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The paper explores propertiestaikasiewiczu-calculus a version of the quantitative/probabilistic
modalu-calculus containing both weak and strong conjunctionsdisidnctions from tukasiewicz
(fuzzy) logic. We show that this logic encodes the well-kmgpvobabilistic temporal logi®CTL.
And we give a model-checking algorithm for computing théorzél denotational value of a formula
at any state in a finite rational probabilistic nondeterstinitransition system.

1 Introduction

Among logics for expressing properties of nondeterminigtincluding concurrent) processes, repre-
sented as transition systems, Kozen's mqdaialculus [15] plays a fundamental rble. It subsumes
other temporal logics of processes, suclBls, CTL andCTL *. It does not distinguish bisimilar pro-
cesses, but separates (finite) non-bisimilar ones. Morergiy by a remarkable result of Janin and
Walukiewicz [14], it is exactly as expressive as the bisatioh-invariant fragment of monadic second-
order logic. Furthermore, there is an intimate connectidgth warity games, which offers an intuitive
reading of fixed-points, and underpins the existing teabgyfor model-checkingi-calculus properties.

For many purposes, it is useful to add probability to the cotaional model, leading to probabilistic
nondeterministic transition systems, ¢f.[23]. Among thféedent approaches that have been followed
to developing analogues of the modaicalculus in this setting, the most significant is that idtroed
independently by Huth and Kwiatkowska [12] and by Morgan &uaver [22], under which ajuanti-
tative interpretation is given, with formulas denoting valued0nl]. This quantitative setting permits
several variations. In particular, three different quatitie extensions of conjunction from booleans to
[0,1] (with O as false and 1 as true) arise naturally! [12]: minimunin(x,y); multiplication, xy; and
the strong conjunction (a.k.a. Lukasiewicz t-norm) fronk&siewicz fuzzy logic, max+y—1, 0). In
each case, there is a dual operator giving a correspondtegsan of disjunction: maximum, méxy);
comultiplication,x+ y — xy; and tukasiewicz strong disjunction, nfikt+-y, 1). The choice of min and
max for conjunction and disjunction is particularly natusance the corresponding-calculus, called
gLu in [18], has an interpretation in terms of 2-playgochasticparity games, which extends the usual
parity-game interpretation of the ordinary mogatalculus. This allows the real number denoted by a
formula to be understood as thalueof the associated gamie [18,/ 20].

The present paper contributes to a programme of ongoingnaseone of whose overall aims is
to investigate the extent to which quantitatiuecalculi play as fundamental a role in the probabilistic
setting as that of Kozen’g-calculus in the nondeterministic setting. The logicuglwith min/max as
conjunction/disjunction, is insufficiently expressiveorfexample, it cannot encode the standard prob-
abilistic temporal logidPCTL of [2]. Nevertheless, richer calculi can be obtained by agging qLu
with the other alternatives for conjunction/disjunctidn,be used in combination with max and min.
Such extensions were investigated by the first author in14]L where the game-theoretic interpretation
was generalized to accommodate the new operations.
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In this paper, we focus on a calculus containing two differi@terpretations of conjunction and
disjunction: min and max (written asandU) and the Lukasiewicz operations (written@and®). In
addition, as is natural in the quantitative setting, weldela basic operation for multiplying the value of
a formula by a rational constant j@, 1]. Since these operations are all familiar from Lukasiewiczz§
logic (see, e.g.[[11]), we call the resulting lodiakasiewiczu-calculus(t u).

As our first contribution, we show that the standard proligtiil temporal logicPCTL [2] can be
encoded in {u. A similar translation was originally given in the first aatts PhD thesis[[19], where
PCTL was translated into a quantitatigecalculus containing all three pairs of quantitative cowju
tion/disjunction operations in combination. Here, weatnéine the treatment by implementing the ob-
servation that the (co)multiplication operations are mafuired once the tukasiewicz operations are in
place. In fact, all that is needed is the encodability ofaiathreshold modalitiessee Remark 3.6 below.

An advantage of the Lukasiewiqz-calculus considered in the present paper is that it enjogs t
property that the value of a formula in a finite rational moietational, a property which does not
hold when the (co)multiplication operations are includedhie logic. As our second contribution, we
exploit this property by giving a (quantitative) model-ckimg algorithm that computes the value of a
L u formula at a state in a finite rational probabilistic nondeifi@istic transition system. The algorithm
adapts the approximation-based approach to nested fixatlgadculation to our quantitative calculus.

One could combine our two contributions and obtain a new faclaecking algorithm foPCTL.
But this is not advisable since the complexity bounds weinlfta model-checking {u are abysmal.
The positive messages of this paper are ratheREATL fits into the conceptually appealing framework
of quantitativeu-calculi, and that this framework is itself algorithmigalipproachable.

2 Technical background

Definition 2.1. Given a setSwe denote withZ(S) the set of(discrete) probability distribution®n S
defined as7(S)={d: S— [0,1] | st(s) = 1}. We say that € 2(S) is rational if d(s) is a rational
sc

number, for allse S.

Definition 2.2. A probabilistic nondeterministic transition syst€PNTS) is a pai(S, —) whereSis a
set of states ane> C Sx Z(9) is theaccessibilityrelation. We writes /4 if {d | s— d} =0. APNTS
(S —) isfinite rationalif Sis finite and Js.s{d | s— d} is afinite set of rational probability distributions.

We now introduce the novel logicit which extends the probabilistic (or quantitative) mogal
calculus (qlu) of [12,22,[18[ 5].

Definition 2.3. The logic tu is generated by the following grammar:

p:=X|P|P|lge|oue|ene|ese|ece| 0p| Op|uX.@|vX.@ ,

whereq ranges over rationals if9, 1], X over a countable sétar of variables and® over a seProp
of propositional letters which come paired with associatechplement$. As a convention we denote
with 1 the formulavX.X and withq the formulag1.

Thus, tu extends the syntax of the probabilistic mogatalculus by the new pair of connectives
(®, @), which we refer to agukasiewicz conjunctioanddisjunction respectively, and a form aicalar
multiplication (q @) by rationals numbers ii®), 1]. For mild convenience in the encodingRETL below,
we consider a version with unlabelled modalities and privioosil letters. However, the approach of this
paper easily adapts to a labeled version af L

Formulas are interpreted over PNTS'’s as we now describe.
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Definition 2.4. Given a PNTSS —), aninterpretationfor the variables and propositional letters is a
functionp : (VarwProp) — (S— [0, 1]) such thap(P)(x) = 1— p(P)(x). Given a functionf : S— [0, 1]
andX € var we define the interpretation|f /X] asp[f/X](X) = f andp[f/X](Y) = p(Y), for X #Y.
Definition 2.5. The semantics of a g formula ¢ interpreted over(S —) with interpretationp is a
function [¢], : S— [0, 1] defined inductively on the structure @fas follows:

[Xlp = p(X) [a9lp(¥) =a- [@]o(X)
[Plp = p(P) [Plo=1-p(P)
[ou wlo(x) = max{[@]o(x), [W]o( )} [en o (x) = min{[@]o(x), [W]p(x)}
[[cp@wﬂ (X) = min{1, [[fpﬂ M+ [Wle®} (oo ylpx) = max{O [[fp]]p( X)+ [Wlp(x) — 1}
1001009 = || (3 dw)lelo(v) 0l,00 = [ (3, dW)eley)

x—d Y€ x—d Y€
[kX. wﬂ—lfp(fw[[fpﬂ [t/x]) [1X.¢] = gfp(fH[[fpﬂ f/X)

It is straightforward to verify that the interpretation afegy operator is monotone, thus the existence of
least and greatest points in the last two clauses is guadbiethe the Knaster-Tarski theorem.

As customary in fixed-point logics, we presented the logicik positive normal form. A negation
operationdual () can be defined onlosedformulas by replacing every connective with its dual and
(q¢) with ((1—q) @). Itis simple to verify thafldual(@)],(x) = 1— [@]p(X).

Next, we introduce the syntax and the semantics of the IBGIEL of [2]. We refer to [1] for an
extensive presentation of this logic.

The notions opaths schedulerandMarkov runsin a PNTS are at the basis of the lo#€TL.

Definition 2.6. For a given PNTSZ = (S —) the binary relation~ ¢ C Sx Sis defined as follows:
~g={(st) | Id.(s—d A d(t) > 0)}. Note thats /4 if and only if s4~. We refer to(S ~) as the
graph underlyingZ.

Definition 2.7. A pathin a PNTS.¥Z = (S,—) is an ordinary path in the grapls ~~), i.e., a finite or
infinite sequences }ic| of states such tha ~~ 5.4, for alli+ 1 € 1. We say that a path ismaximal
if either it is infinite or it is finite and its last entry is a #tas, without successors, i.e., such tlsgts.
We denote with RZ’) the set of all maximal paths i¥’. The set P.¥’) is endowed with the topology
generated by the basic open d8¢s= {T' | SC '} whereSis a finite sequence of states andlenotes the
prefix relation on sequences. The spa¢&®is always O-dimensional, i.e., the basic dé¢sare both
open and closed and thus form a Boolean algebra. We dendtésjtthe open setl;, of all maximal
paths having as first state.

Definition 2.8. A schedulerin a PNTS(S —) is a partial functiono from non-empty finite sequences
S. ... Sy of states to probability distributiond € 2(S) such thato(s....sy) is not defined if and only
if s,/ and, ifo is defined afy....s, with 0(....s) = d, thens, — d holds. A pair(s,0) is called
aMarkov runin . and denoted by5. It is clear that each Markov ruM? can be identified with a
(generally) infinite Markov chain (having a tree structundjose vertices are finite sequences of states
and having{s} as root.

Markov runs are useful as they naturally induce probabifigasures on the spacé®).
Definition 2.9. Let ¥ = (S —) be a PNTS an15 a Markov run. We define the measurg on R.Y)
as the unique (by Carathéodory extension theorem) meapewfied by the following assignment of
basic open sets:

n—-1

My (Usy...s0) = |1 di(Sit1)
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whered; = 0(s....5) and[]0 = 1. It is simple to verify thatm? is a probability measure, i.e.,
my(P(.Z)) = 1. We refer tar, as the probability measure ori.#) induced by the Markov ruM;.

We are now ready to specify the syntax and semantiéQaiL .

Definition 2.10. Let the letterP range over a countable set of propositional symbelsp. The class of
PCTL state-formulagp is generated by the following two-sorted grammar:

Q= true| P|~@| Vo |3Y |V | Pigy | Pigy
with g € QN [0,1] and x € {>,>}, wherepath-formulasy are generated by the simple grammar:
Y= o@ | @7 . Adopting standard terminology, we refer to the connestivand% as thenextand
until operators, respectively.

Definition 2.11. Given a PNTS S, —), aPCTL-interpretationfor the propositional letters is a function
p : Prop — 25, where 2 denotes the powerset 8f

Definition 2.12. Given a PNTS(S —) and aPCTL-interpretationp for the propositional letters, the
semanticq @), of aPCTL state-formulapis a subset 0§ (i.e., (@), : S— {0, 1}) defined by induction
on the structure o as follows:

o (true)p =S (P)p=p(P), (@ V @2)p = (@)pU (@), (—@Dp =S\ (@),
e (3Y),(s) =1 if and only there exists € P(s) such that thas € []
e (VY)p(s)=1if and only forallS € P(s) it holds thatSe (), (3)

]Pﬂ

o (PLqW)p(s)=1ifand only (| lsm3((¢)p)) xa

o (PLqw)p(s) =1Lifand only([omG((w)p)) > q
whereo ranges over schedulers and the semarftigl, of path formulas, defined as a subset P
(i.e.,asamagy), : P(Z) — {0,1}) is defined as:

e (o@)p(S)=1ifand onlyif|s > 2 (i.e.,8=s.51....) ands; € (@),

o (0% ®)p(3) =1ifand only if 3n.((sh € (@)p) AYM<N.(SnE (@1)p)),

It is simple to verify that, for all path-formulag, the set( (), is Borel measurable [1]. Therefore
the definition is well specified. Note how the lo@®€TL can express probabilistic properties, by means

of the connective%”iq andIP’iq, as well as (qualitative) properties of the graph undegytimee PNTS by

means of the quantifieksand3.

3 Encoding of PCTL

We prove in this section hoRCTL can be seen as a simple fragment ¢f hy means of an explicit
encoding. We first introduce a few useful macro formulas m ltbgic £u which, crucially, are not
expressible in the probabilistjg-calculus (qglu).

Definition 3.1. Let ¢ be a (possibly open) i formula. We define:
o Poop=uX.(XD@) o P_ig=vX.(XO @) o Poqp= P>O((P@ﬂ) o Poqp= P:l((p@ﬂ)
forqe QN (0,1). We writeP,q¢, for g € QN [0, 1], to denote one of the four cases.

The following proposition describes the denotational ssima of these macro formulas.

Proposition 3.2. Let (S —) be a PNTSg a tu formula andp an interpretation of the variables. Then
it holds that:



Matteo Mio & Alex Simpson 91

_J 1 if[g]p(s) xq
[Prq@lo(s) _{ 0 otheerise

Proof. For the casé- o, observe that the map— q® x, for a fixedqe [0,1], has 1 as unique fixed
point wheng> 0, and O as the least fixed point whggr-0. The result then follows trivially. Similarly
for P_1¢. The other cases are trivial. O
The following lemma is also useful.
Lemma 3.3. Let (S,—) be a PNTS¢ a tu formula andp an interpretation of the variables. Then:
o [P-o(OX)]p(s) = 1iff 3t.(s~tAp(X)(t) >0)
o [P_1(OX)]p(s) = 1iff Vt.(s~t— p(X)(t) =1)

Proof. Note that[0X](s) > 0 iff there existss — d such thatzsd(t)p(x)(t) > 0 holds. This is the case
te

iff d(t)>0 (i.e.,s~t) andp(X)(t) >0, for somet € S. The result then follows by Propositidn B.2. The
case forP_1(0X) is similar. O

Remark 3.4. When considerind0, 1}-valued interpretations foX, the macro formul®-o( expresses
the meaning of the diamond modality in classical modal legtb respect to the grapfs, ~~) underlying
the PNTS. SimilarlylP—1[0 corresponds to the the classical box modality.

We are now ready to define the encodindP@TL into L.

Definition 3.5. We define the encoding from PCTL formulas to closed i formulas (whergag stands
for the tu formulaO@m ¢1), by induction on the structure of tHe&CTL formulase as follows:

1. E(P) =P,

o 00 A WN
AA/TAA
|
)

Il
o
c
Q
=
m
)

N—r

9. E(PLq(00)) =Puq(0E(9)),
10. E(PY4(09)) = Pug( D E(9)),

11. EPL(@% @) = Poq (kX (E(2) U (E(@)N10X)) ),

12. E(PS,o(@% @) = Prg (kX (E() U (E(@) NEX)) ),
Note that Caskl4 is well defined sinE¢p) is closed by construction.
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Remark 3.6. The only occurrences of tukasiewicz operatdrs,©} and scalar multiplicatior{q )

in encodedPCTL formulas appear in the formation of the macro formubag () which we refer to
asthreshold modalities Thus, PCTL can be also seen as a fragment ofugéxtended with thresh-
old modalities as primitive operations. With the aid of #hesodalities the encoding is, manifestly, a
straightforward adaption of the standard encoding of CTa the modalu-calculus (see, e.gl, [24]).

We are now ready to prove the correctness theorem which Fadsbitrary models.

Theorem 3.7. For every PNT$S,— ), PCTL-interpretationp : Prop— (S—{0,1}) of the propositional
letters andPCTL formula ¢, the equality|@),(s) = [E(¢)],(s) holds, for all se S.

Proof (outline). The proof goes by induction on the complexity @f Case$ 1144 of Definition 3.5 are
trivial. Case b follows directly from Lemmia 3.3. Observifgit[@¢],(s) = 0 if s+~ and[@¢],(s) =
[Del,(s) otherwise, also Ca$é 6 is a consequence of Leinma 3.3. Conagks[7 anid 8. The encoding
is of the formuX.(F L (G H (X)), whereF andG (by induction hypothesis) ard (X) (by Proposition
[3.2) are all{0,1}-valued. Therefore the functdr— [F U (GrH(X))]p(s/x) maps{0,1}-valued func-
tions to{0,1}-valued functions and has on{, 1}-valued fixed-points. It then follows by Remdrk3.4
that the correctness of the encoding for these two casesecprobed with the standard technique used
to prove the correctness of the encoding of CTL into Kozentsalculus (see, e.gl, [24]). Consider Case
Q. Itis immediate to verify that |, {mg(U)}, whereU = (o@)), = U{Usyy |t € (@), }, is equal (by
induction hypothesis) thOE(¢)],(s). The desired equalitﬂ/Piqo ®)p = [P«qQE(9)]p then follows by
Propositior 3.R. Cade 110 is similar. The two cdsés 11 ahdel gimnilar, thus we just consider cdsé 11.
Letp= Piq(t,u) andy = g% @. We denote with¥ the set of path§y ) ,. Denote byF (X) the formula
E(@) U (E(g) MOX). Itis clearly sufficient to prove that the equality, {m (W)} = [UX.F(X))]o(s)
holds. Note thapuX.F(X) can be expressed as an equivalentidbrmulas by substituting the closed
subformulasE(¢) andE(¢,) with two fresh atomic predicatdd with interpretationg (P) = [E(@)].
The equality can then be proved by simple arguments baseleogaime-semantics of gi(see, e.g.,
[18] and [20]), similar to the ones used to prove that the K&zg-calculus formulauX.(P,V (PLA QX))
has the same denotation of the CTL formid([®,% P,) (see, e.g./[24]). O

4 tukasiewicz u-terms

The aim of the second half of the paper is to show how to comiingtérational) denotational value of
a tu formula at any state in a finite rational probabilistic ti&ina system. In this section, we build the
main machinery for doing this, based on a system of fixedtgenmns for defining monotone functions
from [0,1]" to [0, 1]. The syntax oftukasiewicz)u-termsis specified by the grammar:

to=x|qt|tut|trit|tat|[tot] uxt|vxt

Again, g ranges over rationals i, 1]. As expected, thg andv operators bind their variables. We write
t(x1,...,X,) to mean that all free variables bére contained ifxy, ..., X\ }.

Thevalue {T) (we eschew semantic brackets) qfdermt(xy,...,X,) applied to a vectofrs,...,r,) €
[0,1]" is defined inductively in the obvious way, cf. Definition 2(fhdeed,u-terms form a fragment of
£ u of formulas whose value is independent of the transitiotesysn which they are interpreted.)

In Section[6, the model-checking task will be reduced to tteblem of computing the value of
p-terms. The fundamental property that allows such valudset@omputed is that, for any-term
t(x1,...,X,) and vector of rationaléq, . .., qn), the value ot(q) is rational and can be computed from
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t andg. One way of establishing this result is by a simple reductmthe first-order theory of rational
linear arithmetic, which provides an indirect means of catimg the value ot(d). The current sec-
tion presents a brief outline of this approach. After thisSiectior b, we provide an alternative direct
algorithm for computind ().

A linear expressiorin variablesxy, ..., X, iS an expression

OiXa+---+0nXn+4

whereqy,...,0n,q are real numbers. In the sequel, we only considdional linear expressions, in
which qy,...,0n,q are all rational, and we henceforth assume this propertiyowitmention. We write
e(x,...,Xn) if eis alinear expression ixy,...,X,, in which case, given real numbers...,r,, we write
e(T) for the value of the expression when the varialéake values. We also make use of the closure of
linear expressions under substitution: giveRry,...,X,) andey(ya,...,Ym),---,en(Y1,---,Ym), We write
e(ey,...,ey) for the evident substituted expression in variabyes. ., ym (which is defined formally by
multiplying out and adding coefficients).

The first-order theory ofational linear arithmetichas linear expressions as terms, and strict and
non-strict inequalities between linear expressions,

e <e eg<e , 1)

as atomic formulas. Equality can be expressed as the cdigoraf two non-strict inequalities and the
negation of an atomic formula can itself be expressed asami@tformula. The truth of a first-order
formula is given via its interpretation in the reals, or eglently in the rationals since the inclusion of
the latter in the former is an elementary embedding. Therthexgjoys quantifier elimination [8].

Proposition 4.1. For every tukasiewicg-term t(xy, ..., X,), its graph{(X,y) € [0,1]™ | t(X) =y} is
definable by a formulaiFxs, ..., X,Y) in the first-order theory of rational linear arithmetic, wieek is
computable from t.

Proof. The proof is a straightforward induction on the structuré. &Ve consider two cases, in order to
illustrate the simple manipulations used in the constomctf F .
If tisty dty thenk is the formula

Jz,2.R,Xza) NR,X2) AN (n+2<INz=z1+2)V (1<zn+2Nz=1))
If tis uxn.1.t’ thenk is the formula
R (X1, %, VoY) AVZ R(Xg,...,%,22) > y<zZ.
U

Proposition 4.1l provides the following method of computthg valuet(q) of u-termt(xy,...,x,) at
a rational vector(qy,...,qn) € [0,1]". First constructi (x1,...,%,,Y). Next, perform quantifier elim-
ination to obtain an equivalent quantifier-free form@gaxy,...,X,,y), and consider its instantiation
Gi(a1,---,0n,Y) atg. (Alternatively, obtain an equivalent formu@f(y) by performing quantifier elim-
ination onk(qs,...,0n,Y).) By performing obvious simplifications of atomic formulisone variable,
Gt(a1,---,0n,Y) reduces to a boolean combination of inequalities each bavne of the following forms

y=<q y<(q y=q y>q.
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By the correctness @ there must be a unique rational satisfying the boolean caatibin of constraints,
and this can be extracted in a straightforward way f@tts,...,qn,Y).

We give a crude (but sufficient for our purposes) complexitglgsis of the above procedure. In
general, for gu-termt of lengthu containingv fixed points, the length of is bounded by ic, for
some constant. The quantifier-elimination procedure [n [8], when giverbeniula of length as input
produces a formula of length at most 2s output, for some constadf and takes time at most?.
Thus the length of the formul@ (x, ..., X,,y) is bounded by Z4°d, and the computation time fa(d)

. 22Vucd’ . . . . .
isO(2 ), using a unit cost model for rational arithmetic.

5 Adirect algorithm for evaluating u-terms

Our direct approach to computing the valuegueferms is based on a simple explicit representation of
the functions defined by such terms.cAnditioned linear expressias a pair, writterC - e, wheree is
a linear expression, ar@is a finite set of strict and non-strict inequalities betwéieear expressions;
i.e., each element @ has one of the forms il }(1). We wri@(F) for the conjunction of the inequations
obtained by instantiating for X in C. Clearly, if g is a vector of rationals then it is decidabledfq)
is true or false. The intended meaning of a conditioned timx@ressiorC i e is that it denotes the
valuee() when applied to a vector of reatsor which C(F) is true, otherwise it is undefined. A basic
property we exploit in the sequel is that every conditions®C(xs,...,x%,) defines a convex subset
{(r1,...,rn) |C(F)} of R".

Let .# be asystem(i.e., finite set) of conditioned linear expresssions iraldesxs, ..., X,. We say
that.Z represents functionf : [0,1]" — [0, 1] if the following conditions hold:

1. Foralldy,...,d, € [0,1], there exists a conditioned linear expressiGrt- e) € .# such thaC(d)
is true, and

-

2. foralldy,...,d, € [0,1], and every conditioned linear expressi@i- e) € .Z, if C(d) is true then
e(d) = f(d).
Note that, for two conditioned linear expressiq@s + e1), (Cz - &) € .%, we do not require different
conditioning set&€; andC; to be disjoint. However; ande, must agree on any overlap.

Obviously, the function represented by a system of cormutiiblinear expressions is unique, when it
exists. But not every system represents a function. Onelampose syntactic conditions on a system
to ensure that it represents a function, but we shall notuguttsis.

While conditioned linear expressions provide a syntax namectly tailored to expressing functions
than general logical formulas, their expressivity in tl@gard coincides with rational linear arithmetic.

Proposition 5.1. A function f: [0,1]" — [0, 1] is representable by a system of conditioned linear expres-

sions if and only if its grapH (X,y) € [0,1]™? | f(X) =y} is definable by a formula &y, ..., X,,y) in the

first-order theory of rational linear arithmetic. Moreovex defining formula and a representing system

of conditioned linear equations can each be computed freother.

We believe this result to be folklore. The proof is a strdigihward application of quantifier elimination.
Combining Propositions 4.1 ahd 5.1 we obtain:

Corollary 5.2. For every Lukasiewicg-term t(xy,...,Xn), the function
F—t(F): [0,1]" — [0,1]

is representable by a system of conditioned linear exprassin variables x ..., x,. Furthermore a
representing system can be computed from t.
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The computation of a representing systemtfaia quantifier elimination, provided by the proofs
of Propositions 4]1 and 8.1, is indirect. The goal of thistisecis to present an alternative algorithm
for calculating the valug(r) of a u-term at rationals,...,r, € [0,1], which is directly based on ma-
nipulating conditioned linear expressions. Rather thanping an entire system of conditioned linear
expressions representingthe algorithm works locally to provide a single conditidnexpression that
applies to the input vectat.

The algorithm takes, as inputiatermt(x, ..., X,) and a vector of rational§ 1, ...,rn) € [0,1]", and
returns a conditioned linear expressiomn g, in variablesxy, ..., X,, with the following two properties.

(P1) C(7) is true.
(P2) Forallsy,...,s, € R, if C(3) is true thersy, ..., s, € [0,1] ande(S) =t(S).

It follows thate(T) =t(T), soe can indeed be used to compute the value.

5.1 The algorithm

The algorithm takes, as input,iatermt(xs,...,%,) and a vector of rational&,...,rn) € [0,1]", and
returns a conditioned linear expression- e, in variablesx, ..., X,, with the properties (P1) and (P2)
above. For the purposes of the correctness proof in Sécilit & convenient to consider the running of
the algorithm in the more general case that. ., r, are arbitrary real numbers j@, 1]. This more general
algorithm can be understood as an algorithm in the Real RAM&aBSS) model of computation![3].
When the input vector is rational, all real numbers encaedteluring execution of the algorithm are
themselves rational, and so the general Real RAM algoritcialises to &ona fide(Turing Machine)
algorithm in this case. Moreover, even in the case of irrgtiagnputs, all linear expressions constructed
in the course of the algorithm are rational.

The algorithm works recursively on the structure of the terkVe present illustrative cases for terms
t; ®tp anduxy.1.t’. The latter is the critical case. The algorithm fog, 1.t is an obvious dualization.

If t isty @t then recursively computg; + e; andC; + e. If e1(F) + e(T) < 1 then return

C17C27el+e2§l'_ el+e2 .
Otherwise, return
C,C.ege+eo>1F1 .

In the case thatis uxy.1.t’, enter the following loop starting with = 0@ andd = 0.

Loop: At the entry of the loop we have a finite sBtof inequalities between linear expressions in
X1,...,%n, and we have a linear expressiofx, ..., %n). The loop invariant that applies is:

(11) D(r) is true; and
(12) foralls€[0,1]", if D(S) thend(S) < (UXn+1.1)(35).

We think of D as constraints propagated from earlier iterations of tlg,l@and ofd as the current
approximation to the least fixed point subject to the coiga
Recursively computé(x,...,X,+1) at(f,d(r)) asC - e, wheree has the form:

Qi X1+ -+ 0OnXn + Onr1Xnt1+0 - (2)
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In the case thaf, 1 # 1, define the linear expression:

=7 (X1 4+ X +0q) . 3)
—On+1

Test ifC(T, f(T)) is true. If it is, exit the loop and return:
DUCXq,-. %0, d(X1,...,%n)) UC(X1, ..., Xn, F(X1,..., %)) F 4)

as the result of the algorithm farx.t’ atr. Otherwise, ifC(T, f(F)) is false, defineN(xy,...,x,) to be
the negation of the inequalitgy (X1, ..., Xn, f(X1,... X)) < €(X1,...,%n, f(X1,...X:)) (using < to stand
for either < or <), whereey(Xy,...,Xn+1) < €(X1,...,%+1) iS @ chosen inequality i€ for which
el(r, (1)) < e(r, f(T)) is false, and go téind next approximation below.
In the case thaf, ; = 1, test the equalit@y r1 +--- +gnrn+g= 0. If true, exit the loop with result:
DUC(X1,. -, %n, d(X1,.... %)) U{Qi X1+ +UnXn+0q=0} - d . (5)
If insteadqy r1+ -+ +0nrn+q# 0, chooseN(xg, . .., X,) to be whichever of the inequalities

QiX1+--+0nXn+0q < 0 0< X+ +0h*%+Q

is true forr, and proceed witlfind next approximation below.

Find next approximation: Arrange the inequalities i@ so they have the following structure.

C'U {Xnt1> & tr<i<rr U X1 > @ brcicr U {Xns1 < bibacicn U {Xnt1 < bibav<icm (6)

such that the only variables in the inequaliti®’s and linear expressiors, bj arexy,...,X,. Choosej
with 1 < j < msuch thab; () <b;(r) for all i with 1 <i < m. Then go back tdoop, taking

DUCKX,. . X, d(Xe, ..., %)) U{N(Xs,.... %)} U{bj <bi [1<i<m}  eXDbj(X) (7)

to replaceD andd respectively.

5.2 A simple example

Consider the {u termt = ux.(]P’z%x U %), where]P’z%x is the macro formula as in Definitidn 3.1, that is
P.3x=P_1(x® 3) = vy.(yo (x& 3)). Thus,

= e (o D))

Heret'(x) = vy.(y® (x& 3)) U 3 is a discontinuous function, and the valuet & 1.

We omit giving a detailed simulation of the algorithm on thibexpressiony’ (x) atx = r. The result
it produces, however, 0 <x< 3} - 3if r < 1, and{3 <x <1} 1ifr > 3.

We run the algorithm on inpytix.t’(x). SetD = 0 andd = 0. Calculatingt’(x) atx = 0 we obtain
Creas{0<x< 3} 3. We now need to calculate:= 15(3) = 3. The constrain€(}) does not hold.
Thus we need to improve the approximatida= 0. Sincee = % is constant, the next approximation is
%. The new set of constraints is still the emptyset. Thus watiéethe algorithm wittb = 0 andd = %
Calculatingt’(x) atx = 3 produces<C - eas{3 < x < 1} - 1. Computef := ;15(1) = 1. SinceC(1)
holds, the algorithm terminates with-01, as desired.
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5.3 Correctness of the algorithm

Theorem 5.3. Let (X, ...,X,) be any Lukasiewicg-term. Then, for every input vectdry,...,r,) €
[0,1)", the above (Real RAM) algorithm terminates with a condétbfinear expression{G- e satisfy-
ing properties (P1) and (P2). Moreover, the set of all pokesilesulting conditioned linear expressions

{Grelre(01"} (8)
is finite, and thus provides a representing system for thetiomt: [0, 1]" — [0,1].

Before the proof it is convenient to introduce some ternugglassociated with the properties stated in
the theorem. For a-termt, we call the cardinality of the sdt](8) of possible resulis}- e, the basis
size and we call the maximum number of inequalities in &ayhe condition size

Proof. By induction on the structure of We verify the critical case whenis px,.1.t'.

We show first that the loop invariants (11), (12) guaranteat thny result returned vial(4) drl(5)
satisfies (P1) and (P2). By induction hypothesis, the re@icomputation of’(xa, ..., X,+1) at(F,d(r))
asC e, wheree has the fornmg; x; + - - - 4+ Qn Xy + On1 %01 + g @s in [2), satisfiesC(F,d(r)); and, for
allsy,...,sn1 €R, if C(s1,...,5+1) thenSe [0,1]" andt/(sy,...,S+1) = €(S1,- -+, Snel)-

In the case that, 1 # 1, the linear expressiof, defined in[(8), maps argy, ..., s, € R to the unique
solution f(S) to the equatiork,;1 = €(S1,---,S,%+1) in R. Suppose thab(sS) holds. Then, by loop
invariant (12),d(8) < (Uxn+1.t')(5). Suppose also th&(S, f(3)). Thent'(5,1(3)) = €(5, f(5)) = (3),
i.e., f(3) is a fixed point ofx,+1 — t'(35,%n1+1); whence,(uxn;1.t")(8) < f(5). Suppose, finally, that
C(5,d(3)) also holds. Then, because bdails d(5)) andC(s, f(5)), andd(5) < (Uxn+1.1')(3) < (3),
we have, by the convexity of constraints, th&g,s,,1) = €(5,sn+1) for all s,41 € [d(3), f(S5)]. Sof(3)
is the unique fixed-point okn.1 — t'(5,%,1) on [d(3), f(5)]. Since,d(5) < (UxXn:1.1')(5), we have
f(3) = (UXn+1-1')(S). This argument justifies that the conditioned linear exgicesof [4) satisfies (P2).
It satisfies (P1) just i€(T, f(F)), which is exactly the condition under whidH (4) is returnedtee result.

In the case that, 1 = 1 then, for anysy,...,s, € R, the equationk, 1 = €(S1,...,5,X+1) has a
solution if and only ifq1 s + - - - + ghSh+ g = 0O, in which case any,.1 € R is a solution. Suppose that
qiS1+ -+ 0nSh+q=0andC(5,d(3)) both hold. Thert’(sy,...,s,d(35)) = e(5,d(5)) = d(5), sod(X) is
a fixed point ofxn.1 — t'(5,X,+1). If also D(S) holds then, by loop invariant (I2§(X) = (UXn1.t')(35).
We have justified that the conditioned linear expressionSpfsatisfies (P2). It satisfies (P1) just if
Oir1+---+0nrn+q= 0, which is exactly the condition under whidh (5) is returmesdhe result.

Next we show that the loop invariants are preserved thrauglcdmputation. Properties (11) and (12)
are trivially satisfied by the initial valued = 0 andd = 0. We must show that they are preserved when
D andd are modified vial(7), which happens when execution passasdtaext approximation. In this
subroutine, the inequalities @ are first arranged as inl(6) where,&§,d(F)), we must haven> 1, as
otherwiseC(T,s) would hold for all reals > d(r), contradicting tha€(r,s) impliess € [0, 1]. (Similarly,
| > 1.) Thus there indeed exisfswith 1 < j < msuch that;(r) <b;(F) for all i with 1 <i <m. Itis
immediate that the constraints in the modifiedf (7) are true for. Thus (I1) is preserved. To show
(12), supposesy, ..., s, satisfy the constraints, i.e.,

DE CEAE) N (e <bE|1<i<m).

Definingr’ = (uxn11.t')(8), by (12) for D,d we haved(3) < r’. We must show tha#(s, b;(3)) <r’. By
the definition ofN(xg, ..., X,), in either thegn, 1 # 1 orgn,1 = 1 caseN(S) implies thatC(s, r’) does not
hold. Becaus€(S,d(3)) and by the choice ¢f, it holds thatC(s,s), for all s€ [0, 1] such thas = d(S) or
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d(S) < s< bj(S). SinceC(s,r’) is false andi(S) < 1, it follows from the convexity of the conditioning
setC that, for everys with s= d(S) or d(5) < s< bj(3), we haves < r’. Whence, since’ is the least
prefixed point forx, .1 — t'(5,%,11), alsos<t'(§,s) <r’, i.e.,

s<e@Ss <r' . )

Thus, e(S,b;(5)) = sup{e(S,s) | s=d(5) ord(s) <s<bj(9} <r'. Thus,e(sb;j(3) <r’, i.e., itis an
approximation to the fixed point. Moreover, it is a good newragimation to choose in the sense that:

d(s) < e(3.b;(S)) and notC(S e(Sb;(s))) - (10)

The former holds becausgs) < e(S,d(3)), by (9), andd(S) < b;(5). The latter becaused(s, e(S,bj(5)))
then, in particulare(s, b (S)) < bj(5), sobj(5) = e(§,b;j(5)) =r’, contradicting that naE(s,r’).

To show termination, by induction hypothesis, collectitigpassible results of running the algorithm
ont’ produces a representing systemtfor[0, 1]"** — [0, 1]:

Cikteg ... Cvlte s (ll)

wherek’ is the basis size df. We now analyse the execution of the algorithm ffiog, 1.t on a given

input vector(rq,...,rn). On iteration numbei, the loop is entered with constrairids and approximation
di (whereD; = 0 andd; = 0), after which the recursive call to the algorithm toryields one of the

conditioned linear expressior@ - &, from (11) above, such th& (7, d;(r)) holds. Then, depending
on conditions involving only, - & andr, either a result is returned, &1 andd;;, are constructed
for the loop to be repeated. Bl (10), at iteration 1 of the loop, we have1(F) > di(T) and also

Cy (T, di+1(T)) is false. Since each conditioning set is convex, it followattnoC; can occur twice in

the listCy,,Cy,,.... Hence the algorithm must exit the loop after at midsterations. Therefore, the
computation forux.t” atF terminates.

It remains to show that the algorithm fax.t’ produces only finitely many conditioned linear expres-
sionsCr + €. The crucial observation is that the vectas used only to determine the control flow of
the algorithm, i.e., which branches of conditional statetsare followed, the choices made in selecting
N andb; in (7)), and the order in which the differe@} + e;, from (11) are visited (given by the sequence
ki, ko, ... of values taken byj). Using this, ifl” is the condition size of, then a loose upper bound is
that the number of possible results I e for the algorithm forux,1.t" is at most(k'(1)2)¥, and the
number of inequalities i€ is at most R'I”. O

The above proof gives a truly abysmal complexity bound ferdlgorithm. Let the basis and con-
dition size for the ternt’(xy,...,X,+1) be k' andl’ respectively. Then, as in the proof, the basis and
condition size foiux,.1.t" are respectively bounded by:

k< KIHVK and | < 2KI" .

Using these bounds, the basis and condition size have eomeatary growth in the number of fixed
points in a ternt.
5.4 Comparison

According to the crude complexity analyses we have givemgtlaluation of Lukasiewica-terms via
rational linear arithmetic is (in having doubly- and triggxponential space and time complexity bounds)



Matteo Mio & Alex Simpson 99

preferable to the (non-elementary space and hence timkjatizan via the direct algorithm. Neverthe-
less, we expect the direct algorithm to work better thanithmactice. Indeed, a main motivating factor
in the design of the direct algorithm is that the algorithm e, ;.t" only explores as much of the basis
set fort’ as it needs to, and does so in an order that is tightly constidiy the monotone improvements
made to the approximating expressions along the way. In contrast, the crude complexialysis is
based on a worst-case scenario in which the algorithm isressuo visit the entire basis faf, and,
moreover, to do so, for different input vectatsin every possible order for visiting the different basis
sets. Perhaps better bounds can be obtained by a more Garefysis of the algorithm.

6 Model checking

Let @ be a closed u formula and(S,—) a finite rational PNTS. We wish to compute the va]gé(s) at
any given stats € S. We do this by effectively producing a closgdtermts(¢), with the property that
ts(@) = [¢](s), whence the rational value §§](s) can be calculated by the algorithm in Secfion 5.

We assume, without loss of generality, that all fixed-poperators ing bind distinct variables. Let
X1,...,%Xm be the variables appearing gn We write g; X;. ; for the unique subformula ap in which X;
is bound. The strict (i.e., irreflexivejominationrelationX; > X; between variables is defined to mean
thato; X;. y); occurs as a subformula ifx.

SupposdS = n. For eachs € S, we translatep to a u-termtg(¢p) containing at mosmn variables
X ¢, Where 1< i < mands € S The translation is defined using a more general fundfiordefined
on subformulas ofp, wherel' C {1,...,m} x Sis an auxiliary component keeping track of the states at
which variables have previously been encountered. Givand(i,s) € {1,...,m} x S, we define:

re(i,s) = (FU{i.9M\{(j,s) €T [ X > Xj} .

This operation is used in the definition below to ‘reset’ sulimate fixed-point variables whenever a new
variable that dominates them is declared.

tQ(N)z{)qs s if (i,s)gr

OiXs ts (t,U.) otherwise
e (P)=p(P)(s)
t{(P)=1—p(P)(s)
ts (d9) = qt (@)
t(Pre@) =t (1) ot (2 ) -e{u,ﬂ,@@}
£ (09) = || @ ds)t
s—d seS
=[] @ ds) (o)
s—»d €S

ru{(i,s)}

t (i Xi. ) = Oi Xis- I ()
This is well defined because changing fronto I > (i,s) or tol" U{(i,s)} strictly increases the function
i—[{(,s) ] (,s) el}:{L,...,m} - {0,...,n}

under the lexicographic order on functions relative-to
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Proposition 6.1. For any closed i formulag, finite PNTSS, —) and s S, it holds thaf @] (s) =t2(¢).

We omit the laborious proof. It is reminiscent of the redoistdof modalii-calculus model checking to a
system of nested boolean fixed-point equations in Sectidii/h

7 Related and future work

The first encodings of probabilistic temporal logics in al@bilistic version of the modagk-calculus
were given in[[4], where a versidACTL ", tailored to processes exhibiting probabilistic but nabde-
terministic choice, was translated into a non-quantigapvobabilisitic variant of the:-calculus, which
included explicit (probabilistic) path quantifiers butaliswed fixed-point alternation.

In their original paper on quantitative-calculi [12], Huth and Kwiatkowska attempted a model
checking algorithm for alternation-free formulas in thesien of Lu with & and® but withoutr, L and
scalar multiplication. Subsequently, several authoreteldressed the problem of computing (some-
times approximating) fixed points for monotone functionsgnbining linear (sometimes polynomial)
expressions with min and max operations; see [10] for a sumntdowever, such work has focused
on (efficiently) finding outermost (simultaneous) fixedsgeifor systems of equations whose underlying
monotone functions are continuous. The nested fixed poamisidered in the present paper give rise to
the complication of non-continuous functions, as the exarapSectiori 5.2 demonstrates.

As future work, it is planned to run an experimental comparisf the direct algorithm against the
reduction to linear arithmetic. As suggested in SedtiohWwelexpect the direct algorithm to work better
in practice than the non-elementary upper bound on its cexiip) given by our crude analysis, suggests.
Furthermore, as a natural generalization of the approximatpproach to computing fixed points, the
direct algorithm should be amenable to optimizations sgdha simultaneous solution of adjacent fixed
points of the same kind, and the reuse of previous approxmatvhen applicable due to monotonicity
considerations. Unlike the black-box reduction to linedthanetic, based on quantifier elimination, the
linear-constraint-based approach of the direct algorifiould also offer a flexible machinery helpful
in the design of optimized procedures for calculating valogparticular subclasses ofterms. An
important example is given by the fragment gf tapable of encodinBCTL (see Remark316).

Our results on 1 are a contribution towards the development of a robust yhebiixed-point prob-
abilistic logics. The simplicity of the proposed encodifdP€TL (see Remark 316 above) suggests that
the direction we are following is promising. In a follow-upger, by the first author, it will be shown
that the process equivalence characterised by tukasiguricalculus is the standard notion pfoba-
bilistic bisimilarity [23]. Thus the quantitative approach to probabiligticcalculi may be considered
equally suitable as a mechanism for characterising pramssalence as the non-quantitativecalculi
advocated for this purpose inl[4] and [7].

Further research will have to explore the relations betwsemtitativep-calculi such as 1 and
other established frameworks for verification and desigmprobabilistic systems. Important exam-
ples include thebstract probabilistic automataf [6], the compositionahssume-guaranteiechniques
of [16, /9] and the recenp-automataof [13]. In particular, with respect to the latter formalismve
note that the acceptance condition of p-automata is spedifieerms of stochastic games whose con-
figurations may have preseeded threshold values whosenadtisely resembles that of the threshold
modalities considered in this work (Definitiobn B.1). Exphgy the relations between p-automata games
and tu-games|[19] could shed light on some underlying fundamedéss.
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A Appendix: some omitted proof details

We add detail to the outlined proof of Theoreml3.7, by sumgthe omited argument for the equality

| {m& (W)} = [kX-F(X))]p(s)

which appears as cdse] 11. Although game semantics protiel@sdst intuitive justification, we instead
give a direct denotational proof, in order to avoid introitdigcgame-theoretic machinery.

Expanded proof of Theordm B.Casé 1l(<). We first show that

| H{m3 (W)} < [uX-F(X))]p () (12)

DefineWy = {0.51.%... | o=sand3an < k.(sh € (@) p AYM< n.(sn € (@1)p))}. ClearlyW = Uy Wi
Suppose Inequalify 12 does not hold. Then there exists &and scheduleo such that

Mg (Wi) > [UX.F(X)]o(s) (13)

We prove that this is not possible by inductionlonn thek = 0 case, since we are assummg(¥o) >0,
it holds thats€ () ,. By inductive hypothesis og,, we know thafE(¢,)[(s) = 1 and this implies that
pX.F(X) =1, which is a contradiction with the assumed strict inedqydlB. Consider the cade+ 1.
Note that ifse (@), then, [uX.F(X)]o(s) = 1 as before, contradicting Inequality]13. So asswsge
(@) p- Since we are assumimg, (V1) > 0 it must be the case tha (¢@))p. Similarly, mg, (Y1) >0
ands¢ (@), imply thats 4 does not hold. This means (see Definifion 2.8) thefs}) is defined. Let
d = o({s}) and observe thaty, (Wx;1) = Zd(t)m‘a,(wk), whered’(s,s1,..-,5) = 0(5,%,S1,---,S)-
te
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By induction onk we know that the inequality, (Wi) < [uX.F(X)],(t) holds for everyt € S Thus,
by definition of the semantics df, we obtainm(Wy) < [0 (uX.F(X))],. Recall that we previously
assumed ¢ (@))p andse (@ ),. Hence the equality

[0 (LX.F (X)) 1o(s) = [E(g2) U (E(@) M (OUX.F(X)))]o(s)

holds. The formula on the right is just the unfoldiRguX.F (X)) of uX.F(X). This implies the desired
contradiction.
Casé 1iL>>). We now prove that also the inequality

U{ms )} = [UX.F(X)]p(s) (14)

holds. By Knaster-Tarski theorerfiy X.F(X)], = |4 [F(X)][3, wherea ranges over the ordinals and
[F(X)] 5« with p® = p[l Ig_ [F (X)] 55 /X]. We prove Inequality 14 by showing, by transfinite induction
that for every ordinabr ande > 0, the inequality

|_|{rns )} > [UX.F(X)]pa(s) — € (15)

holds, for alls€ S. The case foor = 0 is immediate sincgF] ,o(s) > 0if and only if [E(¢)]»(s) =1 and
this implies| |, {mg ()} = 1. Considerr = B+ 1. If [E(®)],(s) = 1 then Inequality T4 holds as above.

Thus assumég,],(s) = 0. Note that[F],(s) > 0 only if s€ [E(q)]. Thus assum@E((pl)ﬂg(s) =
1. Under these assumptioff (X)]pa = [OF (X)] s as it is immediate to verify. By definition of the

semantics of) we have:
[OF(X)ee(8) = || (3 d®[F(X)]ps(1))

s—d t€
By induction hypothesis offi we know that for eveng,

[OF 0)Tee(®) < LI (3 a0 (L (w)}+¢))
s—d

For eachs — d ando definec? asa?({s}) = d anda’(sto....) = o(tp...). A simple argument shows

that

L] ( (|_|{mt J}+e)) = |_|{ W)} +¢

s—d te€
and this conclude the proof for the case= 3+ 1. Lastly, the case far a limit ordinal follows straight-
forwardly from the inductive hypothesis ¢h< a. O

Proof of Propositiori 5.1.Suppose we have a systemkofonditioned linear expressions representfng
Each conditioned expressi@+ eis captured by the implicatiof\C) — y = e, so the whole system
translates into a conjunction &fsuch implications. To this conjunction, one need only addrénge
constraints 0< zandz < 1 for each variable, as further conjuncts. In this way, the graph is easily
expressed as a quantifier free formula. (Since the imptinatare equivalent to disjunctions of atomic
formulas, the resulting formula is naturally in conjunetiormal form.)

Conversely, suppode(xy, ..., Xn,Y) defines the graph df. By quantifier elimination, we can assume
thatF is quantifier free and in disjunctive normal form. Théns a disjunction of conjunctions, where
each conjunctionK, can be easily rewritten in the form

(/\C)/\(/\ y>a;>A</\ yzbi>A</\y§ci>A< A y<di> . (16)

1<i<h 1<i<k 1<i<m
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such that the only variables in the finite set of atomic forms@, and linear expressiors, b, ¢, d; are
X1,...,X%. SinceF is the graph of a function, for all reals, ..., ry, there is at most ongsuch thak (T, s)
holds, and, if it does, then all of,...,rn,sare in[0,1]. Given such ams, we therefore have:

max{a(7) | 1<i<h} <max{bi(r)|1<i<k}=s=min{c(F) |1<i<I} <min{di(F) | 1<i<m} .

A system of conditioned linear expressions fois thus obtained as follows. For each conjuidn F,
written in the form of [(16) above, and eaghvith 1 < j <k, include the conditioned linear expression:

C, {bj > ai}1<i<n, {bj > bi}1<i<k, {bj < Cita<icr, {bj < di}a<i<m, b bj .
0

We supplement the proof of Theoréml5.3 with more detail orbthends on basis and condition size.

Expanded proof of Theordm 5.8Ve analyse the control flow in the algorithm fax,,1.t" on a given
input vector(rq,...,rn). On iteration numbei, the loop is entered with constrairid and approximation
d;, after which the recursive call to the algorithm foyields one of the conditioned linear expressions,
Cy - e&. Suppose thaly, andD; containu andv inequalities respectively. If the loop is exited producing
(4) as result then the resultir@y has 21+ v inequalities. If it is exited producind(5) as result then
hasu+ v+ 2 inequalities (wherei+v+ 2 < 2u+ v becauseCy, has to enforce the range constraint
0 < Xn.1 < 1). Otherwise, the algorithm repeats the loop, enterimatiieni + 1 with Dj, 1, given by [T),
having at most @+ v inequalities N contributes 1 inequality, and there are at most1 inequalities

bj < by in (7) sincel > 1).

Therefore, ifl” is now maximum number of inequalities occurring in @yfrom (1) (i.e., if it is
the condition size fot’) the algorithm forux,,1.t" at¥, which runs for at most’ iterations, results i€
containing at mosti2l’ inequalities.

To bound the number of resul@ + e, we count the possible control flows of the algorithm. At
iterationi, the algorithm use€y, + &, from (1), using which it might terminate with eithér (4) &)(
or it might repeat the loop, entering iteratios 1 with Dj_1, given by [T), which can arise fro in
a number of ways determined by the possible pairs of chomeN findb; in (7). In the case that the
variable vector(x, ..., X,) is empty (i.e., the ternux,,1.t" is closed) the constraints D are redundant
(they are simply true inequalities between rathionals) smdan be discarded. In the case that 1,
there are at least 2 inequalities@ngiving range constraints aq, so there are at moktchoices forN
(I"— 2 choices in the case that,1 # 1, and 2 in the casa, .1 = 1). Irrespective of, there are at most
I”— 1 choices fomb; (takingn into account this can be improvedIte- 2n— 1). Therefore, the execution
of the algorithm, is determined by the sequence:

kla Uy, k27 u, ..., km’V

where:m < K is the number of loop iterations performed; eaghwhere 1< u; < I’(I’ — 1), represents
the choice ofN andb; used in the construction @, (7), andv is 1 or 2 according to whether the
resultingC: + e is returned vial(4) oL (5). Since each numkgis distinct, the number of different such
sequences is bounded by:
K K'! Y m—-1 111\ 2\K
2y ————(1"(1"=1)™ < (K(l 17
3 G- S KO (17)

where the right-hand-side gives a somewhat loose upperdbdirerefore, the number of possible results
C: I & for the algorithm forux,,1.t’ is at most(k' (")) O
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