
B. Buhnova, L. Happe, J. Kofroň (Eds.):
Formal Engineering approaches to Software
Components and Architectures (FESCA’15).
EPTCS 178, 2015, pp. 33–46, doi:10.4204/EPTCS.178.4

Using Model-Checking Techniques for Component-Based
Systems with Reconfigurations

Jean-Michel Hufflen
FEMTO-ST (UMR CNRS 6174) & University of Franche-Comté

16, route de Gray; 25030 Besançon Cedex; France
jmhuffle@femto-st.fr

Within a component-based approach allowing dynamic reconfigurations, sequences of successive
reconfiguration operations are expressed by means of reconfiguration paths, possibly infinite. We
show that a subclass of such paths can be modelled by finite state automata. This feature allows us to
use techniques related to model-checking to prove some architectural, event, and temporal properties
related to dynamic reconfiguration. Our method is proved correct w.r.t. these properties’ definition.
Keywords Model checking, finite state automata, component-based approach, checking invariance
properties, dynamic reconfiguration paths.

1 Introduction

This article aims to show that some properties related to component-based software with reconfigura-
tions can be proved by implementations based on model-checking techniques. Let us recall that most
of component-based systems aim to run for a large period of time, so some components may fail or
need to be improved or replaced. That is why dynamic reconfigurations increase the availability and
reliability of such systems by allowing their architecture to evolve at runtime. Dynamic reconfigurations
of software architectures is an active research topic [1, 3, 18, 19, 20], motivated by practical distributed
applications. Such applications are put into action by means of toolboxes such as Fractal [4]. In addi-
tion, if we consider systems with high-safety requirements, the verification of architectural, event and
temporal properties may be crucial. Some proposals exist, e.g., [12], which focus on the verification of
properties related to the behaviour of component-based systems. Within this framework, [9] proposes
FTPL1, a temporal logic for dynamic reconfigurations, including such properties. These properties apply
to successive configurations—or component models—, chaining reconfigurations being modelled by re-
configuration paths. Since FTPL is based on first-order predicate logic, such properties are undecidable
in general, there only exist partial solutions for proving them.

Within this framework, [16, 17] developed methods that work whilst software is running and may be
reconfigured. Therefore we know if a property holds step by step, until the current runtime state. Our
method proceeds from a different point of view; our modus operandi is more related to the approach of a
procedure’s developer when such a developer aims to prove its procedure before deploying it and putting
it into action. More precisely, we propose a method for verifying such properties, not at runtime, but on
a static abstraction of the reconfiguration model, so we aim to ensure that such a property holds before
the software is deployed and working, that is, at design-time. In other words, given a reconfiguration
path that may be applied when the software is running, we aim to ensure that a property holds if this path
is actually applied when the software works. Our method is suitable for finite reconfiguration paths, but
also for infinite ones, provided that they can be modelled by finite expressions, that is, by using the ‘+’

1Fractal Temporal Pattern Logic.

http://dx.doi.org/10.4204/EPTCS.178.4

34 Using Model-Checking Techniques for Component-Based Systems with Reconfigurations

operator of regular expressions at a final position. In other words, our method applies to finite reconfig-
uration paths, and also to cycles without continuation. This last condition may appear as restrictive, but
in practice, the same sequences are often repeated: a component may be stopped in some circumstances,
restarted in other circumstances, and so on. So the repetition of identical reconfiguration sequences
seems to us to be interesting in practice, even if they are only a subset of infinite reconfiguration paths.
Besides, our implementation is operational, fits the notion of reconfiguration path and opens promising
ways about properties related to reconfigurations. In addition, we can prove that this implementation is
correct w.r.t. the definitions given in [9]. Section 2 gives some recalls about the component model we use,
our operations of reconfiguration, and the temporal logic for dynamic reconfigurations. Of course, most
definitions presented in this section come from [9, 10, 11, 16]. Section 3 is devoted to the main outlines
of our framework. Then we give some examples of our programs in Section 4 and study the correctness
of these implementations w.r.t. the operators defined in Section 2. In this article, we do not examine
the implementation of all the operators—given in [14]—but our examples are representative. Section 5
discusses some advantages and drawbacks of our method, in comparison with other approaches. It also
introduces future work.

2 Architectural Reconfiguration Model

First we recall how our component model is organised. Then we sum up the operations used for re-
configuring an architecture. Last, we make precise operators used in FTPL, the temporal logic used in
[9, 10, 11, 16] for dynamic reconfigurations.

2.1 Component Model

Roughly speaking, a component model describes an architecture of components. Some simpler compo-
nents may be subcomponents of a composite one, and components may be linked. Let S be a set of
class names—in the sense used in object-oriented programming—a component C is defined by:

• three pairwise-disjoint sets of parameters2 PC , input port names IC , and output port names OC ;

• the class tC encompassing the services implemented by the component;

• additional functions to get access to the class of a parameter or port (τC : PC ∪ IC ∪OC →S), or
to a parameter’s value (vC : PC →

⋃
S);

• the set sub-cC of its subcomponents if the C component is composite. Of course, the binary
relation ‘is a subcomponent of’ must be a direct acyclic graph.

A composite component cannot have parameters. The bindings of ports form a set B of couples of output
and input port names, being the same type. Delegation links, between composite component ports and
ports of contained components form a set D of couples, too. As an example of a component-based
architecture, possible components of an HTTP server are given in Fig. 1.

2.2 Configuration Properties

Example 1 Looking at Fig. 1’s architecture, we can notice that the CacheHandler component is con-
nected to the RequestHandler component through their respective ports cache and getCache. We can

2Some authors use the term ‘attributes’ instead. A parameter is related to an internal feature, e.g., the maximum number of
messages a component can process.

J.-M. Hufflen 35

HttpServer

httpRequest

RequestHandler
(deviation, load)

handler getDispatcher

getCacheRequestReceiver

request getHandler

RequestDispatcher

dispatcher getServer

CacheHandler
(validityDuration,

memorySize)

cache
FileServer2

server2

FileServer1
server1

Figure 1: Architecture of an HTTP server [11].

express this configuration property—so-called CacheConnected—as follows:

B 3 (cacheCacheHandler,getCacheRequestHandler)

In fact, such properties—that may be viewed as constraints—are specified using first-order logic
formulas over constants (‘true’, ‘false’), variables, sets and functions defined in § 2.1, predicates
(=,∈, . . .), connectors (∧,∨, . . .) and quantifiers (∀,∃). These configuration properties form a set denoted
by CP.

2.3 Reconfiguration Operations

Primitive reconfiguration operations have been defined, they applied to a component architecture, and
the output is a component architecture, too3. They are the addition or removal of a component, the
addition or removal of a binding, the update of a parameter’s value. Let us notice that the result of
such an operation is consistent from a point of view related to software architecture: for example, a
component is stopped before it is removed, and removing it causes all of its bindings to be removed, too.
Another point is that these operations are robust in the sense that they behave like the identity function
if the corresponding operation cannot be performed. For example, if you try to remove a component
not included in an architecture, the original architecture will be returned. The same if you try to add
a component already included in the architecture4. As a consequence, these topological operations—
addition or removal of a component or a binding—are idempotent: applying such an operation twice
results in the same effect than applying it once. General reconfiguration operations on an architecture
are combinations of primitive ones, and form a set denoted by R. The set of evolution operations is
Rrun = R ∪{run} where run is an action modelling that all the stopped components are restarted and
the software is running.

Definition 2 ([10, 16]) The operational semantics of component systems with reconfigurations is de-
fined by the labelled transition system S = 〈C,C0,Rrun,→, l〉 where C = {c,c1,c2, . . .} is a set of
configurations, C0 ⊆ C is a set of initial configurations, Rrun is a finite set of evolution operations,
→⊆C×Rrun×C is the reconfiguration relation, and l : C→ CP is a total function to label each c ∈C
with the largest conjunction of cp ∈ CP evaluated to ‘true’ over Rrun.

3They may be viewed as graph transformations applied to component models if we consider such models as graphs.
4The reason: the name of a component—part of its definition—can only identify one component.

36 Using Model-Checking Techniques for Component-Based Systems with Reconfigurations

c0 c1run c�1Remove
CacheHandler

c2
Add

CacheHandler

c3
Memory
SizeUp

c�3run
c4

Add
FileServer

c5
Duration

ValidityUp

HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

File
Server1

HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

Figure 2: Part of an evolution path of Fig. 1’s HTTP server architecture [11].

Let us note c
op→ c′ when a target configuration c′ is reached from a configuration c by an evolution

op ∈ Rrun. Given the model S = 〈C,C0,Rrun,→, l〉, an evolution path σ of S is a (possibly infinite)
sequence of component models c0,c1,c2, . . . such that ∀i ∈ N,∃op ∈ Rrun,ci

op→ ci+1 ∈ →. We write
‘σ [i]’ to denote the ith element of a path σ . The notation ‘σ↑i ’ denotes the suffix path σ [i],σ [i+ 1], . . .
and ‘σ j

i ’ (j∈N) denotes the segment path σ [i],σ [i+1], . . . ,σ [j−1],σ [j]. An example of reconfiguration
path allowing Fig. 1 to be reached from a simpler architecture is given in Fig. 2 (Fig. 1’s architecture is
labelled by the c4 configuration).

2.4 Temporal Logic

FTPL contains events from reconfiguration operations, trace properties, and temporal properties, respec-
tively denoted by ‘event’, ‘trace’, and ‘temp’ in the following. Hereafter we only give some operators of
FTPL, in particular those used in the implementations we describe. For more details about this temporal
logic, see [10, 16]. FTPL’s syntax is defined by:

〈temp〉 ::= after 〈event〉 〈temp〉 | before 〈event〉 〈trace〉 | . . .
〈trace〉 ::= always cp | eventually cp | . . .
〈event〉 ::= op normal | op exceptional | op terminates

where ‘cp’ is a configuration property and ‘op’ a reconfiguration operation. Let cp in CP be a configura-
tion property and c a configuration, c satisfies cp, written ‘c |= cp’ when l(c)⇒ cp. Otherwise, we write
‘c 6|= cp’ when c does not satisfy cp.

Definition 3 ([10]) Let σ be an evolution path, the FTPL semantics is defined by induction on the form
of the formulas as follows5—in the following, i ∈ N—:

• for the events:

σ [i] |= op normal if i > 0∧σ [i−1] 6= σ [i]∧σ [i−1]
op→ σ [i] ∈→

σ [i] |= op exceptional if i > 0∧σ [i−1] = σ [i]∧σ [i−1]
op→ σ [i] ∈→

σ [i] |= op terminates if σ [i] |= op normal∨σ [i] |= op exceptional
• for the trace properties:

σ |= always cp if ∀i : i≥ 0⇒ σ [i] |= cp
σ |= eventually cp if ∃i : i≥ 0⇒ σ [i] |= cp

5For a complete definition including all the operators, see [10].

J.-M. Hufflen 37

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

q0 q1 q′1 q2 q3 q′3 q4 q5- - - - - - -� �6
ru

n

R
em

ov
eC

ac
he

H
an

dl
er

A
dd

C
ac

he
H

an
dl

er

M
em

or
yS

iz
eU

p

ru
n

A
dd

Fi
le

Se
rv

er

D
ur

at
io

nV
al

id
ity

U
p

DeleteFileServer

Figure 3: Reconfiguration path viewed as a finite state automaton.

• for the temporal properties:

σ |= after event temp if ∀i : i≥ 0∧σ [i] |= event⇒ σ
↑
i |= temp

σ |= before event trace if ∀i : i > 0∧σ [i] |= event⇒ σ
i−1
0 |= trace

Example 4 If we consider the evolution path of Fig. 2 again, we can now express that after calling the
AddCacheHandler reconfiguration operation, the CacheHandler component is always connected to the
RequestHandler component—CacheConnected is the configuration property defined in Example 1—:

after AddCacheHandler normal always CacheConnected

3 Our Method’s Main Outlines

3.1 Basic Idea

Our basic idea is that a finite reconfiguration path may be viewed as a particular case of a finite state
automaton, more precisely, a kind of Büchi automaton. This property still holds if an infinite reconfig-
uration path may be expressed using the ‘+’ operator of regular expressions at a final position. As an
example, let us consider the following reconfiguration path, related to Fig. 2:

run RemoveCacheHandler AddCacheHandler
(MemorySizeUp run AddFileServer DurationValidityUp DeleteFileServer)+

it can be modelled by the automaton pictured in Fig. 3 (before cycling, the states q0,q1,q′1, . . . ,q5 have
been respectively named in connection to the successive component models c0,c1,c′1, . . . ,c5. Let us
recall that a finite state automaton A is defined by a set Q of states, a set L of transition labels, and a
set T ⊆ Q×L×Q of transitions. Like in Definition 3 for systems with reconfigurations, there exists a
function l : Q→CP, which labels each q state with the largest conjunction of cp∈CP evaluated to ‘true’
for the q state.

Within this framework, a state of such an automaton modelling a reconfiguration path is a component
model, initial or got by means of successive reconfiguration operations—primitive or built by chaining
primitive operations—or ‘run’ operations. A transition consists of applying such an evolution operation.
Of course, such automata are particular cases: there is only one initial state, and only one transition can
be applied from a state. More formally, the T set of such an A automaton satisfies:

∀q,q0,q1 ∈ Q,∀l0, l1 ∈ L,(q, l0,q0) ∈ T ∧ (q, l1,q1) ∈ T ⇒ l0 = l1∧q0 = q1

38 Using Model-Checking Techniques for Component-Based Systems with Reconfigurations

cp cp+1- -
? ?

program checking
a property,
returning
true or
false

XSLT
stylesheet

. . .

Figure 4: Our organisation.

In the following, we use the notations ‘succA (q) = q0’ or ‘q
succA7→ q0’ for the q0 state reached from the q

state by a unique transition: succA (q) = q0⇔∃!l0 ∈ L,(q, l0,q0) ∈ T . If a reconfiguration path is finite,
the corresponding automaton has a final state. Otherwise (like in the example above), there is no final
state in the sense that no transition can be performed. If a state of such an automaton is reached several
times—e.g., the q2 state in Fig. 3, reached after q′1 and q5—considering that the whole system is back to
a previous state is not exact, because some parameters can have been updated: this is the case in Fig. 3’s
example, about the memory’s size and duration validity. As a consequence, some properties related to
components’ parameters may not hold. We will go back on this point at the end of § 4.2.

3.2 Modus Operandi

We use several programming languages within our framework. At first glance, this choice introduces
some complexity, but in reality, each language is used suitably. Fig. 4 shows how tasks are organised
within our architecture—(cp)p∈N being successive component models. In our implementation, the ADL6

we use for our component models is TACOS+/XML [13]. This language using XML7-like syntax is com-
parable with other ADLs, so from a theoretical point of view, we could use any ADL, another example
being Fractal/ADL [4], but we mention that the organisation of TACOS+/XML texts make very easy the
programming of primitive reconfiguration operations mentioned in § 2.3, that is why we chose this ADL.
Reconfigurations operations are implemented using XSLT8: the input and output are TACOS+/XML files.
When the software is running, only one component model is in use, so that may be viewed as the identity
function applied to a component model.

A short example of such a TACOS+/XML file is given in Fig. 5. In our implementation, configura-
tion properties are expressed using XQuery programs [26], returning ‘true’ or ‘false’9, as exemplified
in Fig. 6 about the CacheConnected property. It is well-known that XML dialects are very suitable for
specifying architectures—most of ADLs use this syntax—and XSLT/XQuery are very appropriate for op-
erations modelling reconfigurations and property checks. Chaining reconfigurations and property checks
is expressed by an implementation of automata. There is no difficulty about the implementation of recon-

6Architecture Definition Language.
7eXtensible Markup Language.
8eXtensible Stylesheet Language Transformations, the language of transformations used for XML documents [25]. Let us

note that if another ADL is used within a project, there exist XSLT programs giving equivalent descriptions in TACOS/XML [13].
In particular, that is the case for Fractal/ADL.

9Of course, other choices are possible, in particular XSLT stylesheets. Our point of view: XQuery programs are more
concise, what seems to us to be interesting for verifying architectural properties. Besides, our XQuery programs return ‘true’
or ‘false’, but we could easily modify them in order to output a counter-example if a property does not hold.

J.-M. Hufflen 39

1 <tacos:components ...> ...
2 <tacos:component -specifications >
3 <tacos:composite -component id="HttpServer" path="HttpServer">
4 <tacos:port ref="Trequest" role="server" name="httpRequest"/> ...
5 <tacos:refers -to ref="RequestReceiver"/>
6 <tacos:refers -to ref="RequestHandler"/> ...
7 </tacos:composite -component >
8 <tacos:component id="RequestReceiver" path="HttpServer/RequestReceiver">
9 <tacos:port ref="Trequest" role="server" name="request"/> ...

10 </tacos:component >
11 <tacos:component id="RequestHandler" path="HttpServer/RequestHandler">
12 <tacos:port ref="Thandler" role="server" name="handler"/> ...
13 <tacos:attributes signature="RequestHandlerAttributes">
14 <tacos:attribute name="deviation" value="50"/> ...
15 </tacos:attributes > ...
16 </tacos:component > ...
17 </tacos:component -specifications > ...
18 <tacos:binding -specifications >
19 <tacos:binding from="request" to="httpRequest" server="RequestReceiver"
20 client="HttpServer"/>
21 <tacos:binding from="handler" to="getHandler" server="RequestHandler"
22 client="RequestReceiver"/> ...
23 </tacos:binding -specifications >
24 </tacos:components >

Figure 5: Example of a component architecture described by means of TACOS+/XML.

figuration operations and property checks, so the descriptions put hereafter concern the part implemented
by means of automata.

3.3 Types Used

In this paper, we describe our checking functions at a high level. Hereafter we make precise the types
used, in order to ease the reading of our functions. The formalism we used is close to type definitions in
strong typed functional programming languages like Standard ML [22] or Haskell [21]. Of course, we
assume that some types used hereafter—e.g., ‘bool’, ‘int’—are predefined.

As abovementioned, an evolution operation is either the identity function, which expresses that the
software is running, or a reconfiguration operation, which is implemented by applying an XSLT stylesheet
to an XML document and getting the result as another XML document. At a higher-level, such an evolution
operation may be viewed as a function which applies to a component model and returns a component
model. Likewise, checking a property may be viewed as a function which applies to a component model
and returns a boolean value. Assuming that the component-model type has already been defined, we
introduce these two function types as:

type evolution-operation = component-model → component-model
type check-property = component-model → bool

Let state be the type used for a state of our automata, starting from such a state and a configuration—
component model—is expressed by the following type:

type path-check = state × component-model → bool

This path-check type is used within:
function check-after : evolution-operation × path-check → path-check
function check-always : check-property → path-check

40 Using Model-Checking Techniques for Component-Based Systems with Reconfigurations

(: Some declarations omitted. ‘$filename’ is the XML file analysed. :)

some $binding as element(tacos:binding) in
doc($filename)/tacos:components/tacos:binding-specifications/tacos:binding
satisfies

data($binding/@from) eq "cache" and data($binding/@to) eq "getCache" and
data($binding/@server) eq "cacheHandler" and data($binding/@client) eq "requestHandler"

Figure 6: The CacheConnected property expressed using XQuery.

In other words, check-always(check-p)(q,c) applies the check-p function along the q state, its succes-
sor, and so on, starting from the c component model. The result of this expression is a boolean value. As
soon as applying the check-p function yields ‘false’, the process stops and the result is ‘false’. Likewise,
check-after(e,check-f)(q,c) also starts from the q state and the c component model; it applies the
check-f function as soon as the e event is detected as a transition of the automata. The property related
to the check-f function is to be checked for all the component models resulting from the application of
the successive transitions. As a more complete example, the translation of the formula ‘after e always
cp’—where e is an event and cp a configuration property—is check-after(e,check-always(cp)),
which is a function that applies on a path, starting from a state and component model. The process
starts from the initial state of the automaton. Of course, there are similar declarations for the functions
check-before and check-eventually (cf. § 2.4).

3.4 Ordering States of Automata

In this section, we introduce some notions related to our automata—they do not hold about general
automata—and used in the following. The states of our automata modelling reconfiguration paths can be
ordered with respect to the transitions performed before cycling. Let A be such an automaton, if q and
q′ are two states of A :

q < q′ def⇐⇒∃(q1, . . . ,qn),q
succA7→ q1

succA7→ · · · succA7→ qn
succA7→ q′and q,q1, . . . ,qn,q′ are pairwise-different.

The notation ‘q≤ q′’ stands for ‘q < q′∨q = q′’. The only transition which does not satisfy this property
is the transition going back to a state already explored, it starts from the state denoted by q-maxA . If we
consider the A0 automaton pictured at Fig. 3, q0 < q1 < q′1 < q2 < q3 < q′3 < q4 < q5 = q-maxA′ .

4 Our Method

4.1 Functions

Our main idea is quite comparable to the modus operandi of a model-checker when it checks the suc-
cessive states of an automaton in the sense that we mark all the successive functions of a reconfiguration
path. The possible values of such a mark are:

unchecked the initial mark for the steps not yet explored within a reconfiguration path;

again if a universal property (for all the members of a suffix path) is being checked, it must be checked
again at this step if it is explored again;

J.-M. Hufflen 41

check-after(e,check-f)(q,c) −→
if mark(q) == again then true
else // mark(q) == unchecked

mark(q) ←− again ; c0←− t(q)(c) ;
if t(q) == e then check-f(succA (q),c0) else check-after(e,check-f)(succA (q),c0)
end if

end if
end

check-always(check-p)(q,c) −→
check-p(c) ∧ if mark(q) == checked then true

else // mark(q) == unchecked ∨ mark(q) == again
mark(q) ←− checked ; check-always(check-p)(succA (q),t(q)(c))

end if ;
end

Figure 7: Checking properties: two implementations.

checked the property has already been checked, and no additional check is needed if this step is explored
again.

So, such an automaton modelling a reconfiguration path is pre-processed and its states are marked as
unchecked. The mark of a q state is denoted by mark(q). The transition label starting from such a state
is denoted by t(q), let us recall that such a transition is the evolution-operation type, so it can be
applied to a component model c to get the next component model t(q)(c).

We give two implementations of checking properties in Fig. 7: the functions check-after and
check-always. We use a high-level functional pseudo-language, except for updating marks, which is
done by means of side effects. A complete implementation is available at [14], including other features
of FTPL, with similar programming techniques and similar methods for proving the termination of our
functions and the correctness w.r.t. the definitions given in [9, 10].

4.2 Implementations’ Correctness

4.2.1 Termination

Proposition 5 The function check-after terminates.

Let q0 be the initial state of our automaton, a principal call of the check-after function is:

check-after(e,check-f)(q0,c)

where e is an event, check-f a check function being path-check type, c a component model. Recursive
calls of this function satisfy the invariant:

∀q j : q0 ≤ q j < qi,mark(q j) = again

when it is applied to the qi state. Let qk = succA (qi). If qi < qk, the invariant holds. If qi = q-maxA ,
then ∀q j : q0 ≤ q j ≤ q-maxA ,mark(q j) = again, that is, the next recursive call applies to a state whose
mark is again. Such a call terminates.

Proposition 6 The function check-always terminates.

42 Using Model-Checking Techniques for Component-Based Systems with Reconfigurations

This termination proof is similar: a pass is performed by the check-always function, but this pass
may start after the beginning of a cycle, and the cycle may have to be entered a second time. Globally,
two passes may be needed for an expression such that check-after(e,check-always(cp)). Before
reaching the end of a cycle, the invariant is:

∀q j : q0 ≤ q j < qi,mark(q j) = checked∨mark(q j) = again

when the check-always function is applied to the qi state. Roughly speaking, when a cycle is performed,
the mark has been set either to again, in which case the property has to be checked again, or to checked,
in which case our function concludes that the temporal property is true. If the mark has been set to again,
it means that the checking of the temporal property ‘always cp’ had not begun yet; for example, if we
were processing the ‘after’ part of ‘after e always cp’. If re-entering a cycle is needed, the invariant is:

∀q j : succA (q-maxA)≤ q j < qi,mark(q j) = checked

qi being the current state. Let us recall that succA (q-maxA) is the first state of the cycle of the au-
tomaton. If the current state reaches the greatest state w.r.t. the ’<’ relation among states, the following
recursive call of check-always is performed with the situation:

∀q j : succA (q-maxA)≤ q j < q-maxA ,mark(q j) = checked

that is, the check-always function terminates at this next call.

4.2.2 Correctness

Concerning the check-after function, let us examine the definition of the after temporal property:
σ |= after e temp if ∀i : (i ≥ 0∧σ [i] |= e =⇒ σ

↑
i |= temp)—where σ is a reconfiguration path, e an

event, temp a temporal property. It is sufficient to check this property on the first occurrence of the
e event in the transitions handled by our check-after function. The set I of the i integers such that
i≥ 0∧σ [i] |= e is a subset of N. Since I is a subset of a well-ordered set, it has a smallest element i0. So
we have σ

↑
i0 |= temp and ∀i ∈ I, i0 ≤ i. As a consequence, σ

↑
i0 |= temp =⇒ σ

↑
i |= temp for each element

i of I. Let us consider a call check-after(e,check-f)(qi,ci), where ci is the component model we got in
the qi state, and the following invariant—let us recall that q0 is the initial state—:

∀q j : q0 ≤ q j < qi,c j 6|= e

holds. If t(i) = e, we check the property implemented by check-f from the qi state of the automaton, cor-
responding to the suffix of the reconfiguration path starting at the qi state—that is, σ

↑
i if states are indexed

by natural numbers—which is correct w.r.t. the specification. If t(i) 6= e, the check-after function is
recursively called and the invariant holds. By Proposition 5, if such a call of the check-after function
terminates with mark(qi) = again, that means that all the automaton’s states have been marked again.
Such a mark is put whenever the e event is not found. Consequently, this event does not appear and the
result is the ‘true’ value.

The case of the check-always function is more subtle. Let us recall that after performing a cycle, the
mark is set either to again, in which case the property has to be checked again, or to checked, in which
case our function concludes that the temporal property is true. This is not true for any reconfiguration
operation, but holds for a large subset. Let us assume that we have processed a reconfiguration operation
op on a c configuration. If we process op again after cycling throughout our reconfiguration operations,

J.-M. Hufflen 43

the current component model may be different from c. In other words, the system is not necessarily
in the same state. A simple counter-example: let us consider Fig. 5 and a reconfiguration operation
opdeviation++ which increments the deviation attribute of the RequestHandler component. If this op-
eration is repeated and the property to be checked is ‘always deviation < 100’, this property will be
true at the first pass but will fail after some iterations. Now let us consider the reconfiguration operation
opdeviation ← 99 which sets this deviation attribute to a new value, less than 100. If this reconfigu-
ration operation is repeated, the property ‘deviation < 100’ will always hold. For our purpose, the
difference between the two operators opdeviation++ and opdeviation ← 99 is that the latter is idempotent,
not the former. So using a cycle whose global composition of all the reconfiguration operations is idem-
potent is sufficient in order for our check-always function to behave correctly w.r.t. the specification of
the ‘always’ operator. It is necessary for checking any property without further hypotheses. But—as an
example—another approach is accurate if properties to be checked do not deal with parameters’ values.
The condition of correctness is the same: the global configuration of all the reconfiguration operations
of the cycle must be idempotent, but reconfiguration operations dealing with parameters can be ignored.
Let us recall that most reconfiguration operations introduced in § 2.3 are idempotent. For example, let us
recall that if we try to remove a component not included in a configuration or add a component already
included, this configuration is unchanged. Consequently, applying this operation once or more causes the
same effect. Similar remarks can be done for the addition of a component, the addition or removal of a
binding. In general, the composition of idempotent operations is not necessarily an idempotent function.
In our case, we can show the composition of topological operations is idempotent. To give a sketch of
the proof, let us mention that for two idempotent functions f ,g : X → X (X being a set), if g◦ f = f ◦g,
then g◦ f is idempotent, too. In fact:

(g◦ f)◦ (g◦ f) = g◦ (f ◦g)◦ f

= g◦g◦ f ◦ f

= g◦ f

The complete proof is tedious, because many combinations are to be examined. Some pairs of topo-
logical operations yield the identity functions when composed, other pairs are commutative w.r.t. the
‘◦’ composition operation. Examples coming from Fig. 3 are the transitions labelled by the events
AddFileServer and DeleteFileServer, which yield the identity function, whereas the transitions labelled
by AddFileServer and DurationValidityUp are commutative.

5 Discussion and Future Work

Within the framework sketched at § 3.2, our automata have been implemented using the Scheme pro-
gramming language [24]. The complete implementation can be found in [14], and [15] describes our
functions in a way closer to this implementation, giving more details about the Scheme structures we
used. The descriptions of this paper allow us to be more related to a theoretical model, and to emphasise
that our method is close to algorithms based on marks and used in model-checking, e.g., [6, 7, 23]. Our
implementation uses Scheme streams10 for reconfiguration paths and includes the fact that a reconfig-
uration path may be infinite, but only cycles without continuation are processed as shown in § 4. In
practice, our functions are called with an additional argument for the maximum number of iterations
along a reconfiguration path. If this number is reached, our functions return the part of the path which

10That is, potentially infinite lists, as implemented within lazy functional programming languages.

44 Using Model-Checking Techniques for Component-Based Systems with Reconfigurations

is not explored yet and the component model reached, so end-users can launch the process again if they
wish. In this case, we do not perform complete checking, but only bounded checking. With our im-
plementation, we experienced the property given at Example 4 and the reconfiguration path pictured at
Fig. 3; the result is ‘true’, as expected. We also experienced some variants: for example, if cycling is per-
formed from the q5 state to the q′1 state (cf. Fig. 3), the result is ’true’, too, and only the first occurrence
of the AddCacheHandler event is different from the identity function. As a second variant, if cycling
is done from the q5 state to the q1 state, the result is ‘false’: when the states q1 and q′1 are explored by
the check-always function, the property CacheConnected must be checked and it fails about the q′1
state; however, let us notice that such check after the q2 state are not performed if this state is reached
after cycling from the q5 state. Practically we have been able to carry out all the examples of [10]; these
tests confirmed results expressed theoretically in that article. Other tests based on reconfigurations of
a location component11 are successful. From a theoretical point of view, we explore as few states as
possible. In practice, our programs’ efficiency is good, in despite of the communications among several
programming languages. In addition, we plan to study implementation techniques in order to improve
efficiency. We also plan to apply our technique to large-sized case studies.

The idea of modelling reconfiguration paths by means of automata seems to us to be very promis-
ing, and we plan to go thoroughly into more expressive cases. In this paper, we are not interested in
the reasons of reconfigurations: most often they are implemented by means of policies in systems like
Fractal, some examples can be found in [8]. Reconfiguration operations may be viewed as operations
solving unexpected situations, but most of these situations are planned by policies and can be simulated.
We plan to enlarge our language of reconfiguration paths, in order to encompass policies. Likewise, we
plan to be able to express reconfiguration alternatives. In other words, we plan to build more ambitious
automata from more expressive reconfiguration paths, provided that we can check interesting properties.
This should lead us to propose new algorithms, but also to a new version of the temporal operators given
in § 2.4. The operators given in [10, 16] refer to a linear-time logic, whereas reconfiguration alternatives
should be based on branching-time logic. Explaining this difference is easy: [10, 16] observe a pro-
cess in progress, at runtime, whereas reconfiguration alternative are possible futures we explore before
the software is deployed and put into action. Another idea could be to move the Model Driven Engi-
neering technical space [2], who would provide more expressive power about model transformations.
Other approaches are closer to a semantic level: for example, [18] models reconfiguration operations
by means of graph rewriting and uses formal verification techniques along graphs to check properties
related to reconfigurations. A comparable approach is followed in [17]. As another example, [5] defines
a calculus allowing policies. Our approach concerns a more syntactic level because our reconfiguration
operations apply to component models, and result in other component models. Likewise, we assume that
the properties we check can be verified syntactically on component models: that is the case, at least for
topological properties. Our approach does not cover all cases of reconfiguration paths, but in practice,
the same sequences are often repeated, as mentioned in the introduction.

6 Conclusion

As mentioned above, the starting notions, recalled in § 2, come from [9, 10, 11, 16]. Our contribution is
our checking method explained in § 3. Practically, it has been actually implemented. Theoretically, we
have shown that our modus operandi is correct w.r.t. the definitions. Our contribution also includes the
relationship between properties related to reconfiguration operations and techniques used within model-

11This example is also used in [13, 17].

J.-M. Hufflen 45

checking. We think that using such model-checking techniques for properties related to component-
based software with possible reconfigurations is an open way to interesting experiments, theoretically
as well as practically. Our bridge between reconfiguration operations and model-checking techniques
shows that tools developed for the analysis of systems can be reused for the analysis of reconfiguration
by simulation of reconfiguration paths. It is well-known that model-checking techniques can validate
a model of a system, not the system itself. So does our method: as mentioned in the introduction, we
do not run components: we only perform a static analysis at design-time. Our approach cannot replace
methods applied at runtime [17, 18], when the software has already been deployed and is working, but
we think that our method can provide some help at design-time.

Acknowledgements

I am grateful to Olga Kouchnarenko and Arnaud Lanoix, who kindly permitted me to use Figs. 1 & 2.
Many thanks to the anonymous referees, who suggested me constructive improvement.

References

[1] Robert B. Allen, Rémi Douence & David Garlan (1998): Specifying and Analyzing Dynamic Soft-
ware Architectures. In E. Astesiano, editor: Proc. FASE 1998, LNCS 1382, Springer, pp. 21–37,
doi:10.1007/BFb0053581.

[2] Jean Bézivin (2006): Model Driven Engineering: an Emerging Technical Space. In Ralf Lämmel, Jo ao
Saraiva & Joost Visser, editors: International Summer School GTTSE 2005, revised papers, LNCS 4143,
Springer, Braga, Portugal, pp. 36–64, doi:10.1007/11877028_2.

[3] Marius Bozga, Mohamad Jaber, Nikolaos Maris & Joseph Sifakis (2012): Modelling Dynamic Architectures
Using Dy-BIP. In Thomas Gschwind, Flavio De Paoli, Volker Gruhn & Matthias Book, editors: Proc.
SC 2012, LNCS 7306, Springer, pp. 1–16, doi:10.1007/978-3-642-30564-1_1.

[4] Éric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma & Jean-Bernard Stefani (2006): The
Fractal Component Model and its Support in Java. Software Practice and Experience, special issue on Ex-
periences with Auto-adaptive and Reconfigurable Systems 36(11-12), pp. 1257–1284, doi:10.1002/spe.767.

[5] Roberto Bruni & Ivan Lavanese (2006): PRISMA: a Mobile Calculus with Parametric Synchronization. In
Ugo Montanari, Don Sannella & Roberto Bruni, editors: Proc. TGC 2006, LNCS 4661, Lucca, pp. 132–149,
doi:10.1007/978-3-540-75336-0_9.

[6] Edmund M. Clarke, E. Allen Emerson & A. Prasad Sistla (1986): Automatic Verification of Finite-State
Concurrent System Using Temporal Logic Specifications. ACM Transactions on Programming Languages
and Systems 8(2), pp. 244–263, doi:10.1145/5397.5399.

[7] Edmund M. Clarke, Orna Grumberg & David E. Long (1994): Verification Tools for Finite-State Concurrent
Systems. In Jacobus Willem de Bakker, Willem-Paul de Roever & Grzegorz Rozenberg, editors: A Decade
of Concurrency, Proc. REX School/Symp., LNCS 803, Springer-Verlag, Noordwijkerhout, The Netherlands,
pp. 124–175, doi:10.1007/3-540-58043-3_19.

[8] Julien Dormoy & Olga Koucharenko (2010): Event-Based Adaptation Policies for Fractal Compo-
nents. In: Proc. AICCSA 2010, IEEE Computer Society Press, Hammamet, Tunisia, pp. 1–8,
doi:10.1109/AICCSA.2010.5586944.

[9] Julien Dormoy, Olga Kouchnarenko & Arnaud Lanoix (2010): Using Temporal Logic for Dynamic Recon-
figurations of Components. In Luís Soares Barbosa & Markus Lumpe, editors: Proc. FACS 2010, Guimaraes,
Portugal, pp. 200–217, doi:10.1007/978-3-642-27269-1_12.

http://dx.doi.org/10.1007/BFb0053581
http://dx.doi.org/10.1007/11877028_2
http://dx.doi.org/10.1007/978-3-642-30564-1_1
http://dx.doi.org/10.1002/spe.767
http://dx.doi.org/10.1007/978-3-540-75336-0_9
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1007/3-540-58043-3_19
http://dx.doi.org/10.1109/AICCSA.2010.5586944
http://dx.doi.org/10.1007/978-3-642-27269-1_12

46 Using Model-Checking Techniques for Component-Based Systems with Reconfigurations

[10] Julien Dormoy, Olga Kouchnarenko & Arnaud Lanoix (2011): Runtime Verification of Temporal Patterns
for Dynamic Reconfigurations of Components. In Farhad Arbab & Peter Csaba Ölveczky, editors: Proc.
FACS 2011, LNCS 7253, Oslo, Norway, pp. 115–132, doi:10.1007/978-3-642-35743-5_8.

[11] Julien Dormoy, Olga Kouchnarenko & Arnaud Lanoix (2012): When Structural Refinement of Components
Keeps Temporal Properties over Reconfigurations. In Dimitra Giannakopoulou & Dominique Méry, editors:
Proc. FM 2012, LNCS 7436, pp. 171–186, doi:10.1007/978-3-642-32759-9_16.

[12] Yliès Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Marius Bozga & Saddek Bensalem (2011): Runtime
Verification of Component-Based Systems. In Gilles Barthe, Alberto Pardo & Gerardo Schneider, editors:
Proc. SEFM 2011, Lecture Notes in Computer Science 7041, Springer, Montevideo, Uruguay, pp. 204–220,
doi:10.1007/978-3-642-24690-6_15.

[13] Jean-Michel Hufflen (2013): A Framework for Handling Non-Functional Properties within a Component-
Based Approach. In José Luiz Fiadero, Zhiming Liu & Jiyun Xue, editors: Proc. FACS 2013, LNCS 8348,
Nánchāng, China, pp. 196–214, doi:10.1007/978-3-319-07602-7_13.

[14] Jean-Michel Hufflen (2014): Checking Properties of Reconfigurable Component-Based Systems—The Pro-
grams. http://lifc.univ-fcomte.fr/home/~jmhufflen/texts/tacos-plus/properties.html.

[15] Jean-Michel Hufflen (2014): A Method for Checking Properties of Component-Based Systems with Recon-
figurations. Working paper.

[16] Olga Kouchnarenko & Jean-François Weber (2013): Adapting Component-Based Systems at Runtime via
Policies with Temporal Patterns. In José Luiz Fiadeiro, Zhiming Liu & Jinyun Xue, editors: Proc. FACS 2013,
LNCS 8348, Springer, Nánchāng, China, pp. 234–253, doi:10.1007/978-3-319-07602-7_15.

[17] Olga Kouchnarenko & Jean-François Weber (2014): Decentralised Evaluation of Temporal Patterns over
Component-Based Systems at Runtime. In Ivan Lanese & Éric Madelaine, editors: Proc. FACS 2014, Berti-
noro, Italy, pp. 108–126, doi:10.1007/978-3-319-15317-9_7.

[18] Christian Krause, Ziyan Maraikar, Alexander Lazovik & Farhad Arbab (2011): Modeling Dynamic Reconfig-
urations in Reo Using High-Level Replacement Systems. SCP 76, pp. 23–36, doi:10.1016/j.scico.2009.10.006.

[19] Arnaud Lanoix & Olga Kouchnarenko (2014): Component Substitution through Dynamic Reconfigurations.
In Barbara Buhnova, Lucia Happe & Jan Kofron, editors: Proc. FESCA 2014, EPTCS 147, Grenoble, France,
pp. 32–46, doi:10.4204/EPTCS.147.3.

[20] Marc Léger, Thomas Ledoux & Thierry Coupaye (2010): Reliable Dynamic Reconfigurations in a Reflective
Component Model. In Lars Grunske, Ralf Reussner & Frantisek Plasil, editors: Proc. CBSE 2010, LNCS
6092, Springer, pp. 74–92, doi:10.1007/978-3-642-13238-4_5.

[21] Simon Marlow (2010): Haskell 2010 Language Report. https://www.haskell.org/onlinereport/
haskell2010/.

[22] Lawrence C. Paulson (1996): ML for the Working Programmer, 2 edition. Cambridge University Press,
doi:10.1017/CBO9780511811326.

[23] Jean-Pierre Queille & Joseph Sifakis (1982): Specification and Verification of Concurrent Systems in CESAR.
In M. Dezani-Cianaglini & Ugo Montanari, editors: Proc. 5th International Symposium on Programming,
LNCS 137, Turin, Italy, pp. 337–351, doi:10.1007/3-540-11494-7_22.

[24] Michael Sperber, William Clinger, R. Kent Dybvig, Matthew Flatt, Anton van Straaten, Richard Kelsey,
Jonathan Rees, Robert Bruce Findler & Jacob Matthews (2007): Revised6 Report on the Algorithmic Lan-
guage Scheme. hhtp://www.r6rs.org.

[25] W3C (2007): XSL Transformations (XSLT). Version 2.0. http://www.w3.org/TR/2007/
WD-xslt20-20070123. W3C Recommendation. Edited by Michael H. Kay.

[26] W3C (2008): XQuery 1.1. http://www.w3.org/TR/xquery-11-20081203. W3C Working Draft. Edited
by Don Chamberlin and Jonathan Siméon.

http://dx.doi.org/10.1007/978-3-642-35743-5_8
http://dx.doi.org/10.1007/978-3-642-32759-9_16
http://dx.doi.org/10.1007/978-3-642-24690-6_15
http://dx.doi.org/10.1007/978-3-319-07602-7_13
http://lifc.univ-fcomte.fr/home/~jmhufflen/texts/tacos-plus/properties.html
http://dx.doi.org/10.1007/978-3-319-07602-7_15
http://dx.doi.org/10.1007/978-3-319-15317-9_7
http://dx.doi.org/10.1016/j.scico.2009.10.006
http://dx.doi.org/10.4204/EPTCS.147.3
http://dx.doi.org/10.1007/978-3-642-13238-4_5
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
http://dx.doi.org/10.1017/CBO9780511811326
http://dx.doi.org/10.1007/3-540-11494-7_22
hhtp://www.r6rs.org
http://www.w3.org/TR/2007/WD-xslt20-20070123
http://www.w3.org/TR/2007/WD-xslt20-20070123
http://www.w3.org/TR/xquery-11-20081203

	1 Introduction
	2 Architectural Reconfiguration Model
	2.1 Component Model
	2.2 Configuration Properties
	2.3 Reconfiguration Operations
	2.4 Temporal Logic

	3 Our Method's Main Outlines
	3.1 Basic Idea
	3.2 Modus Operandi
	3.3 Types Used
	3.4 Ordering States of Automata

	4 Our Method
	4.1 Functions
	4.2 Implementations' Correctness
	4.2.1 Termination
	4.2.2 Correctness

	5 Discussion and Future Work
	6 Conclusion

