates to which instance they belong.

In the bank transaction example, we would identify a call to initialiseTransaction(transid)
to be the starting point, while concludeTransaction(transid)with the same parameter to be its end.
Moreover, any calls to transferFunds(transid,...) would be associated with the instance of the
monitor which was started with the transaction identity passed as a parameter.

4 polyLarva Specifications

At the simplest level, our monitoring framework, polyLarva, uses a guarded-command style specification
language. Properties are expressed as a list of rules of the following form:

event | condition 7→ action
Whenever an event (possibly having parameters) is generated by the system, the list of monitor rules

is scanned for rule matches relating to that event. If a match is found, the expression specified in the
condition of the rule is evaluated and, if satisfied, the action is triggered2.

Example 4.1 Consider a scenario in which one desires to check that an online payment on a web-
based system is carried out after the credit card used has been registered — tagging the customer

1http://http://www.erlang.org
2Note that the condition and action may consist of any valid code of the underlying technology being used — Java in the

case of the previous version of polyLarva, and any technology in the case of the modified polyLarva presented in this paper.
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as untrusted if this rule is violated. This may be expressed in terms of the rules enclosed within the
rules block, ¬, in Program 4.1. In these rules, register and pay are system events (method calls),
parametrised by the values customer and card; ¬registeredCards[card] is a condition, while
registeredCards[card] := true and setUntrusted(customer) are actions triggered by the run-
time monitor. Note that to monitor the property for each system user, we define the event newSession as
the point triggering the replication of the rules (). Consequently, the events declared within this scope
must all define a variable customer which binds the event with a particular monitor instance. Finally,
® marks the end of the context upon event endSession.

The state, conditions and actions blocks define specification-related monitor state, conditions
and actions respectively that are used in the rules section as macros. The events block highlights
those specific points which, during system execution, should trigger the monitoring functionality.

Program 4.1 Monitoring customers attempting payments with unregistered cards
 upon (newSession(customer)) {

state {
boolean[] registeredCards;

}
events {

newSession(customer) = {customer.logIn();}
register(customer,card) = {customer.registerCard(card);}
pay(customer,card) = {customer.makePayment(card);}
endSession(customer) = {customer.logOut();}

}
conditions {
isRegistered(card) = { registeredCards[card] }

}
actions {
setUntrusted(customer) = ...
registerCard(card) = { registeredCards[card] := true }

}
¬ rules {

register(customer,card) -> registerCard(card);
pay(customer,card) \ !isRegistered(card) -> setUntrusted(customer);

® endSession(customer) -> Done;
}

}

While events are a result of the execution path being followed by a system, and thus specific to the
system’s technology, the conditions and actions defined in a rule are typically specific to the runtime
monitoring states and are thus independent from the system’s technology. This means that the evaluation
of rule actions and conditions need not run on the system being monitored and can safely be moved onto
separate resources. However, there are exceptions to this since conditions may also query the system
state, and actions may alter the system state. Unfortunately, it is not straightforward to automatically
delineate system-dependent elements from purely monitoring elements. For this reason, our language
enables the user to explicitly specify this separation through appropriate constructs3.

3A lengthy discussion of how one could use the distinction between system-side and monitor-side monitoring to optimise
efficiency can be found in [2]. Note, however, that in the previous work we assume that the system- and monitor-side are of the
same technology.
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Example 4.2 Further to Example 4.1, consider the case where instead of keeping track of which cards
have been registered or not within the monitor state, we query the system state (which keeps track of
card registration anyway). In this case the condition which checks whether a credit card is registered,
is performed on the system state by being tagged as systemSide, ¯, as opposed to monitorSide, °.
Note that the rest of the monitoring elements are still performed on the monitor side and are thus marked
as such.

Program 4.2 Monitoring activity between two components
upon (newSession(customer)) {

events {
newSession(customer) = {customer.logIn();}
register(customer,card) = {customer.registerCard(card);}
pay(customer,card) = {customer.makePayment(card);}
endSession(customer) = {customer.logOut();}

}
conditions {
¯ systemSide { isRegistered(card) = { registeredCards[card] } }
}
actions {
° monitorSide { setUntrusted(customer) = ... }
}
rules {
pay(customer,card) \ !isRegistered(card) -> setUntrusted(customer);
endSession(customer) -> Done;

}
}

The tagging of monitor side and system side evaluation of monitoring logic suffices for a monolithic
system. However, when a system is composed of heterogeneous components residing on different tech-
nologies, tagging has to be more comprehensive and distinguish between components. There are two
aspects to this: (i) states, conditions, and actions may reside within different components; and (ii) the
events may now also arise from different components. These features were not previously supported in
polyLarva but are now supported in the extended version presented in this paper. The following example,
demonstrates the use of extended tagging in the context of multiple components.

Example 4.3 As an example, we note that many online stores normally incorporate functionality offered
by payment gateway web services to validate credit card details and accept transactions. In such cases,
we may want to ensure that the payment details input by the customer on the online system are the same
details received by the payment gateway. A possible monitoring setup for such a scenario is as illustrated
in Fig. 3 where a system side monitor associated with the online store system, notifies the runtime monitor
about a payment transaction. Program 4.3 highlights how the proposed setup is facilitated through the
use of the constructs supplied by the polyLarva specification language. The payment transaction event
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± is identified as being an event that will occur on one particular system component through the use of a
user-defined label that identifies the component as store. The event is also parametrised with the credit
card details entered to the system, thus ensuring that the global monitoring component can maintain
a copy of these values. Upon receipt of an authorisation request, the system side monitor associated
with the payment gateway service, will communicate with the global monitoring component in order to
trigger validation of the card details. This communication is identified through the definition of the event
receiveDetails ² which specifies that its source is one labelled as paymentService, and therefore
a different process from that which triggered other events.

Program 4.3 Monitoring activity between two components
upon (newSession(customer)) {

state {
monitorSide {int cardNo; }

}
events {

± event@store newSession(customer) = {customer.logIn();}

± event@store register(customer,card) = {customer.registerCard(card);}

± event@store pay(customer,card) = {customer.makePayment(card);}

² event@paymentService receiveDetails(customer,card) = {incomingPayment(customer, card);}

± event@store endSession(customer) = {customer.logOut();}
}
conditions {
monitorSide { validateCardDetails(card) = cardNo == card; }

± systemSide@store { isRegistered(card) = { registeredCards[card] } }
}
actions {
monitorSide { setUntrusted(customer) = ... }
monitorSide { saveCardDetails(card) = cardNo := card.cardNo; }
monitorSide { reportError = ...}

}
rules {
pay(customer,card) \ !isRegistered(card) -> setUntrusted(customer);
pay(customer,card) \ isRegistered(card) -> saveCardDetails(card);
receiveDetails(customer,card) \ !validateCardDetails(card) -> reportError();
endSession(customer) -> Done;

}
}

5 Extending polyLarva for New Technologies

Due to the intrusive nature of monitoring in polyLarva, technology-specific plugins have to be imple-
mented to support monitoring of a range of systems written in different programming languages. The
resultant monitoring code should support functionality that allows for the generation of events, which
are sent to the central monitor, and the execution of any local monitoring code.

Eliciting events To extract monitoring information from the components, in the sample plugins imple-
mented we have opted for aspect-oriented programming (AOP) extensions. AOP has been heavily
used for implementing runtime verification tools (e.g., see [4, 14]) and mature AOP solutions are
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available for a large number of programming languages. Still, it is up to the user to decide the
approach to elicit events from a component, depending mostly on the underlying technology.

Communication to and from global monitor Standard TCP-based socket communication has been cho-
sen to support the transfer of messages between the runtime monitors. The decision of socket-
based communication, as opposed to techniques such as remote method invocation (RMI)4 or
.NET remoting5 is centred mainly around the need of a communication solution that is technol-
ogy agnostic. In addition, sockets are low-level enough to be optimisable, and require little-to-no
configuration as opposed to communication standards such as CORBA6.

Support for component-specific monitoring functionality Allowing the evaluation of some of the mon-
itoring logic to take place on the component side requires that a monitoring state is maintained at
runtime at the component side. The structure chosen to represent the component-specific monitor
and its state is heavily dependent on the language in question.

To support the specification of new language plugins, polyLarva provides a language compiler API
which potential plugins have to implement. For example one of the API methods is the eventToAspect
method which given an event from the polyLarva script, generates the corresponding AOP code which
would trigger on the specified system method call. Program 5.1 shows code excerpts from the C plugin
implementation which generated ACC7 (AspeCt-oriented C) aspect code by appending a string builder.

Program 5.1 Implementing the C polyLarva plugin
@Override
public String eventToAspect (Context c, String name, Event e) {
...

//event matches before the method call
bldr.append("before ( call (");

// method signature
bldr.append(e.getTarget().getType());
bldr.append(e.getmethodName());

// method arguments
bldr.append("(...) )");

// bind variables to arguments
Iterator<Variable> varIter = e.params.values().iterator();
if (varIter.hasNext()) {
...
bldr.append(" && args (" + v.getName() + ")");

}
...
return bldr.toString();

}

Overall, the effort required for the development of a new plugin is non-trivial, but it is greatly facili-
tated by the API that directs the programmer through all the steps required. The style of the programming

4http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
5http://msdn.microsoft.com/en-us/library/kwdt6w2k(v=vs.71).aspx
6http://www.corba.org/
7https://sites.google.com/a/gapp.msrg.utoronto.ca/aspectc/
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language to be supported and the availability of an aspect-oriented solution for the language also play a
part in determining the ease with which the plugin can be created. To support the OpenEmm case study
(introduced in the next section), two plugins were implemented: one for Java and another for C. In both
cases, relatively mature AOP extensions (AspectJ8 and ACC) were available for use, thus leading to the
translation from event specification to aspect code to be a straightforward exercise.

Apart from using a different AOP technology, we note that the C plugin differed substantially from
Java. For instance, while the Java plugin implementation adopts the approach of creating a class to repre-
sent the runtime monitor (its state as class attributes and its system-side functionality as class methods),
the C implementation uses records to maintain monitor state, and generic functions to implement the
system-side functionality. These differences mainly arise because the two languages belong to different
programming paradigms. For languages of the same paradigm we expect the plugins to be more similar.
Hence, the sample plugins that are available to date (Java and C) can be used as the templates for the
creation of a number of other language plugins that implement the same programming paradigm. For
instance, we expect the development of language plugins for languages such as .NET and C++ to be sim-
ilar to the Java plugin that is already available. On the other hand, implementing plugins for considerably
different technologies such as Erlang and PHP may not prove to be as straightforward. Nevertheless, on-
going work on the development of such plugins suggests that the effort required for their development is
comparable to constructing a plugging for a particular paradigm form scratch (e.g., in Erlang, the runtime
monitor would probably be expressed as an actor process).

6 Case Study

polyLarva has been used to monitor OpenEmm9, an open source, web-based tool for email marketing.
The tool provides facilities to administer mailing lists, create email shots, schedule automatic email
sending, track sent emails, and manage bounced emails. OpenEmm claims over hundreds of thousands
of downloads to date and has a user base that includes a number of prominent large-scale companies.
The tool is ideal as a case study for polyLarva’s technology-agnostic setup due to its component-based
setup and the hybrid technologies it adopts: the core of the system is written in Java while performance-
sensitive components are written in C.

The case study focuses on monitoring the behaviour of OpenEmm to send out a customised email
shot. The tool provides users with a content management interface that allows easy customisation and
creation of email templates. When an email is sent out to a mailing list, each individual recipient will
receive a personalised email, built by an automated process that customizes each email based on the
given template. This functionality is a result of a process which flows across two components: a Java
component which retrieves the email template and mailing list information from the database and collates
them in an XML file, and a C component which receives this information and produces the final emails.
This control flow is displayed using sequentially numbered arrows in Fig. 4.

The setup looks out for the possibility of discrepancies between the two components: e.g., the XML
file getting corrupted, or the database gets updated resulting in outdated emails being sent. This con-
cern is addressed by (intrusively) monitoring the components’ states and identifying any inconsistencies
which may occur. The rest of this section elaborates on how this has been achieved.

8http://eclipse.org/aspectj/
9http://www.openemm.org/
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6.1 Specifying Properties for OpenEmm

A basic property that can be monitored to ensure the XML file has not been tampered is to ensure that
the total number of recipients in the mailing list is the same within the C component as it is in the Java
component. This may be expressed in terms of the following rule:

c_sendMails() | (java_mailCount != c_mailCount) 7→ logIncorrectCount;

where c_sendMails is a system event occurring on the OpenEmm C process at the point when mails
are about to be sent; the rule condition specifies that the total number of mails being sent by the C pro-
cess c_mailCount must be equal to the total count of mails that was specified at the Java component.
logIncorrectCount is the action taken by the monitor if the values are not equal. Fig. 5 shows the
flow of control amongst the components involved in monitoring the specified property: the monitoring
listeners instrumented within the Java and C components, and the global monitoring component. When
the details of a mail shot are available, the Java component notifies the global monitor with the total
number of subscribers. The value is stored as the monitor state java_mailCount. Subsequently, when
the C component receives the XML file, the total number of mail recipients is communicated to the
global monitor which in turn compares it to java_mailCount. Program 6.1 shows the polyLarva spec-
ification required to generate this setup. In ³ and ´ the specification distinguishes between the events’
component-sources while the main rule is specified in µ.

Another property which we monitored on OpenEmm is that of ensuring that blacklisted users are never
sent an email. OpenEmm adheres to this property by carrying out a filtering exercise on the mailing list
recipients, leaving out any blacklisted recipients. However, if an email recipient is blacklisted while the
mailing generation process is already running, there could be circumstances where the recipient is still
included in the mailing list. Such an issue could be detected by setting up a polyLarva monitor which
verifies that each recipient is still non-blacklisted at the time of being sent an email. Fig. 6 depicts how the
global runtime monitor can be notified upon the creation of a personalised email, inCreateMail, trigger-
ing the monitoring process to query the blacklist on the Java component, isEmailBlackListed?. Pro-
gram 6.2 shows how the property of verifying users to be non-blacklisted can be specified in polyLarva.
In particular note that the condition is specified as systemSide@javaComponent meaning that the con-
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Program 6.1 Monitoring count of mailshot recipients
upon (newMailShot(mailshotID)) {

state {
monitorSide {int java_mailCount; }

}
events {

³ event@javaComponent callMailingExecution(mailshotID, javaSubsCount) =
{MailShot.startExecution(mailshotID, javaSubsCount);}

´ event@cComponent startXMLProcessing(mailshotID, c_mailCount) =
{parse_receivers(mailshotID, c_mailCount);}

}
conditions {
monitorSide { invalidMailCount(c_mailCount) = java_mailCount != c_mailCount; }

}
actions {
monitorSide { setJavaMailCount(javaSubsCount) =

java_mailCount == javaSubsCount; }
monitorSide { logIncorrectCount = ...}

}
rules {
callMailingExecution(mailshotID, javaSubsCount) \ true ->

setJavaMailCount(javaSubsCount);
µ startXMLProcessing(mailshotID, c_mailCount) \ invalidMailCount ->

logIncorrectCount;
}

}

dition is to be executed within the Java component and the result is then communicated to the global
monitor.

The two properties described above have been successfully compiled by polyLarva and applied to
OpenEmm. Each specification script was processed by three compilers — (i) the standard polyLarva com-
piler that creates the global monitoring component, (ii) the polyLarva language compiler in conjunction
with the Java plugin, to create a component listener that was woven into the Java OpenEmm code, and (iii)
the polyLarva language compiler in conjunction with the C plugin, to create a component listener that
was woven into the C OpenEmm code. OpenEmm was installed on an Ubuntu operating system while the
global monitor component was executed on a separate Windows machine.

No performance tests were carried out during this case study, since the aim of our work was to study
the interaction between different components running different technologies and the global runtime mon-
itoring component. The possible performance improvements that can be achieved using the polyLarva
framework are however discussed in our other work [2].

7 Conclusions

While a significant number of runtime verification frameworks have been proposed in the literature
[4, 6, 14, 5, 10, 9], these tools are normally restricted to support one particular programming language
or technology and the effort required to support new languages is prohibitive. An exception is the MOP
framework [14] whose architecture makes provision for the addition of new language plugins that can
generate a MOP runtime monitor for a particular programming language. However, MOP does not sup-
port the monitoring of a single property across a system with multiple technologies and does not have an
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Figure 5: Monitoring email shot subscribers

inbuilt concept of components. On the other hand, a runtime verification approach has been proposed for
the BIP component framework [6] which tackles issues specific to component-based systems. However,
the work is positioned at a higher level of abstraction, focusing on the theoretical guarantees that are
required to ensure sound and correct monitoring within BIP — i.e., the issue of multiple technologies
has not been considered in this work.

The non-monolithic nature of component-based systems means that verification techniques have to be
adapted to be applicable. In this paper, we have presented an extension of an existing tool, polyLarva [2],
to handle the runtime verification of component-based systems. In particular, we have emphasised the
need for the support of multiple-technologies used in such systems, with the resulting tool being easily
extensible so as to handle new technologies. Although we have shown its applicability by deploying
it on a third-party open-source system, we are currently looking into its use in an industrial setting.
Furthermore, we are looking into ways of combining our runtime verification approach to the unit testing
of component-based systems.
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