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We propose a study of the modes of derivation of higher-order recursion schemes, proving that
value trees obtained from schemes using innermost-outermost derivations (IO) are the same as those
obtained using unrestricted derivations.

Given that higher-order recursion schemes can be used as a model of functional programs,
innermost-outermost derivations policy represents a theoretical view point of call by value evaluation
strategy.

1 Introduction

Recursion schemes have been first considered as a model of computation, representing the syntactical
aspect of a recursive program [15, 2, 3, 4] . At first, (order-1) schemes were modelling simple recursive
programs whose functions only take values as input (and not functions). Since, higher-order versions of
recursion schemes [11, 5, 6, 7, 8, 9] have been studied.

More recently, recursion schemes were studied as generators of infinite ranked trees and the focus was
on deciding logical properties of those trees [12, 8, 10, 1, 13, 14].

As for programming languages, the question of the evaluation policy has been widely studied. Indeed,
different policies results in the different evaluation [8, 9, 7]. There are two main evaluations policy
for schemes: outermost-innermost derivations (OI) and inner-outermost IO derivations, respectively
corresponding to call by need and call by value in programming languages.

Standardization theorem for the lambda-calculus shows that for any scheme, outermost-innermost
derivations (OI) lead to the same tree as unrestricted derivation. However, this is not the case for IO
derivations. In this paper we prove that the situation is different for schemes. Indeed, we establish that
the trees produced using schemes with IO policy are the same as those produced using schemes with OI
policy. For a given a scheme of order n, we can use a simplified continuation passing style transformation,
to get a new scheme of order n+ 1 in which IO derivations will be the same as OI derivations in the
initial scheme (Section 3). Conversely, in order to turn a scheme into another one in which unrestricted
derivations lead to the same tree as IO derivations in the initial scheme, we adapt Kobayashi’s [13] recent
results on HORS model-checking, to compute some key properties over terms (Section 4.1). Then we
embed these properties into a scheme turning it into a self-correcting scheme of the same order of the
initial scheme, in which OI and IO derivations produce the same tree (Section 4.2).

2 Preliminaries

Types are defined by the grammar τ ::= o | τ → τ; o is called the ground type. Considering that→ is
associative to the right (i.e. τ1 → (τ2 → τ3) can be written τ1 → τ2 → τ3), any type τ can be written
uniquely as τ1→ ...→ τk→ o. The integer k is called the arity of τ . We define the order of a type by
order(o) = 0 and order(τ1→ τ2) = max(order(τ1)+1,order(τ2)). For instance o→ o→ o→ o is a type
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of order 1 and arity 3, (o→ o)→ (o→ o), that can also be written (o→ o)→ o→ o is a type of order 2.
Let τ`→ τ ′ be a shortcut for τ → ...→ τ︸ ︷︷ ︸

` times

→ τ ′.

Let Γ be a finite set of symbols such that to each symbol is associated a type. Let Γτ denote the set of
symbols of type τ . For all type τ , we define the set of terms of type T τ(Γ) as the smallest set satisfying:
Γτ ⊆ T τ(Γ) and

⋃
τ ′{t s | t ∈ T τ ′→τ(Γ),s ∈ T τ ′(Γ)} ⊆ T τ(Γ). If a term t is in T τ(Γ), we say that t

has type τ . We shall write T (Γ) as the set of terms of any type, and t : τ if t has type τ . The arity of a
term t, arity(t), is the arity of its type. Remark that any term t can be uniquely written as t = α t1...tk with
α ∈ Γ. We say that α is the head of the term t. For instance, let Γ = {F : (o→ o)→ o→ o , G : o→
o→ o , H : (o→ o) , a : o}: F H and G a are terms of type o→ o; F(G a) (H (H a)) is a term of type
o; F a is not a term since F is expecting a first argument of type o→ o while a has type o.

Let t : τ , t ′ : τ ′ be two terms, x : τ ′ be a symbol of type τ ′, then we write t[x 7→t ′] : τ the term obtained
by substituting all occurences of x by t ′ in the term t. A τ-context is a term C[•τ ] ∈ T (Γ]{•τ : τ})
containing exactly one occurrence of •τ ; it can be seen as an application turning a term into another, such
that for all t : τ , C[t] =C[•τ ][•τ 7→t]. In general we will only talk about ground type context where τ = o
and we will omit to specify the type when it is clear. For instance, if C[•] = F • (H (H a)) and t ′ = G a
then C[t ′] = F (G a) (H (H a)).

Let Σ be a set of symbols of order at most 1 (i.e. each symbols has type o or o→ ...→ o) and ⊥ : o
be a fresh symbol. A tree t over Σ]⊥ is a mapping t : domt → Σ]⊥, where domt is a prefix-closed
subset of {1, ...,m}∗ such that if u ∈ domt and t(u) = a then { j | u j ∈ domt} = {1, ...,arity(a)}. Note
that there is a direct bijection between ground terms of T o(Σ]⊥) and finite trees . Hence we will freely
allow ourselves to treat ground terms over Σ]⊥ as trees. We define the partial order v over trees as
the smallest relation satisfying ⊥ v t and t v t for any tree t, and a t1...tk v a t ′1...t

′
k iff ti v t ′i . Given a

(possibly infinite) sequence of trees t0, t1, t2, ... such that ti v ti+1 for all i, one can prove that the set of all
ti has a supremum that is called the limit tree of the sequence.

A higher order recursion scheme (HORS) G = 〈V ,Σ,N ,R,S〉 is a tuple such that: V is a finite
set of typed symbols called variables; Σ is a finite set of typed symbols of order at most 1, called
the set of terminals; N is a finite set of typed symbols called set of non-terminals; R is a set of
rewrite rules, one per non terminal F : τ1 → ...→ τk → o ∈ N , of the form F x1 ... xk → e with
e : o ∈T (Σ]N ]{x1, ...,xk}); S ∈N is the initial non-terminal.

We define the rewriting relation→G ∈ T (Σ]N )2 (or just→ when G is clear) as t→G t ′ iff there
exists a context C[•], a rewrite rule F x1...xk→ e, and a term F t1 ... tk : o such that t =C[F t1...tk] and
t ′ =C[e[x1 7→t1]...[xk 7→tk]]. We call F t1 ... tk : o a redex. Finally we define→∗G as the reflexive and transitive
closure of→G.

We define inductively the⊥-transformation (·)⊥ : T o(N ]Σ)→T o(Σ]{⊥ : o}): (F t1 ... tk)⊥ =
⊥ ∀F ∈N and (a t1 ... tk)⊥ = a t⊥1 ...t⊥k for all a ∈ Σ. We define a derivation, as a possibly infinite
sequence of terms linked by the rewrite relation. Let t0 = S→G t1→G t2→G ... be a derivation, then one
can check that (t0)⊥ v (t1)⊥ v (t2)⊥ v ..., hence it admits a limit. One can prove that the set of all such
limit trees has a greatest element that we denote ‖G‖ and refer to as the value tree of G. Note that ‖G‖ is
the supremum of {t⊥ | S→∗ t}. Given a term t : o, we denote by Gt the scheme obtained by transforming
G such that it starts derivations with the term t, formally, Gt = 〈V ,Σ,N ]{S′},R ]{S′→ t},S′〉. One
can prove that if t→ t ′ then ‖Gt‖= ‖Gt ′‖.

Example. Let G= 〈V ,Σ,N ,R,S〉 be the scheme such that: V = {x : o,φ : o→ o,ψ : (o→ o)→ o→ o},
Σ = {a : o3→ o,b : o→ o→ o,c : o}, N = {F :

(
(o→ o)→ o→ o

)
→ (o→ o)→ o→ o,H : (o→
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o)→ o→ o, I,J,K : o→ o,S : o}, and R contains the following rewrite rules:

F ψ φ x → ψ φ x I x → x H φ x → a (J x) (K x) (φ x)
J x → b (J x) (J x) K x → K (K x) S → F H I c

Here is an example of finite derivation:

S → F H I c → H I c → a (J c) (K c) (I c)

→ a (J c) (K (K c)) (I c) → a (J c) (K (K (K c))) (I c)

If one extends it by always rewriting a redex of head K, its limit is the tree a ⊥ ⊥ ⊥, but this is not the
value tree of G. The value tree ‖G‖ is depicted below.

...

b

...

b

...

b

...

b

...

b

...

b

...

a

b

...

⊥ c

Evaluation Policies

We now put constraints on the derivations we allow. If there are no constraints, then we say that the
derivations are unrestricted and we let AccG = {t : o | S→∗ t} be the set of accessible terms using
unrestricted derivations. Given a rewriting t→ t ′ such that t =C[F s1 ... sk] and t ′ =C[e[∀ j x j 7→s j]] with
F x1...xk→ e∈R.

• We say that t → t ′ is an outermost-innermost (OI) rewriting (written t →OI t ′) there is no redex
containing the occurrence of • as a subterm of C[•].
• We say that t→ t ′ is an innermost-outermost (IO) rewriting (written t→IO t ′), if for all j there is

no redex as a subterm of s j.

Let AccG
OI = {t : o | S→∗OI t} be the set of accessible terms using OI derivations and AccG

IO = {t :
o | S→∗IO t} be the set of accessible terms using IO derivations. There exists a supremum of AccG

OI (resp.
AccG

IO) which is the maximum of the limit trees of OI derivations(resp. IO derivations). We write it
‖G‖OI (resp. ‖G‖IO). For all recursive scheme G, (AccG)⊥ = (AccG

OI)
⊥, in particular ‖G‖OI = ‖G‖. But

‖G‖IO v ‖G‖ and in general, the equality does not hold (see the example is the next section).

3 From OI to IO

Fix a recursion scheme G = 〈V ,Σ,N ,R,S〉. Our goal is to define another scheme G = 〈V ,Σ,N ,R, I〉
such that ‖G‖IO = ‖G‖. The idea is to add an extra argument (∆) to each non terminal, that will be
required to rewrite it (hence the types are changed). We feed this argument to the outermost non terminal,
and duplicate it to subterms only if the head of the term is a terminal. Hence all derivations will be
IO-derivations.

We define the (·) transformation over types by o = o→ o, and τ1→ τ2 = τ1→ τ2. In particular, if
τ = τ1→ ...→ τk→ o then τ = τ1→ ...→ τk→ o→ o. Note that for all τ , order(τ) = order(τ)+1.
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For all x : τ ∈ V we define x : τ as a fresh variable. Let armax be the maximum arity of terminals, we
define η1, ...,ηaritymax : o→ o and δ : o as fresh variables, and we let V = {x : τ | x∈V }]{η1, ...,ηarmax}]
{δ : o}. Note that δ is the only variable of type o. For all a : τ ∈ Σ define a : τ as a fresh non-terminal and
for all F : τ ∈N define F : τ as a fresh non-terminal. Let N = {a : τ | a ∈ Σ}]{F : τ | F ∈N }]{∆ :
o, I : o}. Note that I and ∆ are the only symbols in N of type o.

Let t : τ ∈ T (V ]Σ]N ), we define inductively the term t : τ ∈ T (V ]N ): If t = x ∈ V (resp.
t = a ∈ Σ, t = F ∈N ), we let t = x ∈ V (resp. t = a ∈ Σ, t = F ∈N ), if t = t1 t2 : τ then t = t1 t2.

Let F x1 ... xk → e be a rewrite rule of R. We define the (valid) rule F x1 ... xk δ → e ∆ in R.
Let a ∈ Σ of arity k, we define the rule a η1 ... ηk δ → a (η1 ∆) ... (ηk ∆) in R. We also add the rule
I → S ∆ to R. Finally let G = 〈V ,Σ,N ,R, I〉.
Example. Let G = 〈V ,Σ,N ,R,S〉 be the order-1 recursion scheme with Σ = {a,c : o}, N = {S : o,F :
o→ o→ o,H : o→ o}, V = {x,y : o}, and the following rewrite rules:

S → F (H a) c F x y → y H x → H (H x)

Then we have ‖G‖OI = c while ‖G‖IO = ⊥ (indeed, the only IO derivation is the following S →
F (Ha) c → F (H (H a)) c → F (H (H (H a))) c → ...). The order-2 recursion scheme G =
〈V ,Σ,N ,R, I〉 is given by N = {I,∆ : o,S,a,c : o→ o,F : (o→ o)→ (o→ o)→ o→ o,H : (o→
o)→ o→ o},V = {δ : o,x,y : o→ o} and the following rewrite rules:

I → S ∆ S δ → F (H a) c ∆ F x y δ → y ∆

H x δ → H (H x) ∆ c δ → c a δ → a

Note that in the term F (H a) c ∆, the subterm H a is no longer a redex since it lacks its last argument,
hence it cannot be rewritten, then the only IO derivation, which is the only unrestricted derivation is
I→ S ∆→ F (H a) c ∆→ c ∆→ c. Therefore ‖Ḡ‖IO = ‖Ḡ‖= c= ‖G‖.
Lemma 1. Any derivation of G is in fact an OI and an IO derivation. Hence that ‖G‖IO = ‖G‖.

Proof (Sketch). The main idea is that the only redexes will be those that have ∆ as last argument of the
head non-terminal. The scheme is constructed so that ∆ remains only on the outermost non-terminals, that
is why any derivation is an OI derivation. Furthermore, we have that if t = F t1...tk∆ is a redex, then none
of the ti contains ∆, therefore they do not contain any redex, hence t is an innermost redex.

Note that OI derivations in G acts like OI derivations in G, hence ‖G‖= ‖G‖.
Theorem 2 (OI vs IO). Let G be an order-n scheme. Then one can construct an order-(n+1) scheme G
such that ‖G‖= ‖G‖IO.

4 From IO to OI

The goal of this section is to transform the scheme G into a scheme G′′ such that ‖G′′‖ = ‖G‖IO. The
main difference between IO and OI derivations is that some redex would lead to ⊥ in IO derivation
while OI derivations could be more productive. For example take F : o→ o such that F x→ c, and H : o
such that H → a H, with a : o→ o and c : o being terminal symbols. The term F H has a unique OI
derivation, F H→OI c, it is finite and it leads to the value tree assiocated. On the other hand, the (unique)
IO derivation is the following F H→ F(a H)→ F (a (a H))→ ... which leads to the tree ⊥.

The idea of the transformation is to compute a tool (based on a type system) that decides if a redex
would produce ⊥ with IO derivations (Section 4.1); then we embed it into G and force any such redex to
produce ⊥ even with unrestricted derivations (Section 4.2).



A. Haddad 27

4.1 The Type System

Given a term t : τ ∈T (Σ]N ), we define the two following properties on t: P⊥(t) =“The term t has
type o and its associated IO valuation tree is ⊥”, and P∞(t) =“the term t has not necessarily ground type,
it contains a redex r such that any IO derivation from r producing it’s IO valuation tree is infinite”. Note
that P∞(t) is equivalent to “the term t contains a redex r such that ‖Gr‖IO is either infinite or contains ⊥”.
In this section we describe a type system, inspired from the work of Kobayashi [13], that characterises if a
term verifies these properties.

Let Q be the set {q⊥,q∞}. Given a type τ , we define inductively the sets (τ)atom and (τ)∧ called
respectively set of atomic mappings and set of conjunctive mappings:
(o)atom = Q , (o)∧ = {

∧
{θ1, ...,θi} | θ1, ...,θi ∈ Q} , (τ1 → τ2)

atom = {q∞}] {(τ1)
∧ → (τ2)

atom}
(τ1→ τ2)

∧ = {
∧
{θ1, ...,θi} | θ1, ...,θi ∈ (τ1→ τ2)

atom}.
We will usually use the letter θ to represents atomic mappings, and the letter σ to represent conjunctive

mappings. Given a conjunctive mapping σ (resp. an atomic mapping θ ) and a type τ , we write σ :: τ

(resp. θ ::a τ) the relation σ ∈ (τ)∧ (resp. θ ∈ (τ)atom). For the sake of simplicity, we identify the atomic
mapping θ with the conjunctive mapping

∧
{θ}.

Given a term t and a conjunctive mapping σ , we define a judgment as a tuple Θ ` t .σ , pronounce
“from the environment Θ, one can prove that t matches the conjunctive mapping σ”, where the environment
Θ is a partial mapping from V ]N to conjunctive mapping. Given an environment Θ, α ∈ V ]N and
a conjunctive mapping σ , we define the environment Θ′ = Θ,α .σ as Dom(Θ′) = Dom(Θ)∪{α} and
Θ′(α) = σ if α 6∈ Dom(Θ), Θ′(α) = σ ∧Θ(α) otherwise, and Θ′(β ) = Θ(β ) if β 6= α .

We define the following judgement rules:

Θ ` t .θ1 ... Θ ` t .θn

Θ ` t .
∧
{θ1, ...,θn}

(Set)
Θ,α .

∧
{θ1, ...,θn} ` α .θi

(At) (for all i)

Θ ` a.σ1→ ...→ σi≤arity(a)→ q∞

(Σ) ( for a ∈ Σ and ∃ j σ j = q∞ )

Θ ` t1 .σ → θ Θ ` t2 .σ

Θ ` t1 t2 .θ
(App)

Θ ` t .q∞→ q∞

(q∞→ q∞ I) (if t : τ1→ τ2)
Θ ` t1 .q∞

Θ ` t1 t2 .q∞

(q∞ I)

Remark that there is no rules that directly involves q⊥, but it does not mean that no term matches q⊥,
since it can appear in Θ. Rules like (At) or (App) may be used to state that a term matches q⊥.

We say that (G, t) matches the conjunctive mapping σ written ` (G, t).σ if there exists an environment
Θ, called a witness environment of ` (G, t).σ , such that (1) Dom(Θ) = N , (2) ∀F : τ ∈N Θ(F) :: τ ,
(3) if F x1...xk→ e∈R and Θ ` F .σ1→ ...→ σi≤k→ q then either there exists j such that q∞ ∈ σ j, or
i = k and Θ,x1 .σ1, ...,xk .σk ` e.q, (4) Θ ` t .σ .

The following two results state that this type system matches the properties P⊥ and P∞ and further-
more we can construct a universal environment, Θ?, that can correctly judge any term.

Theorem 3 (Soundness and Completeness). Let G be an HORS, and t be term (of any type), ` (G, t).q∞

(resp. ` (G, t).q⊥) if and only if P∞(t) (resp. P⊥(t)) holds.

Proposition 4 (Universal Witness). There exists an environment Θ? such that for all term t, the judgment
` (G, t).σ holds if and only if Θ? ` t .σ .
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Proof (Sketch). To compute Θ?, we start with an environment Θ0 satisfying Properties (1) and (2)
( Dom(Θ0) = N and ∀F : τ ∈N Θ0(F) :: τ ) that is able to judge any term t : τ with any conjunctive
mapping σ :: τ .

Then let F be the mapping from the set of environments to itself, such that for all F : τ1→ ...→
τk→ o ∈N , if F x1...xk→ e∈R then,

F (Θ)(F) = {σ1→ ...→ σk→ q | q ∈ Q∧∀i σi :: τi∧Θ,x1 .σ1, ...,xk .σk ` e : q}
∪{σ1→ ...→ σi≤k→ q∞ | ∧∀i σi :: τi∧∃ j q∞ ∈ σ j}

∪{σ1→ ...→ σk→ q⊥ | ∀i σi :: τi∧∃ j q∞ ∈ σ j}.

We iterate F until we reach a fixpoint. The environment we get is Θ?, it verifies properties (1) (2)
and (3). Furthermore we can show that this is the maximum of all environment satisfying these properties,
i.e. if ` (G, t).σ then Θ? ` t .σ .

4.2 Self-Correcting Scheme

For all term t : τ ∈T (Σ]N ), we define JtK ∈ (τ)∧, called the semantics of t, as the conjunction of all
atomic mappings θ such that Θ? ` t .θ (recall that Θ? is the environment of Proposition 4). In particular
P⊥(t) (resp. P∞(t)) holds if and only if q⊥ ∈ JtK (resp. q∞ ∈ JtK). Given two terms t1 : τ2→ τ and t2 : τ2
the only rules we can apply to judge Θ? ` t1 t2 .θ are (App), (q∞→ q∞ I) and (q∞ I). We see that θ only
depends on which atomic mappings are matched by t1 and t2. In other words Jt1 t2K only depends on Jt1K
and Jt2K, we write Jt1K Jt2K = Jt1 t2K.

In this section, given a scheme G = 〈V ,Σ,N ,R,S〉, we transform it into G′ = 〈V ′,Σ,N ′,R ′,S〉
which is basically the same scheme except that while it is producing an IO derivation, it evaluates Jt ′K for
any subterm t ′ of the current term and label t ′ with Jt ′K. Note that if t→IO t ′, then JtK = Jt ′K. Since we
cannot syntactically label terms, we will label all symbols by the semantics of their arguments, e.g. if we
want to label F t1...tk, we will label F with the k-tuple (Jt1K, ...,JtkK).

A problem may appear if some of the arguments are not fully applied, for example imagine we want
to label F H with H : o→ o. We will label F with JHK, but since H has no argument we do not know
how to label it. The problem is that we cannot wait to label it because once a non-terminal is created, the
derivation does not deal explicitly with it. The solution is to create one copy of H per possible semantics
for its argument (here there are four of them:

∧
{},
∧
{q⊥},

∧
{q∞},

∧
{q⊥,q∞}). This means that FJHK

would not have the same type as F: F has type (o→ o)→ o, but FJGK will have type (o→ o)4 → o.
Hence, F H will be labelled the following way: FJHK H

∧
{}H

∧
{q⊥}H

∧
{q∞}H

∧
{q⊥,q∞}. Note that even if F

has 4 arguments, it only has to be labelled with one semantics since all four arguments represent different
labelling of the same term. We now formalize these notions.

Let us generalize the notion of semantics to deals with terms containing some variables. Given an
environment on the variables ΘV such that Dom(ΘV )⊆ V and if x : τ then ΘV (x) :: τ , and given a term
t : τ ∈T (Σ]N ]Dom(ΘV )), we define JtKΘV ∈ (τ)∧, as the conjunction of all atomic mappings θ such
that Θ?,ΘV ` t .θ . Given two terms t1 : τ2→ τ and t2 : τ2 we still have that Jt1 t2KΘV only depends on
Jt1KΘV and Jt2KΘV .

To a type τ = τ1→ ...→ τk→ o we associate the integer dτe=Card({(σ1, ...,σk) | ∀i σi ∈ (τi)
∧})

and a complete ordering of {(σ1, ...,σk) | ∀i σi ∈ (τi)
∧} denoted ~σ τ

1 , ~σ τ
2 , ... , ~σ τ

dτe. We define inductively

the type τ+ = (τ+
1 )dτ1e→ ...→ (τ+

k )dτke→ o.



A. Haddad 29

To a non terminal F : τ1 → ... → τk → o (resp. a variable x : τ1 → ... → τk → o) and a tuple
σ1 :: τ1, ...,σk :: τk, we associate the non-terminal Fσ1,...,σk : τ

dτ1e
1 → ...→ τ

dτke
k → o ∈ N ′ (resp. a

variable xσ1,...,σk : τ
dτ1e
1 → ...→ τ

dτke
k → o ∈ V ′).

Given a term t : τ = τ1→ ...→ τk→ o ∈ T (V ]Σ]N ) and an environment on the variables ΘV

such that Dom(ΘV ) ⊆ V contains all variables in t, we define inductively the term t+σ1,...,σk
ΘV : τ+ ∈

T (V ′]Σ′]N ′) for all σ1 :: τ1, ...,σk :: τk. If t = F ∈N (resp. t = x ∈ V ), t+σ1,...,σk
ΘV = Fσ1,...,σk (resp.

t+σ1,...,σk
ΘV = xσ1,...,σk ), if t = a ∈ Σ, t+σ1,...,σk

ΘV = a. Finally consider the case where t = t1 t2 with t1 : τ ′→ τ

and t2 : τ ′. Let σ = Jt2KΘV . Remark that t1
+σ ,σ1,...,σk
ΘV : (τ ′+)dτ

′e → τ+. We define (t1 t2)
+σ1,...,σk
ΘV =

t1
+σ ,σ1,...,σk
ΘV t2

+~σ τ ′
1

ΘV ... t2
+~σ τ ′
dτ ′e

ΘV . Note that since this transformation is only duplicating and anotating, given a
term t+σ1,...,σk we can uniquely find the unique term t associated to it.

Let F : τ1→ ...→ τk→ o∈N , σ1 :: τ1, ...,σk :: τk, and ΘV = x1.σ1, ...,xk.σk . If F x1...xk → e∈R,

we define in R ′ the rule Fσ1,...,σk x+
~σ

τ1
1

1 ... x
+~σ

τ1
dτ1e

1 ... x+
~σ

τk
1

k ... x
+~σ

τk
dτke

k → e+
ΘV . Finally, recall that

G′ = 〈V ′,Σ,N ′,R ′,S〉.

The following theorem states that G′ is just a labeling version of G and that it acts the same.

Theorem 5 (Equivalence between G and G′). Given a term t : o, ‖G′t+‖IO = ‖Gt‖IO.

We transform G′ into the scheme G′′ that will directly turn into ⊥ a redex t such that q⊥ ∈ JtK.
For technical reason, instead of adding ⊥ we add a non terminal Void : o and a rule Void → Void.
G′ = 〈V ′,Σ,N ′]{Void : o},R ′′,S〉 such that R ′′ contains the rule Void→Void and for all F ∈N , if

q⊥ ∈ JFK σ1 ... σk then Fσ1,...,σk x+
~σ

τ1
1

1 ... x
+~σ

τ1
dτ1e

1 ... x+
~σ

τk
1

k ... x
+~σ

τk
dτke

k →Void otherwise we keep the rule of
R ′.

The following theorem concludes Section 4.

Theorem 6 (IO vs OI). Let G be a higher-order recursion scheme. Then one can construct a scheme G′′

having the same order of G such that ‖G′′‖= ‖G‖IO.

Proof (Sketch). First, given a term t : o, one can prove that ‖G′′t+‖IO = ‖G′t+‖IO.
Then take a redex t such that ‖G′′t ‖IO = ⊥, i.e. q⊥ ∈ JGtK. There is only one OI derivation from

t: t→Void→Void→ ..., then ‖G′′t ‖=⊥. We can extend this result saying that if there is the symbol
⊥ at node u in ‖G′′t ‖IO, then there is ⊥ at node u in ‖G′′t ‖. Hence, since ‖G′′t ‖IO v ‖G′′t ‖, we have
‖G′′‖= ‖G′′‖IO. Then ‖G′′‖= ‖G′′‖IO = ‖G′‖IO = ‖G‖IO.

5 Conclusion

We have shown that value trees obtained from schemes using innermost-outermost derivations (IO) are
the same as those obtained using unrestricted derivations. More precisely, given an order-n scheme G
we create an order-(n+1) scheme G such that ‖G‖IO = ‖G‖. However, the increase of the order seems
unavoidable. We also create an order-n scheme G′′ such that ‖G′′‖= ‖G‖IO. In this case the order does
not increase, however the size of the scheme deeply increases while it remains almost the same in G.
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