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The paper explores properties ofŁukasiewiczµ-calculus, a version of the quantitative/probabilistic
modalµ-calculus containing both weak and strong conjunctions anddisjunctions from Łukasiewicz
(fuzzy) logic. We show that this logic encodes the well-known probabilistic temporal logicPCTL .
And we give a model-checking algorithm for computing the rational denotational value of a formula
at any state in a finite rational probabilistic nondeterministic transition system.

1 Introduction

Among logics for expressing properties of nondeterministic (including concurrent) processes, repre-
sented as transition systems, Kozen’s modalµ-calculus [15] plays a fundamental rôle. It subsumes
other temporal logics of processes, such asLTL , CTL andCTL ∗. It does not distinguish bisimilar pro-
cesses, but separates (finite) non-bisimilar ones. More generally, by a remarkable result of Janin and
Walukiewicz [14], it is exactly as expressive as the bisimulation-invariant fragment of monadic second-
order logic. Furthermore, there is an intimate connection with parity games, which offers an intuitive
reading of fixed-points, and underpins the existing technology for model-checkingµ-calculus properties.

For many purposes, it is useful to add probability to the computational model, leading to probabilistic
nondeterministic transition systems, cf. [23]. Among the different approaches that have been followed
to developing analogues of the modalµ-calculus in this setting, the most significant is that introduced
independently by Huth and Kwiatkowska [12] and by Morgan andMcIver [22], under which aquanti-
tative interpretation is given, with formulas denoting values in[0,1]. This quantitative setting permits
several variations. In particular, three different quantitative extensions of conjunction from booleans to
[0,1] (with 0 as false and 1 as true) arise naturally [12]: minimum,min(x,y); multiplication, xy; and
the strong conjunction (a.k.a. Łukasiewicz t-norm) from Łukasiewicz fuzzy logic, max(x+y−1, 0). In
each case, there is a dual operator giving a corresponding extension of disjunction: maximum, max(x,y);
comultiplication,x+ y− xy; and Łukasiewicz strong disjunction, min(x+ y, 1). The choice of min and
max for conjunction and disjunction is particularly natural, since the correspondingµ-calculus, called
qLµ in [18], has an interpretation in terms of 2-playerstochasticparity games, which extends the usual
parity-game interpretation of the ordinary modalµ-calculus. This allows the real number denoted by a
formula to be understood as thevalueof the associated game [18, 20].

The present paper contributes to a programme of ongoing research, one of whose overall aims is
to investigate the extent to which quantitativeµ-calculi play as fundamental a rôle in the probabilistic
setting as that of Kozen’sµ-calculus in the nondeterministic setting. The logic qLµ , with min/max as
conjunction/disjunction, is insufficiently expressive. For example, it cannot encode the standard prob-
abilistic temporal logicPCTL of [2]. Nevertheless, richer calculi can be obtained by augmenting qLµ
with the other alternatives for conjunction/disjunction,to be used in combination with max and min.
Such extensions were investigated by the first author in [21,19], where the game-theoretic interpretation
was generalized to accommodate the new operations.
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In this paper, we focus on a calculus containing two different interpretations of conjunction and
disjunction: min and max (written as⊓ and⊔) and the Łukasiewicz operations (written as⊙ and⊕). In
addition, as is natural in the quantitative setting, we include a basic operation for multiplying the value of
a formula by a rational constant in[0,1]. Since these operations are all familiar from Łukasiewicz fuzzy
logic (see, e.g., [11]), we call the resulting logicŁukasiewiczµ-calculus(Łµ).

As our first contribution, we show that the standard probabilistic temporal logicPCTL [2] can be
encoded in Łµ . A similar translation was originally given in the first author’s PhD thesis [19], where
PCTL was translated into a quantitativeµ-calculus containing all three pairs of quantitative conjunc-
tion/disjunction operations in combination. Here, we streamline the treatment by implementing the ob-
servation that the (co)multiplication operations are not required once the Łukasiewicz operations are in
place. In fact, all that is needed is the encodability of certain threshold modalities, see Remark 3.6 below.

An advantage of the Łukasiewiczµ-calculus considered in the present paper is that it enjoys the
property that the value of a formula in a finite rational modelis rational, a property which does not
hold when the (co)multiplication operations are included in the logic. As our second contribution, we
exploit this property by giving a (quantitative) model-checking algorithm that computes the value of a
Łµ formula at a state in a finite rational probabilistic nondeterministic transition system. The algorithm
adapts the approximation-based approach to nested fixed-point calculation to our quantitative calculus.

One could combine our two contributions and obtain a new model-checking algorithm forPCTL .
But this is not advisable since the complexity bounds we obtain for model-checking Łµ are abysmal.
The positive messages of this paper are rather thatPCTL fits into the conceptually appealing framework
of quantitativeµ-calculi, and that this framework is itself algorithmically approachable.

2 Technical background

Definition 2.1. Given a setS we denote withD(S) the set of(discrete) probability distributionson S
defined asD(S)={d : S→ [0,1] | ∑

s∈S

d(s) = 1}. We say thatd ∈ D(S) is rational if d(s) is a rational

number, for alls∈ S.

Definition 2.2. A probabilistic nondeterministic transition system(PNTS) is a pair(S,→) whereS is a
set of states and→ ⊆ S×D(S) is theaccessibilityrelation. We writes 6→ if {d | s→ d} = /0. A PNTS
(S,→) is finite rational if Sis finite and

⋃

s∈S{d | s→ d} is a finite set of rational probability distributions.

We now introduce the novel logic Łµ which extends the probabilistic (or quantitative) modalµ-
calculus (qLµ) of [12, 22, 18, 5].

Definition 2.3. The logic Łµ is generated by the following grammar:

φ ::= X | P | P | qφ | φ ⊔φ | φ ⊓φ | φ ⊕φ | φ ⊙φ | ♦φ | �φ | µX.φ | νX.φ ,

whereq ranges over rationals in[0,1], X over a countable setVar of variables andP over a setProp
of propositional letters which come paired with associatedcomplementsP. As a convention we denote
with 1 the formulaνX.X and withq the formulaq1.

Thus, Łµ extends the syntax of the probabilistic modalµ-calculus by the new pair of connectives
(⊙, ⊕), which we refer to asŁukasiewicz conjunctionanddisjunction, respectively, and a form ofscalar
multiplication(qφ ) by rationals numbers in[0,1]. For mild convenience in the encoding ofPCTL below,
we consider a version with unlabelled modalities and propositional letters. However, the approach of this
paper easily adapts to a labeled version of Łµ .

Formulas are interpreted over PNTS’s as we now describe.
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Definition 2.4. Given a PNTS(S,→), an interpretationfor the variables and propositional letters is a
functionρ : (Var⊎Prop)→ (S→ [0,1]) such thatρ(P)(x) = 1−ρ(P)(x). Given a functionf : S→ [0,1]
andX ∈ Var we define the interpretationρ [ f/X] asρ [ f/X](X) = f andρ [ f/X](Y) = ρ(Y), for X 6=Y.

Definition 2.5. The semantics of a Łµ formula φ interpreted over(S,→) with interpretationρ is a
functionJφKρ : S→ [0,1] defined inductively on the structure ofφ as follows:

JXKρ = ρ(X) JqφKρ(x) = q· JφKρ(x)
JPKρ = ρ(P) JPKρ = 1−ρ(P)
Jφ ⊔ψKρ(x) = max{JφKρ(x),JψKρ(x)} Jφ ⊓ψKρ(x) = min{JφKρ(x),JψKρ(x)}
Jφ ⊕ψKρ(x) = min{1,JφKρ(x)+ JψKρ(x)} Jφ ⊙ψKρ(x) = max{0,JφKρ(x)+ JψKρ(x)−1}

J♦φKρ(x) =
⊔

x→d

(

∑
y∈X

d(y)JφKρ(y)
)

J�φKρ(x) =
l

x→d

(

∑
y∈X

d(y)JφKρ(y)
)

JµX.φK = lfp
(

f 7→ JφKρ [ f/X]

)

JµX.φK = gfp
(

f 7→ JφKρ [ f/X]

)

It is straightforward to verify that the interpretation of every operator is monotone, thus the existence of
least and greatest points in the last two clauses is guaranteed by the the Knaster-Tarski theorem.

As customary in fixed-point logics, we presented the logic Łµ in positive normal form. A negation
operationdual(φ) can be defined onclosedformulas by replacing every connective with its dual and
(qφ) with ((1−q)φ). It is simple to verify thatJdual(φ)Kρ(x) = 1− JφKρ(x).

Next, we introduce the syntax and the semantics of the logicPCTL of [2]. We refer to [1] for an
extensive presentation of this logic.

The notions ofpaths, schedulersandMarkov runsin a PNTS are at the basis of the logicPCTL .

Definition 2.6. For a given PNTSL = (S,→) the binary relation L ⊆ S×S is defined as follows:
 L = {(s, t) | ∃d.(s→ d ∧ d(t) > 0)}. Note thats 6→ if and only if s 6 . We refer to(S, ) as the
graph underlyingL .

Definition 2.7. A path in a PNTSL = (S,→) is an ordinary path in the graph(S, ), i.e., a finite or
infinite sequence{si}i∈I of states such thatsi  si+1, for all i + 1 ∈ I . We say that a path ismaximal
if either it is infinite or it is finite and its last entry is a state sn without successors, i.e., such thatsn 6 .
We denote with P(L ) the set of all maximal paths inL . The set P(L ) is endowed with the topology
generated by the basic open setsU~s = {~r |~s⊑~r} where~s is a finite sequence of states and⊑ denotes the
prefix relation on sequences. The space P(L ) is always 0-dimensional, i.e., the basic setsU~s are both
open and closed and thus form a Boolean algebra. We denote with P(s) the open setU{s} of all maximal
paths havingsas first state.

Definition 2.8. A schedulerin a PNTS(S,→) is a partial functionσ from non-empty finite sequences
s0. . . .sn of states to probability distributionsd ∈ D(S) such thatσ(s0. . . .sn) is not defined if and only
if sn 6→ and, if σ is defined ats0. . . .sn with σ(s0. . . .sn) = d, thensn → d holds. A pair(s,σ) is called
a Markov run in L and denoted byMs

σ . It is clear that each Markov runMs
σ can be identified with a

(generally) infinite Markov chain (having a tree structure)whose vertices are finite sequences of states
and having{s} as root.

Markov runs are useful as they naturally induce probabilitymeasures on the space P(L ).

Definition 2.9. Let L = (S,→) be a PNTS andMs
σ a Markov run. We define the measurems

σ on P(L )
as the unique (by Carathéodory extension theorem) measurespecified by the following assignment of
basic open sets:

ms
σ
(

Us0....sn

)

=
n−1

∏
i=0

di(si+1)
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where di = σ(s0. . . .si) and ∏ /0 = 1. It is simple to verify thatms
σ is a probability measure, i.e.,

ms
σ (P(L )) = 1. We refer toms

σ as the probability measure on P(L ) induced by the Markov runMs
σ .

We are now ready to specify the syntax and semantics ofPCTL .

Definition 2.10. Let the letterP range over a countable set of propositional symbolsProp. The class of
PCTL state-formulasφ is generated by the following two-sorted grammar:

φ ::= true | P | ¬φ | φ ∨φ | ∃ψ | ∀ψ | P∃
⋊qψ | P∀

⋊qψ
with q ∈ Q∩ [0,1] and⋊ ∈ {>,≥}, wherepath-formulasψ are generated by the simple grammar:
ψ ::= ◦φ | φ1U φ2. Adopting standard terminology, we refer to the connectives ◦ andU as thenextand
until operators, respectively.

Definition 2.11. Given a PNTS(S,→), aPCTL-interpretationfor the propositional letters is a function
ρ : Prop→ 2S, where 2S denotes the powerset ofS.

Definition 2.12. Given a PNTS(S,→) and aPCTL-interpretationρ for the propositional letters, the
semanticsLφ Mρ of aPCTL state-formulaφ is a subset ofS(i.e.,Lφ Mρ : S→{0,1}) defined by induction
on the structure ofφ as follows:

• L trueMρ = S, LPMρ = ρ(P), Lφ1∨φ2Mρ = Lφ1 Mρ ∪ Lφ2Mρ , L¬φ Mρ = S\ Lφ Mρ ,

• L∃ψ Mρ(s) = 1 if and only there exists~s∈ P(s) such that that~s∈ JψK
• L∀ψ Mρ(s) = 1 if and only forall~s∈ P(s) it holds that~s∈ Lψ Mρ(~s)

• LP∃
⋊qψ Mρ(s) = 1 if and only

(

⊔

σ ms
σ (Lψ Mρ)

)

⋊q

• LP∀
⋊qψ Mρ(s) = 1 if and only

(d
σ ms

σ (Lψ Mρ)
)

⋊q

whereσ ranges over schedulers and the semanticsLψ Mρ of path formulas, defined as a subset of P(L )
(i.e., as a mapLψ Mρ : P(L )→{0,1}) is defined as:

• L◦φ Mρ(~s) = 1 if and only if |~s| ≥ 2 (i.e.,~s= s0.s1. . . . ) ands1 ∈ Lφ Mρ ,

• Lφ1U φ2 Mρ(~s) = 1 if and only if∃n.
(

(sn ∈ Lφ2 Mρ)∧∀m< n.(sm ∈ Lφ1 Mρ)
)

,

It is simple to verify that, for all path-formulasψ , the setLψ Mρ is Borel measurable [1]. Therefore
the definition is well specified. Note how the logicPCTL can express probabilistic properties, by means
of the connectivesP∀

⋊q andP∃
⋊q, as well as (qualitative) properties of the graph underlying the PNTS by

means of the quantifiers∀ and∃.

3 Encoding of PCTL

We prove in this section howPCTL can be seen as a simple fragment of Łµ by means of an explicit
encoding. We first introduce a few useful macro formulas in the logic Łµ which, crucially, are not
expressible in the probabilisticµ-calculus (qLµ).

Definition 3.1. Let φ be a (possibly open) Łµ formula. We define:

• P>0φ = µX.(X⊕φ) • P=1φ = νX.(X⊙φ) • P>qφ = P>0(φ ⊙1−q) • P≥qφ = P=1(φ ⊕1−q)

for q∈Q∩ (0,1). We writeP⋊qφ , for q∈Q∩ [0,1], to denote one of the four cases.

The following proposition describes the denotational semantics of these macro formulas.

Proposition 3.2. Let (S,→) be a PNTS,φ a Łµ formula andρ an interpretation of the variables. Then
it holds that:
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JP⋊qφKρ(s) =

{

1 if JφKρ(s)⋊q
0 otherwise

Proof. For the caseP>0φ , observe that the mapx 7→ q⊕ x, for a fixedq∈ [0,1], has 1 as unique fixed
point whenq>0, and 0 as the least fixed point whenq=0. The result then follows trivially. Similarly
for P=1φ . The other cases are trivial.

The following lemma is also useful.

Lemma 3.3. Let (S,→) be a PNTS,φ a Łµ formula andρ an interpretation of the variables. Then:

• JP>0(♦X)Kρ(s) = 1 iff ∃t.
(

s t ∧ρ(X)(t)> 0
)

• JP=1(�X)Kρ(s) = 1 iff ∀t.
(

s t → ρ(X)(t) = 1
)

Proof. Note thatJ♦XKρ(s)> 0 iff there existss→ d such that∑
t∈S

d(t)ρ(X)(t)> 0 holds. This is the case

iff d(t)>0 (i.e.,s t) andρ(X)(t)>0, for somet∈S. The result then follows by Proposition 3.2. The
case forP=1(�X) is similar.

Remark 3.4. When considering{0,1}-valued interpretations forX, the macro formulaP>0♦ expresses
the meaning of the diamond modality in classical modal logicwith respect to the graph(S, ) underlying
the PNTS. Similarly,P=1� corresponds to the the classical box modality.

We are now ready to define the encoding ofPCTL into Łµ .

Definition 3.5. We define the encodingE from PCTL formulas to closed Łµ formulas (where�φ stands
for the Łµ formula�φ ⊓♦1), by induction on the structure of thePCTL formulasφ as follows:

1. E(P) = P,

2. E(true)=1,

3. E(φ1∨φ2) = E(φ1)⊔E(φ2),

4. E(¬φ) = dual(E(φ)),

5. E(∃(◦φ)) = P>0
(

♦E(φ)
)

,

6. E(∀(◦φ)) = P=1
(

�E(φ)
)

,

7. E(∃(φ1 U φ2)) = µX.
(

E(φ2)⊔
(

E(φ1)⊓P>0(♦X)
)

)

,

8. E(∀(φ1 U φ2)) = µX.
(

E(φ2)⊔
(

E(φ1)⊓P=1(�X)
)

)

,

9. E(P∃
⋊q(◦φ)) = P⋊q

(

♦E(φ)
)

,

10. E(P∀
⋊q(◦φ)) = P⋊q

(

�E(φ)
)

,

11. E(P∃
⋊q(φ1U φ2)) = P⋊q

(

µX.
(

E(φ2)⊔
(

E(φ1)⊓♦X
)

))

,

12. E(P∀
⋊q(φ1U φ2)) = P⋊q

(

µX.
(

E(φ2)⊔
(

E(φ1)⊓�X
)

))

,

Note that Case 4 is well defined sinceE(φ) is closed by construction.
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Remark 3.6. The only occurrences of Łukasiewicz operators{⊕,⊙} and scalar multiplication(qφ)
in encodedPCTL formulas appear in the formation of the macro formulasP⋊q( ) which we refer to
as threshold modalities. Thus,PCTL can be also seen as a fragment of qLµ extended with thresh-
old modalities as primitive operations. With the aid of these modalities the encoding is, manifestly, a
straightforward adaption of the standard encoding of CTL into the modalµ-calculus (see, e.g., [24]).

We are now ready to prove the correctness theorem which holdsfor arbitrary models.

Theorem 3.7. For every PNTS(S,→), PCTL-interpretationρ :Prop→ (S→{0,1}) of the propositional
letters andPCTL formulaφ , the equalityLφ Mρ(s) = JE(φ)Kρ(s) holds, for all s∈ S.

Proof (outline). The proof goes by induction on the complexity ofφ . Cases 1–4 of Definition 3.5 are
trivial. Case 5 follows directly from Lemma 3.3. Observing thatJ�φKρ(s) = 0 if s 6 andJ�φKρ(s) =
J�φKρ(s) otherwise, also Case 6 is a consequence of Lemma 3.3. Consider cases 7 and 8. The encoding
is of the formµX.(F ⊔ (G⊓H(X)), whereF andG (by induction hypothesis) andH(X) (by Proposition
3.2) are all{0,1}-valued. Therefore the functorf 7→ JF ⊔ (G⊓H(X))Kρ [ f/X] maps{0,1}-valued func-
tions to{0,1}-valued functions and has only{0,1}-valued fixed-points. It then follows by Remark 3.4
that the correctness of the encoding for these two cases can be proved with the standard technique used
to prove the correctness of the encoding of CTL into Kozen’sµ-calculus (see, e.g., [24]). Consider Case
9. It is immediate to verify that

⊔

σ{ms
σ (U)}, whereU = L◦φ Mρ =

⋃

{U{s.t} | t ∈ Lφ Mρ}, is equal (by
induction hypothesis) toJ♦E(φ)Kρ(s). The desired equalityLP∃

⋊q◦φ Mρ = JP⋊q♦E(φ)Kρ then follows by
Proposition 3.2. Case 10 is similar. The two cases 11 and 12 are similar, thus we just consider case 11.
Let φ = P∃

⋊q(ψ) andψ = φ1U φ2. We denote withΨ the set of pathsLψ Mρ . Denote byF(X) the formula
E(φ2)⊔ (E(φ1)⊓♦X). It is clearly sufficient to prove that the equality

⊔

σ{ms
σ (Ψ)} = JµX.F(X)

)

Kρ(s)
holds. Note thatµX.F(X) can be expressed as an equivalent qLµ formulas by substituting the closed
subformulasE(φ1) andE(φ2) with two fresh atomic predicatesPi with interpretationsρ(Pi) = JE(φi)K.
The equality can then be proved by simple arguments based on the game-semantics of qLµ (see, e.g.,
[18] and [20]), similar to the ones used to prove that the Kozen’s µ-calculus formulaµX.(P2∨(P1∧♦X))
has the same denotation of the CTL formula∃(P1U P2) (see, e.g., [24]).

4 Łukasiewiczµ-terms

The aim of the second half of the paper is to show how to computethe (rational) denotational value of
a Łµ formula at any state in a finite rational probabilistic transition system. In this section, we build the
main machinery for doing this, based on a system of fixed-point terms for defining monotone functions
from [0,1]n to [0,1]. The syntax of(Łukasiewicz)µ-termsis specified by the grammar:

t ::= x | qt | t ⊔ t | t ⊓ t | t ⊕ t | t ⊙ t | µx. t | νx. t

Again,q ranges over rationals in[0,1]. As expected, theµ andν operators bind their variables. We write
t(x1, . . . ,xn) to mean that all free variables oft are contained in{x1, . . . ,xn}.

Thevalue t(~r) (we eschew semantic brackets) of aµ-termt(x1, . . . ,xn) applied to a vector(r1, . . . , rn)∈
[0,1]n is defined inductively in the obvious way, cf. Definition 2.5.(Indeed,µ-terms form a fragment of
Łµ of formulas whose value is independent of the transition system in which they are interpreted.)

In Section 6, the model-checking task will be reduced to the problem of computing the value of
µ-terms. The fundamental property that allows such values tobe computed is that, for anyµ-term
t(x1, . . . ,xn) and vector of rationals(q1, . . . ,qn), the value oft(~q) is rational and can be computed from
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t andq. One way of establishing this result is by a simple reductionto the first-order theory of rational
linear arithmetic, which provides an indirect means of computing the value oft(~q). The current sec-
tion presents a brief outline of this approach. After this, in Section 5, we provide an alternative direct
algorithm for computingt(~q).

A linear expressionin variablesx1, . . . ,xn is an expression

q1x1+ · · ·+qnxn+q

whereq1, . . . ,qn,q are real numbers. In the sequel, we only considerrational linear expressions, in
which q1, . . . ,qn,q are all rational, and we henceforth assume this property without mention. We write
e(x1, . . . ,xn) if e is a linear expression inx1, . . . ,xn, in which case, given real numbersr1, . . . , rn, we write
e(~r) for the value of the expression when the variables~x take values~r . We also make use of the closure of
linear expressions under substitution: givene(x1, . . . ,xn) ande1(y1, . . . ,ym), . . . ,en(y1, . . . ,ym), we write
e(e1, . . . ,en) for the evident substituted expression in variablesy1, . . . ,ym (which is defined formally by
multiplying out and adding coefficients).

The first-order theory ofrational linear arithmetichas linear expressions as terms, and strict and
non-strict inequalities between linear expressions,

e1 < e1 e1 ≤ e2 , (1)

as atomic formulas. Equality can be expressed as the conjunction of two non-strict inequalities and the
negation of an atomic formula can itself be expressed as an atomic formula. The truth of a first-order
formula is given via its interpretation in the reals, or equivalently in the rationals since the inclusion of
the latter in the former is an elementary embedding. The theory enjoys quantifier elimination [8].

Proposition 4.1. For every Łukasiewiczµ-term t(x1, . . . ,xn), its graph{(~x,y) ∈ [0,1]n+1 | t(~x) = y} is
definable by a formula Ft(x1, . . . ,xn,y) in the first-order theory of rational linear arithmetic, where Ft is
computable from t.

Proof. The proof is a straightforward induction on the structure oft. We consider two cases, in order to
illustrate the simple manipulations used in the construction ofFt .

If t is t1⊕ t2 thenFt is the formula

∃z1,z2.Ft1(~x,z1) ∧ Ft2(~x,z2) ∧ ((z1+z2 ≤ 1∧z= z1+z2) ∨ (1≤ z1+z2∧z= 1))

If t is µxn+1. t ′ thenFt is the formula

Ft ′(x1, . . . ,xn,y,y) ∧ ∀z.Ft ′(x1, . . . ,xn,z,z)→ y≤ z .

Proposition 4.1 provides the following method of computingthe valuet(~q) of µ-term t(x1, . . . ,xn) at
a rational vector(q1, . . . ,qn) ∈ [0,1]n. First constructFt(x1, . . . ,xn,y). Next, perform quantifier elim-
ination to obtain an equivalent quantifier-free formulaGt(x1, . . . ,xn,y), and consider its instantiation
Gt(q1, . . . ,qn,y) at~q. (Alternatively, obtain an equivalent formulaG~q

t (y) by performing quantifier elim-
ination onFt(q1, . . . ,qn,y).) By performing obvious simplifications of atomic formulasin one variable,
Gt(q1, . . . ,qn,y) reduces to a boolean combination of inequalities each having one of the following forms

y≤ q y< q y≥ q y> q .
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By the correctness ofGt there must be a unique rational satisfying the boolean combination of constraints,
and this can be extracted in a straightforward way fromGt(q1, . . . ,qn,y).

We give a crude (but sufficient for our purposes) complexity analysis of the above procedure. In
general, for aµ-term t of lengthu containingv fixed points, the length ofFt is bounded by 2vuc, for
some constantc. The quantifier-elimination procedure in [8], when given a formula of lengthl as input

produces a formula of length at most 2dl as output, for some constantd, and takes time at most 22d′ l
.

Thus the length of the formulaGt(x1, . . . ,xn,y) is bounded by 22
vucd, and the computation time fort(~q)

is O
(

222vucd′)

, using a unit cost model for rational arithmetic.

5 A direct algorithm for evaluating µ-terms

Our direct approach to computing the values ofµ-terms is based on a simple explicit representation of
the functions defined by such terms. Aconditioned linear expressionis a pair, writtenC ⊢ e, wheree is
a linear expression, andC is a finite set of strict and non-strict inequalities betweenlinear expressions;
i.e., each element ofC has one of the forms in (1). We writeC(~r) for the conjunction of the inequations
obtained by instantiating~r for ~x in C. Clearly, if~q is a vector of rationals then it is decidable ifC(~q)
is true or false. The intended meaning of a conditioned linear expressionC ⊢ e is that it denotes the
valuee(~r) when applied to a vector of reals~r for whichC(~r) is true, otherwise it is undefined. A basic
property we exploit in the sequel is that every conditioningsetC(x1, . . . ,xn) defines a convex subset
{(r1, . . . , rn) |C(~r)} of Rn.

Let F be asystem(i.e., finite set) of conditioned linear expresssions in variablesx1, . . . ,xn. We say
thatF representsa function f : [0,1]n → [0,1] if the following conditions hold:

1. For alld1, . . . ,dn ∈ [0,1], there exists a conditioned linear expression(C ⊢ e) ∈ F such thatC(~d)
is true, and

2. for all d1, . . . ,dn ∈ [0,1], and every conditioned linear expression(C ⊢ e) ∈ F , if C(~d) is true then
e(~d) = f (~d).

Note that, for two conditioned linear expressions(C1 ⊢ e1),(C2 ⊢ e2) ∈ F , we do not require different
conditioning setsC1 andC2 to be disjoint. However,e1 ande2 must agree on any overlap.

Obviously, the function represented by a system of conditioned linear expressions is unique, when it
exists. But not every system represents a function. One could impose syntactic conditions on a system
to ensure that it represents a function, but we shall not pursue this.

While conditioned linear expressions provide a syntax moredirectly tailored to expressing functions
than general logical formulas, their expressivity in this regard coincides with rational linear arithmetic.

Proposition 5.1. A function f: [0,1]n → [0,1] is representable by a system of conditioned linear expres-
sions if and only if its graph{(~x,y) ∈ [0,1]n+1 | f (~x) = y} is definable by a formula F(x1, . . . ,xn,y) in the
first-order theory of rational linear arithmetic. Moreover, a defining formula and a representing system
of conditioned linear equations can each be computed from the other.

We believe this result to be folklore. The proof is a straightforward application of quantifier elimination.
Combining Propositions 4.1 and 5.1 we obtain:

Corollary 5.2. For every Łukasiewiczµ-term t(x1, . . . ,xn), the function

~r 7→ t(~r) : [0,1]n → [0,1]

is representable by a system of conditioned linear expressions in variables x1, . . . ,xn. Furthermore a
representing system can be computed from t.
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The computation of a representing system fort via quantifier elimination, provided by the proofs
of Propositions 4.1 and 5.1, is indirect. The goal of this section is to present an alternative algorithm
for calculating the valuet(~r) of a µ-term at rationalsr1, . . . , rn ∈ [0,1], which is directly based on ma-
nipulating conditioned linear expressions. Rather than computing an entire system of conditioned linear
expressions representingt, the algorithm works locally to provide a single conditioned expression that
applies to the input vector~r.

The algorithm takes, as input, aµ-termt(x1, . . . ,xn) and a vector of rationals(r1, . . . , rn)∈ [0,1]n, and
returns a conditioned linear expressionC ⊢ e, in variablesx1, . . . ,xn, with the following two properties.

(P1) C(~r) is true.

(P2) For alls1, . . . ,sn ∈ R, if C(~s) is true thens1, . . . ,sn ∈ [0,1] ande(~s) = t(~s).

It follows thate(~r) = t(~r), soecan indeed be used to compute the valuet(~r).

5.1 The algorithm

The algorithm takes, as input, aµ-term t(x1, . . . ,xn) and a vector of rationals(r1, . . . , rn) ∈ [0,1]n, and
returns a conditioned linear expressionC ⊢ e, in variablesx1, . . . ,xn, with the properties (P1) and (P2)
above. For the purposes of the correctness proof in Section 5.3, it is convenient to consider the running of
the algorithm in the more general case thatr1, . . . , rn are arbitrary real numbers in[0,1]. This more general
algorithm can be understood as an algorithm in the Real RAM (a.k.a. BSS) model of computation [3].
When the input vector is rational, all real numbers encountered during execution of the algorithm are
themselves rational, and so the general Real RAM algorithm specialises to abona fide(Turing Machine)
algorithm in this case. Moreover, even in the case of irrational inputs, all linear expressions constructed
in the course of the algorithm are rational.

The algorithm works recursively on the structure of the termt. We present illustrative cases for terms
t1⊕ t2 andµxn+1. t ′. The latter is the critical case. The algorithm forνxn+1. t ′ is an obvious dualization.

If t is t1⊕ t2 then recursively computeC1 ⊢ e1 andC2 ⊢ e2. If e1(~r)+e2(~r)≤ 1 then return

C1,C2, e1+e2 ≤ 1 ⊢ e1+e2 .

Otherwise, return
C1,C2, e1+e2 ≥ 1 ⊢ 1 .

In the case thatt is µxn+1. t ′, enter the following loop starting withD = /0 andd = 0.

Loop: At the entry of the loop we have a finite setD of inequalities between linear expressions in
x1, . . . ,xn, and we have a linear expressiond(x1, . . . ,xn). The loop invariant that applies is:

(I1) D(~r) is true; and

(I2) for all~s∈ [0,1]n, if D(~s) thend(~s)≤ (µxn+1. t ′)(~s).

We think of D as constraints propagated from earlier iterations of the loop, and ofd as the current
approximation to the least fixed point subject to the constraints.

Recursively computet ′(x1, . . . ,xn+1) at (~r ,d(~r)) asC ⊢ e, whereehas the form:

q1x1+ · · ·+qn xn+qn+1xn+1+q . (2)
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In the case thatqn+1 6= 1, define the linear expression:

f :=
1

1−qn+1
(q1 x1+ · · ·+qnxn+q) . (3)

Test ifC(~r , f (~r)) is true. If it is, exit the loop and return:

D ∪C(x1, . . . ,xn,d(x1, . . . ,xn)) ∪ C(x1, . . . ,xn, f (x1, . . . ,xn)) ⊢ f (4)

as the result of the algorithm forµx. t ′ at~r. Otherwise, ifC(~r , f (~r)) is false, defineN(x1, . . . ,xn) to be
the negation of the inequalitye1(x1, . . . ,xn, f (x1, . . .xn)) ⊳ e2(x1, . . . ,xn, f (x1, . . .xn)) (using⊳ to stand
for either < or ≤), wheree1(x1, . . . ,xn+1) ⊳ e2(x1, . . . ,xn+1) is a chosen inequality inC for which
e1(~r , f (~r))⊳ e2(~r , f (~r)) is false, and go tofind next approximation below.

In the case thatqn+1 = 1, test the equalityq1 r1+ · · ·+qn rn+q= 0. If true, exit the loop with result:

D ∪C(x1, . . . ,xn,d(x1, . . . ,xn)) ∪ {q1 x1+ · · ·+qnxn+q= 0} ⊢ d . (5)

If insteadq1 r1+ · · ·+qn rn+q 6= 0, chooseN(x1, . . . ,xn) to be whichever of the inequalities

q1 x1+ · · ·+qnxn+q < 0 0 < q1 x1+ · · ·+qnxn+q

is true for~r , and proceed withfind next approximation below.

Find next approximation: Arrange the inequalities inC so they have the following structure.

C′ ∪ {xn+1 > ai}1≤i≤l ′ ∪ {xn+1 ≥ ai}l ′<i≤l ∪ {xn+1 ≤ bi}1≤i≤m′ ∪ {xn+1 < bi}m′<i≤m (6)

such that the only variables in the inequalitiesC′, and linear expressionsai ,bi arex1, . . . ,xn. Choosej
with 1≤ j ≤ m such thatb j(~r)≤ bi(~r) for all i with 1≤ i ≤ m. Then go back toloop, taking

D ∪C(x1, . . . ,xn,d(x1, . . . ,xn)) ∪ {N(x1, . . . ,xn)} ∪ {b j ≤ bi | 1≤ i ≤ m} e(~x,b j(~x)) (7)

to replaceD andd respectively.

5.2 A simple example

Consider the Łµ termt = µx.(P≥ 1
2
x ⊔ 1

2), whereP≥ 1
2
x is the macro formula as in Definition 3.1, that is

P≥ 1
2
x= P=1(x⊕ 1

2) = νy.(y⊙ (x⊕ 1
2)). Thus,

t = µx.
(

νy.
(

y⊙ (x⊕
1
2
)
)

⊔
1
2

)

Here,t ′(x) = νy.
(

y⊙ (x⊕ 1
2)
)

⊔ 1
2 is a discontinuous function, and the value oft is 1.

We omit giving a detailed simulation of the algorithm on the subexpressiont ′(x) atx= r. The result
it produces, however, is{0≤ x< 1

2} ⊢
1
2 if r < 1

2, and{1
2 ≤ x≤ 1} ⊢ 1 if r ≥ 1

2.
We run the algorithm on inputµx.t ′(x). SetD = /0 andd = 0. Calculatingt ′(x) at x= 0 we obtain

C⊢ eas{0≤ x< 1
2} ⊢

1
2. We now need to calculatef := 1

1−0(
1
2) =

1
2. The constraintC(1

2) does not hold.
Thus we need to improve the approximationd = 0. Sincee= 1

2 is constant, the next approximation is
1
2. The new set of constraints is still the emptyset. Thus we iterate the algorithm withD = /0 andd = 1

2.
Calculatingt ′(x) at x = 1

2 producesC ⊢ e as{1
2 ≤ x ≤ 1} ⊢ 1. Computef := 1

1−0(1) = 1. SinceC(1)
holds, the algorithm terminates with /0⊢ 1, as desired.
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5.3 Correctness of the algorithm

Theorem 5.3. Let t(x1, . . . ,xn) be any Łukasiewiczµ-term. Then, for every input vector(r1, . . . , rn) ∈
[0,1]n, the above (Real RAM) algorithm terminates with a conditioned linear expression C~r ⊢ e~r satisfy-
ing properties (P1) and (P2). Moreover, the set of all possible resulting conditioned linear expressions

{C~r ⊢ e~r |~r ∈ [0,1]n} (8)

is finite, and thus provides a representing system for the function t: [0,1]n → [0,1].

Before the proof it is convenient to introduce some terminology associated with the properties stated in
the theorem. For aµ-term t, we call the cardinality of the set (8) of possible results,C~r ⊢ e~r , thebasis
size, and we call the maximum number of inequalities in anyC~r thecondition size.

Proof. By induction on the structure oft. We verify the critical case whent is µxn+1. t ′.
We show first that the loop invariants (I1), (I2) guarantee that any result returned via (4) or (5)

satisfies (P1) and (P2). By induction hypothesis, the recursive computation oft ′(x1, . . . ,xn+1) at (~r ,d(~r))
asC ⊢ e, wheree has the formq1 x1+ · · ·+qnxn+qn+1xn+1+q as in (2), satisfies:C(~r ,d(~r)); and, for
all s1, . . . ,sn+1 ∈R, if C(s1, . . . ,sn+1) then~s∈ [0,1]n andt ′(s1, . . . ,sn+1) = e(s1, . . . ,sn+1).

In the case thatqn+1 6= 1, the linear expressionf , defined in (3), maps anys1, . . . ,sn ∈R to the unique
solution f (~s) to the equationxn+1 = e(s1, . . . ,sn,xn+1) in R. Suppose thatD(~s) holds. Then, by loop
invariant (I2),d(~s) ≤ (µxn+1. t ′)(~s). Suppose also thatC(~s, f (~s)). Thent ′(~s, f (~s)) = e(~s, f (~s)) = f (~s),
i.e., f (~s) is a fixed point ofxn+1 7→ t ′(~s,xn+1); whence,(µxn+1. t ′)(~s) ≤ f (~s). Suppose, finally, that
C(~s,d(~s)) also holds. Then, because bothC(~s,d(~s)) andC(~s, f (~s)), andd(~s) ≤ (µxn+1. t ′)(~s) ≤ f (~s),
we have, by the convexity of constraints, thatt ′(~s,sn+1) = e(~s,sn+1) for all sn+1 ∈ [d(~s), f (~s)]. So f (~s)
is the unique fixed-point ofxn+1 7→ t ′(~s,xn+1) on [d(~s), f (~s)]. Since,d(~s) ≤ (µxn+1. t ′)(~s), we have
f (~s) = (µxn+1. t ′)(~s). This argument justifies that the conditioned linear expression of (4) satisfies (P2).
It satisfies (P1) just ifC(~r , f (~r)), which is exactly the condition under which (4) is returned as the result.

In the case thatqn+1 = 1 then, for anys1, . . . ,sn ∈ R, the equationxn+1 = e(s1, . . . ,sn,xn+1) has a
solution if and only ifq1 s1+ · · ·+qn sn+q= 0, in which case anyxn+1 ∈ R is a solution. Suppose that
q1 s1+ · · ·+qnsn+q= 0 andC(~s,d(~s)) both hold. Thent ′(s1, . . . ,sn,d(~s)) = e(~s,d(~s)) = d(~s), sod(~x) is
a fixed point ofxn+1 7→ t ′(~s,xn+1). If also D(~s) holds then, by loop invariant (I2),d(~x) = (µxn+1. t ′)(~s).
We have justified that the conditioned linear expression of (5) satisfies (P2). It satisfies (P1) just if
q1 r1+ · · ·+qn rn+q= 0, which is exactly the condition under which (5) is returnedas the result.

Next we show that the loop invariants are preserved through the computation. Properties (I1) and (I2)
are trivially satisfied by the initial valuesD = /0 andd = 0. We must show that they are preserved when
D andd are modified via (7), which happens when execution passes tofind next approximation. In this
subroutine, the inequalities inC are first arranged as in (6) where, asC(~r,d(~r)), we must havem≥ 1, as
otherwiseC(~r ,s) would hold for all reals≥ d(~r), contradicting thatC(~r ,s) impliess∈ [0,1]. (Similarly,
l ≥ 1.) Thus there indeed existsj with 1≤ j ≤ m such thatb j(~r) ≤ bi(~r) for all i with 1≤ i ≤ m. It is
immediate that the constraints in the modifiedD of (7) are true for~r . Thus (I1) is preserved. To show
(I2), supposes1, . . . ,sn satisfy the constraints, i.e.,

D(~s) C(~s,d(~s)) N(~s) {b j(~s)≤ bi(~s) | 1≤ i ≤ m} .

Defining r ′ = (µxn+1. t ′)(~s), by (I2) for D,d we haved(~s) ≤ r ′. We must show thate(~s,b j(~s)) ≤ r ′. By
the definition ofN(x1, . . . ,xn), in either theqn+1 6= 1 orqn+1 = 1 case,N(~s) implies thatC(~s, r ′) does not
hold. BecauseC(~s,d(~s)) and by the choice ofj, it holds thatC(~s,s), for all s∈ [0,1] such thats= d(~s) or
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d(~s) < s< b j(~s). SinceC(~s, r ′) is false andd(~s) ≤ r ′, it follows from the convexity of the conditioning
setC that, for everys with s= d(~s) or d(~s) < s< b j(~s), we haves< r ′. Whence, sincer ′ is the least
prefixed point forxn+1 7→ t ′(~s,xn+1), alsos< t ′(~s,s)≤ r ′, i.e.,

s< e(~s,s)≤ r ′ . (9)

Thus,e(~s,b j(~s)) = sup{e(~s,s) | s= d(~s) or d(~s)≤ s< b j(~s)} ≤ r ′. Thus,e(~s,b j(~s)) ≤ r ′, i.e., it is an
approximation to the fixed point. Moreover, it is a good new approximation to choose in the sense that:

d(~s)< e(~s,b j(~s)) and notC(~s,e(~s,b j(~s))) . (10)

The former holds becaused(~s)< e(~s,d(~s)), by (9), andd(~s)≤ b j(~s). The latter because ifC(~s,e(~s,b j(~s)))
then, in particular,e(~s,b j(~s))≤ b j(~s), sob j(~s) = e(~s,b j(~s)) = r ′, contradicting that notC(~s, r ′).

To show termination, by induction hypothesis, collecting all possible results of running the algorithm
on t ′ produces a representing system fort ′ : [0,1]n+1 → [0,1]:

C1 ⊢ e1 . . . Ck′ ⊢ ek′ , (11)

wherek′ is the basis size oft ′. We now analyse the execution of the algorithm forµxn+1. t ′ on a given
input vector(r1, . . . , rn). On iteration numberi, the loop is entered with constraintsDi and approximation
di (whereD1 = /0 andd1 = 0), after which the recursive call to the algorithm fort ′ yields one of the
conditioned linear expressions,Cki ⊢ eki , from (11) above, such thatCki (~r ,di(~r)) holds. Then, depending
on conditions involving onlyCki ⊢ eki and~r, either a result is returned, orDi+1 anddi+1 are constructed
for the loop to be repeated. By (10), at iterationi + 1 of the loop, we havedi+1(~r) > di(~r) and also
Cki (~r,di+1(~r)) is false. Since each conditioning set is convex, it follows that noCj can occur twice in
the listCk1,Ck2, . . . . Hence the algorithm must exit the loop after at mostk′ iterations. Therefore, the
computation forµx. t ′ at~r terminates.

It remains to show that the algorithm forµx. t ′ produces only finitely many conditioned linear expres-
sionsC~r ⊢ e~r . The crucial observation is that the vector~r is used only to determine the control flow of
the algorithm, i.e., which branches of conditional statements are followed, the choices made in selecting
N andb j in (7), and the order in which the differentCj ⊢ ej , from (11) are visited (given by the sequence
k1,k2, . . . of values taken byj). Using this, if l ′ is the condition size oft ′, then a loose upper bound is
that the number of possible resultsC~r ⊢ e~r for the algorithm forµxn+1. t ′ is at most(k′(l ′)2)k′ , and the
number of inequalities inC~r is at most 2k′l ′.

The above proof gives a truly abysmal complexity bound for the algorithm. Let the basis and con-
dition size for the termt ′(x1, . . . ,xn+1) be k′ and l ′ respectively. Then, as in the proof, the basis and
condition size forµxn+1. t ′ are respectively bounded by:

k ≤ (k′(l ′)2)k′ and l ≤ 2k′l ′ .

Using these bounds, the basis and condition size have non-elementary growth in the number of fixed
points in a termt.

5.4 Comparison

According to the crude complexity analyses we have given, the evaluation of Łukasiewiczµ-terms via
rational linear arithmetic is (in having doubly- and triply-exponential space and time complexity bounds)
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preferable to the (non-elementary space and hence time) evaluation via the direct algorithm. Neverthe-
less, we expect the direct algorithm to work better than thisin practice. Indeed, a main motivating factor
in the design of the direct algorithm is that the algorithm for µxn+1. t ′ only explores as much of the basis
set fort ′ as it needs to, and does so in an order that is tightly constrained by the monotone improvements
made to the approximatingd expressions along the way. In contrast, the crude complexity analysis is
based on a worst-case scenario in which the algorithm is assumed to visit the entire basis fort ′, and,
moreover, to do so, for different input vectors~r , in every possible order for visiting the different basis
sets. Perhaps better bounds can be obtained by a more carefulanalysis of the algorithm.

6 Model checking

Let φ be a closed Łµ formula and(S,→) a finite rational PNTS. We wish to compute the valueJφK(s) at
any given states∈ S. We do this by effectively producing a closedµ-term ts(φ), with the property that
ts(φ) = JφK(s), whence the rational value ofJφK(s) can be calculated by the algorithm in Section 5.

We assume, without loss of generality, that all fixed-point operators inφ bind distinct variables. Let
X1, . . . ,Xm be the variables appearing inφ . We writeσi Xi.ψi for the unique subformula ofφ in whichXi

is bound. The strict (i.e., irreflexive)dominationrelationXi ⊲ Xj between variables is defined to mean
thatσ j Xj .ψ j occurs as a subformula inψi .

Suppose|S| = n. For eachs∈ S, we translateφ to a µ-term ts(φ) containing at mostmnvariables
xi,s′ , where 1≤ i ≤ m ands′ ∈ S. The translation is defined using a more general functiontΓ

s , defined
on subformulas ofφ , whereΓ ⊆ {1, . . . ,m}×S is an auxiliary component keeping track of the states at
which variables have previously been encountered. GivenΓ and(i,s) ∈ {1, . . . ,m}×S, we define:

Γ⊲ (i,s) = (Γ∪{(i,s)})\{( j,s′) ∈ Γ | Xi ⊲ Xj} .

This operation is used in the definition below to ‘reset’ subordinate fixed-point variables whenever a new
variable that dominates them is declared.

tΓ
s (Xi) =

{

xi,s if (i,s) ∈ Γ
σi xi,s. tΓ⊲(i,s)

s (ψi) otherwise

tΓ
s (P) = ρ(P)(s)

tΓ
s (P) = 1−ρ(P)(s)

tΓ
s (qφ) = qtΓs (φ)

tΓ
s (φ1 •φ2) = tΓ

s (φ1)• tΓ
s (φ2) • ∈ {⊔,⊓,⊕,⊙}

tΓ
s (♦φ) =

⊔

s→d

⊕

s′∈S

d(s′) tΓ
s′(φ)

tΓ
s (�φ) =

l

s→d

⊕

s′∈S

d(s′) tΓ
s′(φ)

tΓ
s (σi Xi.ψi) = σi xi,s. tΓ∪{(i,s)}

s (ψi)

This is well defined because changing fromΓ to Γ⊲ (i,s) or toΓ∪{(i,s)} strictly increases the function

i 7→ |{(i,s) | (i,s) ∈ Γ}| : {1, . . . ,m} → {0, . . . ,n}

under the lexicographic order on functions relative to⊲.
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Proposition 6.1. For any closed Łµ formulaφ , finite PNTS(S,→) and s∈S, it holds thatJφK(s) = t /0
s (φ).

We omit the laborious proof. It is reminiscent of the reduction of modalµ-calculus model checking to a
system of nested boolean fixed-point equations in Section 4 of [17].

7 Related and future work

The first encodings of probabilistic temporal logics in a probabilistic version of the modalµ-calculus
were given in [4], where a versionPCTL∗, tailored to processes exhibiting probabilistic but not nonde-
terministic choice, was translated into a non-quantitative probabilisitic variant of theµ-calculus, which
included explicit (probabilistic) path quantifiers but disallowed fixed-point alternation.

In their original paper on quantitativeµ-calculi [12], Huth and Kwiatkowska attempted a model
checking algorithm for alternation-free formulas in the version of Łµ with ⊕ and⊙ but without⊓, ⊔ and
scalar multiplication. Subsequently, several authors have addressed the problem of computing (some-
times approximating) fixed points for monotone functions combining linear (sometimes polynomial)
expressions with min and max operations; see [10] for a summary. However, such work has focused
on (efficiently) finding outermost (simultaneous) fixed-points for systems of equations whose underlying
monotone functions are continuous. The nested fixed points considered in the present paper give rise to
the complication of non-continuous functions, as the example of Section 5.2 demonstrates.

As future work, it is planned to run an experimental comparison of the direct algorithm against the
reduction to linear arithmetic. As suggested in Section 5.4, we expect the direct algorithm to work better
in practice than the non-elementary upper bound on its complexity, given by our crude analysis, suggests.
Furthermore, as a natural generalization of the approximation approach to computing fixed points, the
direct algorithm should be amenable to optimizations such as the simultaneous solution of adjacent fixed
points of the same kind, and the reuse of previous approximations when applicable due to monotonicity
considerations. Unlike the black-box reduction to linear arithmetic, based on quantifier elimination, the
linear-constraint-based approach of the direct algorithmshould also offer a flexible machinery helpful
in the design of optimized procedures for calculating values of particular subclasses of Łµ-terms. An
important example is given by the fragment of Łµ capable of encodingPCTL (see Remark 3.6).

Our results on Łµ are a contribution towards the development of a robust theory of fixed-point prob-
abilistic logics. The simplicity of the proposed encoding of PCTL (see Remark 3.6 above) suggests that
the direction we are following is promising. In a follow-up paper, by the first author, it will be shown
that the process equivalence characterised by Łukasiewiczµ-calculus is the standard notion ofproba-
bilistic bisimilarity [23]. Thus the quantitative approach to probabilisticµ-calculi may be considered
equally suitable as a mechanism for characterising processequivalence as the non-quantitativeµ-calculi
advocated for this purpose in [4] and [7].

Further research will have to explore the relations betweenquantitativeµ-calculi such as Łµ and
other established frameworks for verification and design ofprobabilistic systems. Important exam-
ples include theabstract probabilistic automataof [6], the compositionalassume-guaranteetechniques
of [16, 9] and the recentp-automataof [13]. In particular, with respect to the latter formalism, we
note that the acceptance condition of p-automata is specified in terms of stochastic games whose con-
figurations may have preseeded threshold values whose action closely resembles that of the threshold
modalities considered in this work (Definition 3.1). Exploring the relations between p-automata games
and Łµ-games [19] could shed light on some underlying fundamentalideas.
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[9] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker & Hongyang Qu (2011):Quanti-
tative multi-Objective Verification for Probabilistic Systems. In: Proc. of 14th TACAS, doi:10.1007/
978-3-642-19835-9_11.

[10] Thomas Martin Galwitza & Helmut Seidl (2011):Solving Systems of Rational Equations through Strategy
Iteration. ACM Trabnsactions on Programming Languages and Systems33(3), doi:10.1145/1961204.
1961207.
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A Appendix: some omitted proof details

We add detail to the outlined proof of Theorem 3.7, by supplying the omited argument for the equality

⊔

σ
{ms

σ (Ψ)}= JµX.F(X)
)

Kρ(s) ,

which appears as case 11. Although game semantics provides the most intuitive justification, we instead
give a direct denotational proof, in order to avoid introducing game-theoretic machinery.

Expanded proof of Theorem 3.7.Case 11(≤). We first show that

⊔

σ
{ms

σ (Ψ)} ≤ JµX.F(X)
)

Kρ(s) (12)

DefineΨk = {s0.s1.s2 . . . | s0 = sand∃n≤ k.
(

sn ∈ Lφ2 Mρ ∧∀m< n.(sm ∈ Lφ1 Mρ)
)

}. ClearlyΨ =
⋃

k Ψk.
Suppose Inequality 12 does not hold. Then there exists somek and schedulerσ such that

ms
σ (Ψk)> JµX.F(X)Kρ(s) (13)

We prove that this is not possible by induction onk. In thek= 0 case, since we are assumingms
σ (Ψ0)> 0,

it holds thats∈ Lφ2 Mρ . By inductive hypothesis onφ2, we know thatJE(φ2)K(s) = 1 and this implies that
µX.F(X) = 1, which is a contradiction with the assumed strict inequality 13. Consider the casek+1.
Note that ifs∈ Lφ2 Mρ then,JµX.F(X)Kρ(s) = 1 as before, contradicting Inequality 13. So assumes 6∈
Lφ2 Mρ . Since we are assumingms

σ (Ψk+1)> 0 it must be the case thats∈ Lφ1 Mρ . Similarly,ms
σ (Ψk+1)> 0

ands 6∈ Lφ2 Mρ imply thats 6→ does not hold. This means (see Definition 2.8) thatσ({s}) is defined. Let
d = σ({s}) and observe thatms

σ (Ψk+1) = ∑
t∈S

d(t)mt
σ ′(Ψk), whereσ ′(s0,s1, . . . ,sn) = σ(s,s0,s1, . . . ,sn).
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http://hdl.handle.net/1842/6223
http://dx.doi.org/10.2168/LMCS-8(2:7)2012
http://dx.doi.org/10.2168/LMCS-8(4:18)2012
http://dx.doi.org/10.1007/3-540-60915-6_5
http://dx.doi.org/10.1007/3-540-60915-6_5
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By induction onk we know that the inequalitymt
σ ′(Ψk) ≤ JµX.F(X)Kρ(t) holds for everyt ∈ S. Thus,

by definition of the semantics of♦, we obtainms
σ (Ψk) ≤ J♦

(

µX.F(X)
)

Kρ . Recall that we previously
assumeds 6∈ Lφ2 Mρ ands∈ Lφ1 Mρ . Hence the equality

J♦
(

µX.F(X)
)

Kρ(s) = JE(φ2)⊔ (E(φ1)⊓
(

♦µX.F(X)
)

)Kρ(s)

holds. The formula on the right is just the unfoldingF(µX.F(X)) of µX.F(X). This implies the desired
contradiction.

Case 11(≥). We now prove that also the inequality
⊔

σ
{ms

σ (ψ)} ≥ JµX.F(X)Kρ(s) (14)

holds. By Knaster-Tarski theorem,JµX.F(X)Kρ =
⊔

αJF(X)Kα
ρ , whereα ranges over the ordinals and

JF(X)Kα
ρα with ρα = ρ [

⊔

β<αJF(X)Kρβ /X]. We prove Inequality 14 by showing, by transfinite induction,
that for every ordinalα andε > 0, the inequality

⊔

σ
{ms

σ (ψ)}> JµX.F(X)Kρα (s)− ε (15)

holds, for alls∈S. The case forα = 0 is immediate sinceJFKρ0(s)> 0 if and only ifJE(φ2)Kρ(s) = 1 and
this implies

⊔

σ{ms
σ (ψ)}= 1. Considerα = β +1. If JE(φ2)Kρ(s) = 1 then Inequality 14 holds as above.

Thus assumeJφ2Kρ(s) = 0. Note thatJFKρ0(s) > 0 only if s∈ JE(φ1)K. Thus assumeJE(φ1)Kβ
ρ (s) =

1. Under these assumption,JF(X)Kρα = J♦F(X)Kρβ as it is immediate to verify. By definition of the
semantics of♦ we have:

J♦F(X)Kρβ (s) =
⊔

s→d

(

∑
t∈S

d(t)JF(X)Kρβ (t)
)

By induction hypothesis onβ we know that for everyε ,

J♦F(X)Kρβ (s)<
⊔

s→d

(

∑
t∈S

d(t)
(

⊔

σ
{mt

σ (ψ)}+ ε
)

)

For eachs→ d andσ defineσd asσd({s}) = d andσd(s.t0. . . . ) = σ(t0 . . .). A simple argument shows
that

⊔

s→d

(

∑
t∈S

d(t)
(

⊔

σ
{mt

σ (ψ)}+ ε
)

)

=
⊔

σd

{ms
σd(ψ)}+ ε

and this conclude the proof for the caseα = β +1. Lastly, the case forα a limit ordinal follows straight-
forwardly from the inductive hypothesis onβ < α .

Proof of Proposition 5.1.Suppose we have a system ofk conditioned linear expressions representingf .
Each conditioned expressionC ⊢ e is captured by the implication(

∧

C) → y= e, so the whole system
translates into a conjunction ofk such implications. To this conjunction, one need only add the range
constraints 0≤ z andz≤ 1 for each variablez, as further conjuncts. In this way, the graph is easily
expressed as a quantifier free formula. (Since the implications are equivalent to disjunctions of atomic
formulas, the resulting formula is naturally in conjunctive normal form.)

Conversely, supposeF(x1, . . . ,xn,y) defines the graph off . By quantifier elimination, we can assume
thatF is quantifier free and in disjunctive normal form. ThenF is a disjunction of conjunctions, where
each conjunction,K, can be easily rewritten in the form

(

∧

C
)

∧

(

∧

1≤i≤h

y> ai

)

∧

(

∧

1≤i≤k

y≥ bi

)

∧

(

∧

1≤i≤l

y≤ ci

)

∧

(

∧

1≤i≤m

y< di

)

, (16)
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such that the only variables in the finite set of atomic formulasC, and linear expressionsai ,bi ,ci ,di are
x1, . . . ,xn. SinceF is the graph of a function, for all realsr1, . . . , rn, there is at most onessuch thatK(~r ,s)
holds, and, if it does, then all ofr1, . . . , rn,s are in[0,1]. Given such ans, we therefore have:

max{ai(~r) | 1≤ i ≤ h}< max{bi(~r) | 1≤ i ≤ k}= s= min{ci(~r) | 1≤ i ≤ l}< min{di(~r) | 1≤ i ≤ m} .

A system of conditioned linear expressions forf is thus obtained as follows. For each conjunctK in F,
written in the form of (16) above, and eachj with 1≤ j ≤ k, include the conditioned linear expression:

C, {b j > ai}1≤i≤h, {b j ≥ bi}1≤i≤k, {b j ≤ ci}1≤i≤l , {b j < di}1≤i≤m, ⊢ b j .

We supplement the proof of Theorem 5.3 with more detail on thebounds on basis and condition size.

Expanded proof of Theorem 5.3.We analyse the control flow in the algorithm forµxn+1. t ′ on a given
input vector(r1, . . . , rn). On iteration numberi, the loop is entered with constraintsDi and approximation
di , after which the recursive call to the algorithm fort ′ yields one of the conditioned linear expressions,
Cki ⊢ eki . Suppose thatCki andDi containu andv inequalities respectively. If the loop is exited producing
(4) as result then the resultingC~r has 2u+ v inequalities. If it is exited producing (5) as result thenC~r
hasu+ v+ 2 inequalities (whereu+ v+ 2 ≤ 2u+ v becauseCki has to enforce the range constraint
0≤ xn+1 ≤ 1). Otherwise, the algorithm repeats the loop, entering iteration i+1 with Di+1, given by (7),
having at most 2u+ v inequalities (N contributes 1 inequality, and there are at mostu− 1 inequalities
b j ≤ bi in (7) sincel ≥ 1).

Therefore, ifl ′ is now maximum number of inequalities occurring in anyCj from (11) (i.e., if it is
the condition size fort ′) the algorithm forµxn+1. t ′ at~r, which runs for at mostk′ iterations, results inC~r
containing at most 2k′l ′ inequalities.

To bound the number of resultsC~r ⊢ e~r , we count the possible control flows of the algorithm. At
iteration i, the algorithm usesCki ⊢ eki from (11), using which it might terminate with either (4) or (5),
or it might repeat the loop, entering iterationi +1 with Di+1, given by (7), which can arise fromCki in
a number of ways determined by the possible pairs of choices for N andb j in (7). In the case that the
variable vector(x1, . . . ,xn) is empty (i.e., the termµxn+1. t ′ is closed) the constraints inD are redundant
(they are simply true inequalities between rathionals) andso can be discarded. In the case thatn ≥ 1,
there are at least 2 inequalities inC giving range constraints onx1, so there are at mostl ′ choices forN
(l ′−2 choices in the case thatqn+1 6= 1, and 2 in the caseqn+1 = 1). Irrespective ofn, there are at most
l ′−1 choices forb j (takingn into account this can be improved tol ′−2n−1). Therefore, the execution
of the algorithm, is determined by the sequence:

k1, u1, k2, u2, . . . , km, v

where:m≤ k′ is the number of loop iterations performed; eachui , where 1≤ ui ≤ l ′(l ′−1), represents
the choice ofN andb j used in the construction ofDi+1 (7), andv is 1 or 2 according to whether the
resultingC~r ⊢ e~r is returned via (4) or (5). Since each numberki is distinct, the number of different such
sequences is bounded by:

2
k′

∑
m=1

k′!
(k′−m)!

(l ′ (l ′−1))m−1 ≤ (k′(l ′)2)k′ , (17)

where the right-hand-side gives a somewhat loose upper bound. Therefore, the number of possible results
C~r ⊢ e~r for the algorithm forµxn+1. t ′ is at most(k′(l ′)2)k′ .
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