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In functional programming, datatypes à la carte provide a convenient modular representation of re-
cursive datatypes, based on their initial algebra semantics. Unfortunately it is highly challenging to
implement this technique in proof assistants that are based on type theory, like Coq. The reason is
that it involves type definitions, such as those of type-level fixpoint operators, that are not strictly
positive. The known work-around of impredicative encodings is problematic, insofar as it impedes
conventional inductive reasoning. Weak induction principles can be used instead, but they consider-
ably complicate proofs.

This paper proposes a novel and simpler technique to reason inductively about impredicative
encodings, based on Mendler-style induction. This technique involves dispensing with dependent
induction, ensuring that datatypes can be lifted to predicates and relying on relational formulations.
A case study on proving subject reduction for structural operational semantics illustrates that the
approach enables modular proofs, and that these proofs are essentially similar to conventional ones.

1 Introduction

Developing high-quality software artifacts, including programs as well as programming languages, can
be very expensive, and so can formally proving their properties. This makes it highly desirable to max-
imise reuse and extensibility. Modularity plays an essential role in this context: a component is modular
whenever it can be specified independently of the whole collection – therefore, a modular characterisa-
tion of an artifact implies that its extension does not require changes to what is already in stock.

In functional programming, it is natural to rely on a structured characterisation of components based
on recursive datatypes. However, conventional datatypes are not extensible – each one fixes a closed set
of constructors with respect to which case analysis may have to be exhaustive, hence each case implicitly
depends on the whole collection. An elegant solution to this tension between structural characterisa-
tion and modularity, also known as the expression problem, has been found with the notion of modular
datatype (MDT) – i.e., datatypes à la carte, introduced in Haskell by Swierstra [16]. The definition of an
MDT consists of two distinct parts: the grammar, as a non-recursive structure based on a functor, and the
recursive datatype, as the recursive closure of the functor by a type-level fixed point. Grammar functors
behave as modules, as they can be defined independently and combined together by coproduct.

In Haskell, an MDT can be easily implemented in terms of conventional datatypes, which can be
used to define the grammar as well as the recursive closure (as recalled in Section 2). However, Haskell’s
datatype definition of the type-level fixpoint operator is not strictly positive, and therefore it is problem-
atic from the point of view of less liberal type systems. As a general-purpose programming language,
Haskell relies on types that do not enforce totality (i.e., either termination or productivity). This makes
type checking easier in the presence of non-termination. Unfortunately, allowing for non-total programs
can lead to inconsistency under a program-as-proof interpretation. For this reason, proof assistants based
on the Curry-Howard correspondence are usually based on more restrictive type systems. Proof assis-
tants such as Coq, Agda, Isabelle and Twelf, for instance, rely on a syntactic criterion of monotonicity
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which ensures totality, by requiring that all the occurrences of an inductive datatype in its definition are
strictly positive – hence incompatibly with the Haskell-style representation of MDTs.

Coq is a theorem prover based on the calculus of inductive constructions (CIC) [3] which extends
the calculus of constructions (CC) [5] with inductive and coinductive definitions. CC, the most expres-
sive system of the lambda cube [2], allows for types depending on terms, type-level functions and full
parametric polymorphism, hence also for definitions that are impredicative, in the sense of referring in
their bodies to collections that are being defined. One of the main approaches to represent MDT in Coq,
due to Delaware, Oliveira and Schrijvers [7] and implemented in the MTC/3MT framework [6], takes
advantage of impredicativity, and relies on the Church encoding of fixed points (as recalled in Section 3).
Another promising approach, due to Keuchel and Schrijvers [11], relies on containers – it is predicative,
but it involves a more indirect representation of types. Church encodings are purely based on CC and
do not involve any extra-logical machinery – however, they rather complicate inductive reasoning. Im-
predicative definitions have an eliminative character that hides term structure, hence making it harder to
reason by induction. The solution proposed by Delaware et al. is quite general – however, it relies on
proof algebras that pack terms together with proofs using Σ-types, and this leads to inductive proofs that
have a significant overhead with respect to the conventional, non-modular ones.

This paper proposes a novel solution to the problem of reasoning inductively with impredicatively
encoded MDT, based on the use of Mendler-style induction [12, 18, 1]. Mendler’s characterisation of
iteration makes it possible to encode an induction principle within the impredicative encoding of an
MDT. Unlike Delaware et al., we use Mendler algebras as proof algebras. This leads to inductive proofs
that are straightforwardly modular and ultimately closer to conventional ones (Section 4). Although
this approach cannot handle dependent induction, this limitation is of little consequence as long as we
are reasoning about relational formulations. Nonetheless, this may make it necessary to lift inductive
datatypes to inductively defined predicates, in order to use them as inductive arguments in proofs.

In order to reason inductively on relations, we clearly need to rely on functor shapes that can rep-
resent them as well as mutual dependencies. Such need is highlighted throughout a case study on the
formalisation of a language based on structural operational semantics (Section 5, Coq implementation
available [17]). The language, for which we prove type preservation, has a definition that involves mutual
dependency between expressions and declarations.

2 Datatypes a-la-carte

MDTs as introduced by Swierstra [16] are essentially a functional programming application of the initial
algebra semantics of inductive types. This consists of associating an inductive datatype to an endofunctor
in a base category, then interpreting it as the initial object in the category of algebras determined by the
functor [9, 19].

In its simplest form, taking sets (S) as the base category, each inductive datatype ρ : S can be associ-
ated with a covariant endofunctor (signature functor), i.e. a map F : S→ S for which there exists a map
(functor map) fmapF {A B} : (A→ B)→ (F A→ F B) that preserves identities and composition, with
A, B : S (always treated as implicit parameters). Semantically, an algebra determined by F (F-algebra) is
a pair 〈C,φ〉where C : S is the carrier and φ : F C→C is the structure map. F C can be understood as the
denotation of a grammar based on signature F , given carrier C. The initial object 〈µF, inF〉, where inF is
an isomorphism and thus has an inverse outF , gives the denotation of ρ obtained as the fixpoint closure
of F . In this way, the non-recursive structural characterisation of ρ , which essentially corresponds to
case analysis, is separated from its recursive closure. For instance, in a functional language which allows
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for datatype definitions with data constructors and Haskell-style destructors (while we mainly rely on
Coq-style and standard algebraic notation), the following

dt def ρ = c1 (τ1[ρ/A]) | . . . | ck (τk[ρ/A]) (1)

can be decomposed in

dt def F A = c1 (τ1) | . . . | ck (τk) (2)

and

ρ =d f Fix F (3)

where Fix F is the syntactic representation of µF , i.e.

dt def Fix F = in (out : F (Fix F)) (4)

For each F-algebra 〈C, f 〉, the unique incoming algebra morphism from the initial algebra is determined
by the unique mediating map foldF,C, f : µF → C. Syntactically, this corresponds to the definition of
fold F C : (F C→C)→ (Fix F →C) as a recursive function.

fold F C f x =d f f (fmap F (fold F C f ) (out x)) (5)

Functors are composable by coproduct (+), i.e., if F1,F2 : S→ S are functors, so is F1+F2, with

dt def (F1+F2) C = inl (F1 C) | inr (F2 C) (6)

This results in a modular definition of the inductive datatype Fix (F1+F2) – not to be confused with
Fix F1+Fix F2. In connection with coproducts, Haskell implementations of MDTs rely on type classes to
automate injections and projections, using smart constructors and class constraints to express subsump-
tion between functors. As a concrete example, following Swierstra [16], the conventional datatype

dt def Trm = lit (Int) | add (Trm∗Trm) (7)

can be decomposed into two modules

dt def TrmG1 C = lit (Int) dt def TrmG2 C = add (C ∗C) (8)

and thus modularly defined:

TrmG =d f TrmG1+TrmG2 Trm =d f Fix TrmG (9)

Moreover, given a notion of value and a conventional recursive definition of evaluation

dt def Val = val (vv : Int) eval : Trm→ Val
eval (lit x) =d f val x
eval (add (e1,e2)) =d f val ((vv ◦ eval e1)+(vv ◦ eval e2))

(10)

the latter can be represented by an algebra and modularly decomposed as follows, allowing for a modular
definition of the dynamic semantics.

evalG1 : TrmG1 Val→ Val evalG1 (lit x) =d f val x
evalG2 : TrmG2 Val→ Val evalG2 (add (x1,x2)) =d f val ((vv x1)+(vv x2))
evalG : TrmG Val→ Val evalG (inl e) =d f evalG1 e

evalG (inr e) =d f evalG2 e

(11)

eval e =d f fold TrmG Val evalG e (12)
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3 Impredicative encoding

The MDT representation discussed so far works well with Haskell, but not with Coq. Representing F as
an inductive datatype is not problematic, but this is not so for the fixpoint closure. Since the constructor
of Fix F has type F (Fix F)→ Fix F , the datatype has a non-strictly positive occurrence in its definition,
as parameter of the argument type – hence it is rejected by Coq. There is an analogous issue with the
definition of fold, which is not structurally recursive. The solution to this problem adopted by Delaware
et al. in [7], which we summarise here, goes back to Pfenning and Paulin-Mohring [13] in relying on a
Church-style encoding of fixpoint operators, thus requiring impredicative definitions.

From the point of view of a type theoretic representation, the type of an algebra (that we may call
Church algebra, or conventional algebra) can be identified with the type of its structure map.

AlgC F C =d f F C→C (13)

If the initiality property of fixed points is weakened to an existence property, a fixpoint operator can be
regarded as a function that maps an algebra to its carrier. An abstract definition of the type-level fixpoint
operator FixC : (S→ S)→ S can then be given, as elimination rule for F-algebras, impredicatively with
respect to S (this requires the impredicative set option in Coq, as used in MTC/3MT [7]).

FixC F =d f ∀A : S. AlgC F A→ A (14)

The map foldC F C : AlgC F C→ FixC F →C, corresponding to the elimination of a fixpoint value, can
now be defined as the application of that value.

foldC F C f x =d f x C f (15)

Relying on the functoriality of F , the in-map inC F : F(Fix F)→ Fix F and the out-map outC F : Fix F→
F(Fix F) can be defined as functions.

inC F =d f λx A f . f (fmap F (foldC F A f ) x) (16)

outC F =d f foldC F (F(Fix F)) (fmap F (inC F)) (17)

Notice that the definition of foldC F C f does not guarantee the uniqueness of the mediating map – it
rather corresponds to a condition called quasi-initiality by Wadler [19]. In order to obtain uniqueness,
hence to ensure that inC is an isomorphism, the following implication needs to be proved for F [7, 11, 10].

(∀x : FixC F. h (inC F x) = f (fmap F h x)) → (h = foldC F C f ) (18)

Semantically, the impredicative encoding of the fixed points is closely associated with a constructor,
usually called build, that allows for an alternative interpretation of inductive datatypes in terms of limit
constructions, provably equivalent to the initial algebra semantics [8].

3.1 Indexed algebras

A relation can be represented as a function from the type of its tupled arguments to the type P of propo-
sitions. From the point of view of initial semantics, assuming P can be represented as a category, the
modular representation of inductively defined relations only requires a shift of base category. Given a
type K (i.e., K : Type) and assuming it can be represented as a small category, we can take the category
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of diagrams of type K in P as the base category for the relations of type K → P. In such category, an
endofunctor R : (K→ P) → (K→ P) that here we call indexed functor, is then associated with a map
(indexed functor map) that preserves identities and composition.

fmapI K R : ∀ {A B : K→ P}. (∀w : K. A w→ B w)→ (∀w : K. R A w→ R B w) (19)

From the point of view of the impredicative encoding, an R-algebra can be characterised as an indexed
map, given a carrier D : K→ P.

AlgCI K R D =d f ∀w : K. R D w→ D w (20)

The corresponding fixpoint operator has type ((K→ P) → K→ P)→ K→ P.

FixCI K R (w : K) =d f ∀A : K→ P. AlgCI K R A → A w (21)

The structuring operators can be defined as follows:

foldCI K R : ∀A ( f : AlgCI K R A) (w : K). FixCI K R w→ A w =d f λA f w e. e A f (22)

inCI K R (w : K) : R (FixCI K R) w→ FixCI K R w =d f
λx A f . f w (fmapI K R (foldCI K R A f ) w x)

(23)

outCI K R (w : K) : FixCI K R w→ R (FixCI K R) w =d f
foldCI K R (R (FixCI K R)) (fmapI K R (inCI K R)) w

(24)

3.2 Proof algebras

The impredicative encoding makes it comparatively easy to represent MDTs in Coq, but leaves us with
the problem of how to reason inductively about them. Unlike the in-map of the categorical semantics,
inC is not a constructor – therefore, structural induction cannot be applied to a term of type FixC F . Let
P : T → P be a property and T the representation of an inductive datatype in the following goal, which
we assume to be semantically provable by induction on T .

Γ,w : T ` g : P w (25)

However, given T =d f Fix
C F and the impredicative definition of FixC, the type T is not syntactically

inductive, and no conventional induction principle can be applied. Nevertheless, we can prove

∀v : T. ∃w : F T. P v = P (inC F w) (26)

as this follows from the equality v = inC F (outC F v) which can be proved, provided inC F is shown
to be an isomorphism – e.g., by proving (18). Rewriting (25) with (26), we obtain

Γ,w : F T ` g′ : P (inC F w) (27)

Here it is possible to apply induction on w, since F T is an inductive datatype: however, what we actually
get is case analysis – the recursive arguments in F T are hidden in the same sense as before, as they have
type T rather than F T .
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The solution adopted by Delaware et al. in [7], implemented in Coq and supported by MTC/3MT
consists of packing an existential copy of the inductive term together with a proof that it satisfies the prop-
erty, using Σ types. This involves replacing the conventional proof with one based on the representation
of the goal as an algebra, i.e., a proof algebra.

Γ ` f : AlgC F (Σv. P v) (28)

By folding such an algebra, one obtains

Γ,w : T ` foldC F (Σv. P v) f w : Σv. P v (29)

which states something weaker than the original goal (25). Nonetheless, under conditions associated
with well-formed proof algebras in [7], (28) can be strengthened to (25). This technique is quite general,
and it can be applied to inductive proofs in which the goals may depend on the inductive argument (i.e.,
it can deal with dependent induction). However, the proofs that are obtained in this way are essentially
factored into two non-trivial parts – the application of a weak induction principle and a well-formedness
proof – and therefore are quite different from conventional inductive ones.

3.3 Looking for a simpler solution

A natural question arises: is it possible to sacrifice some of the generality of the MTC approach, to obtain
proofs that look more familiar? The whole point of using Σ types is to hide dependencies: a solution
that does not involve them and so a positive answer to our question appear more feasible, when we can
dispense with the use of dependent induction, by finding an alternative, equivalent formulation of the
goal. In our schematic example (25) we get such reformulation, when we can find S, Q : T → P and an
indexed functor R : (T → P)→ T → P such that S =d f Fix

CI T R, the following equivalence holds

there exists t s.t. Γ ` t : ∀w : T. S w→ Q w iff there exists t ′ s.t. Γ ` t ′ : ∀w : T. P w (30)

and the following is semantically provable, as the new goal, by induction on h:

Γ, w : T, h : S w ` l : Q w (31)

Intuitively, this means that the dependency of the proof on w can be lifted to a type dependency, given a
sufficiently close analogy between T as modular inductive datatype and S as modular inductive predicate,
therefore by rather using h of type S w as inductive argument. Again, we need to expose the inductive
structure by shifting to

Γ, w : T, h : R (FixCI T R) w ` l′ : Q w (32)

and this is not problematic. However, as before, we end up stuck with case analysis rather than proper
induction. In order to solve this problem, we need to look at an alternative encoding of fixed points, based
on Mendler-style induction [12, 1]. In fact, Mendler’s approach makes it possible to build induction
principles into impredicatively encoded fixed points. Notice that Mendler algebras are used by Delaware
et al. [7], but have a different purpose there (i.e., controlling the order of evaluation), from the one we
are proposing here.
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4 Mendler algebras

We first present the Mendler-style semantics of inductive datatypes by introducing Mendler algebras as
a category, following Uustalu and Vene [18]. Given a covariant functor F : S→ S, a Mendler algebra is
a pair 〈C,Ψ〉 where C : S is the carrier and Ψ A : (A→C)→ (F A→C), for each A : S, is a map from
morphisms to morphisms satisfying Ψ A f = (Ψ C idC) · (fmap F f ), with f a morphism from A to C.
A morphism between Mendler algebras 〈C1,Ψ1〉 and 〈C2,Ψ2〉, is a morphism h : C1→C2 that satisfies
h ·Ψ1 C1 idC1 = Ψ2 C1 h. The Mendler algebra semantics has been proved equivalent to the conventional
one by Uustalu et al.. Assume F such that the conventional initial F-algebra 〈µF, inF〉 exists. Given the
abbreviation

pre inF C (m : C→ µF) =d f inF · (fmap F m) : (F C→ µF) (33)

we can prove the equation

inF = pre inF µF id (34)

by the isomorphic character of inF . The Mendler algebra 〈µF, pre inF〉 can thus be shown to be the
initial object in its category, and therefore used as alternative interpretation of the inductive datatype
associated with F . For each Mendler algebra 〈C,Ψ〉, the unique incoming morphism from the initial
Mendler F-algebra can be defined

mfold F C Ψ x =d f Ψ (µF) (mfold F C Ψ) (outF x) (35)

Unlike the conventional fixpoint operator, the Mendler one can be encoded in Coq as an inductive
datatype (though using the impredicative option).

dt def MFix F = pre in (C : S) (b : C→MFix F) (c : F C) (36)

However in, as defined by equation (34) in this setting, is still not a constructor, and the definition of
mfold is not structurally recursive. Therefore, also in this case, it seems more convenient to resort to an
impredicative encoding, following [12, 7].

4.1 Impredicative Mendler algebra encoding

Mendler algebras can be characterised impredicatively by the type of their structure maps, and a fixpoint
operator can be defined as in the conventional case [12, 7].

AlgM F C =d f ∀A. (A→C)→ (F A→C) (37)

FixM F =d f ∀C. AlgM F C→C (38)

Unlike the conventional case, the type of a Mendler algebra can be read as specification of an iteration
step, where the bound type variable A represents the type of the recursive calls. The corresponding fold
operator

foldM F C f x =d f x C f (39)

indeed has type

foldM F C : (∀A. (A→C)→ (F A→C))→ (FixM F)→C (40)
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which can represent an induction principle, under the assumption that the argument to the induction
hypothesis is only used therein without further analysis [12, 1]. In-maps and out-maps can be defined as
follows

inM F (x : F(FixM F)) : FixM F =d f λA ( f : AlgM F A). f (FixM F) (foldM F A f ) x (41)

outM F (x : FixM F) : F (FixM F) =d f x (F (FixM F))
(λA (r : A→ F (FixM F)) (a : F A). fmap F (λy : A. inM F (r y)) a)

(42)

As in the conventional case, impredicative fixpoint definitions give us quasi-initiality. The uniqueness
condition of foldM F A f that is needed for initiality, in a way which parallels (18), is given by

(∀x : F (FixM F). h (inM F x) = f (FixM F) h x) → h = foldM F A f (43)

to be proven for a fixed F , for every A : S, f : AlgM F A and h : FixM F → A [18].

4.2 Indexed Mendler algebras

As before, we need indexed algebras to deal with relations. The definitions are similar to the conventional
ones, with K a type, R : (K→ P)→ (K→ P) an indexed functor, and D : K→ P an indexed carrier.

AlgMI K R D =d f ∀A. (∀w : K. A w→ D w)→∀w : K. R A w→ D w (44)

FixMI K R w =d f ∀A. AlgMI K R A→ A w (45)

foldMI K R D ( f : AlgMI K R D) (w : K) (x : FixMI K R w) =d f x D f (46)

inMI K R (w : K) (x : R (FixMI K R) w) : FixMI K R w =d f
λA ( f : AlgMI K R A). f (FixMI K R) (foldMI K R A f ) w x

(47)

outMI K R (w : K) (x : FixMI K R w) : R (FixMI K R) w =
x (R (FixMI K R)) (λ A (r : ∀v. A v→ R (FixMI K R) v)

(w : K) (a : R A w). fmapI R (λy : A w. inMI K R w (r w y)) a)
(48)

As an example, we can define inductively a relation Eval : (Trm∗Val)→ P that agrees with eval.

dt def EvalG (A : (Trm∗Val)→ P) : (Trm∗Val)→ P =
ev1 : ∀x : Int. EvalG A (lit x,val x)
ev2 : ∀e1 e2 : Trm,x1 x2 : Val. A(e1,x1) ∧ A(e2,x2)→

EvalG A (add(e1,e2),val((vv x1)+(vv x2)))

(49)

Eval =d f FixMI (Trm∗Val) EvalG (50)
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4.3 Proof algebras, Mendler-style

Reconsider the schematic example in Section 3.2: the problem in (32) was the missing induction hypoth-
esis, that cannot be obtained by appealing to the standard inductive principle, as the recursive occurrences
are wrapped in a non-inductive type. Intuitively, this can be fixed by giving such an hypothesis explicitly.
This would give us a generic representation of the step lemma in our inductive proof.

Γ, h0 : ∀v : T. FixCI T R v→ Q v, w : T, h1 : R (FixCI T R) w ` q : Q w (51)

However, here the type of h0 is actually too specific to be that of the induction hypothesis with respect to
h1 – as a result, the sequent is too weak to take us to the main goal (31). At this point, Mendler’s intuition
comes into play: under the assumption that the argument passed to the induction hypothesis is used only
there, without further case analysis, and that therefore we make no use of its type structure, its type can
be represented by a fresh type variable – the key feature of Mendler-style induction [12, 1]. We can then
strengthen (51) to the following, more abstract goal.

Γ, A : Type, h0 : ∀v : T. A v→ Q v, w : T, h1 : R A w ` p : Q w (52)

Given f =d f λA h0 w h1. p, the above is equivalent to

Γ ` f : AlgMI T R Q (53)

Now we have an indexed Mendler algebra. The original goal, equivalent to (25) by a reformulation of
(30) with S = FixMI T R, can then be obtained by folding, without need of further adjustments.

Γ ` foldMI T R Q f : ∀w : T. S w→ Q w (54)

In order to prove (52), case analysis (as provided in Coq e.g. by inversion and destruct tactics [3])
can be applied to h1, allowing us to reason on the structure of R A w. This actually results in doing
induction on that structure, as the induction hypothesis h0 is already there. In this way, we can minimise
the overhead of combining inductive proofs with modular datatypes. Proving an inductive lemma boils
down to constructing the appropriate Mendler algebra – the rest is either conventional, or comes for free.
In connection with MDT, such algebras can be regarded as proof modules, that can be composed together
in the usual sense of case analysis on coproducts [16, 7], in the same straightforward way as evaluation
algebras (the original motivating example by Swierstra [16]). This sounds attractive, from the point of
view of the applications in which the relational aspect is predominant, such as structural operational
semantics.

4.4 Problematic aspects

Which could be the downsides of the Mendler-based approach? As already observed, relying on im-
predicative encodings gives us for free only a weak semantics of inductive datatypes, i.e., a quasi-initial
one. However, initiality is needed virtually everywhere in our proofs, to ensure in-maps and out-maps
are inverses, i.e.

(A) outM F (inM F x) = x (B) inM F (outM F x) = x (55)

and similarly for the indexed case. In order to get proper initial semantics, functor-specific proofs of
properties such as (43) for base category S, or the corresponding one for K→ P, need to be carried out.
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This may be regarded as a general weakness of impredicative approaches including MTC/3MT [7, 6],
as remarked by Keuchel and Schrijvers [11]. Nonetheless, in discussing the well-formedness of Church
encodings [7], Delaware et al. argue that dealing with this issue is not too hard, as indeed MTC provides
automation for doing so.

A more specific problem is related to the iterative character of Mendler-style recursion, and corre-
spondingly, to the non-dependent character of Mendler-style induction. Mendler algebras make it pos-
sible to factor induction into case analysis and folding, but this restricts induction, in the sense of what
is called Mendler iteration by Abel, Matthes and Uustalu [1]: the argument of the induction hypothesis
cannot be used anywhere else, effectively ruling out dependent induction. This means there are problems
that cannot be solved in their original form. As an example, MTC [7] proves the type soundness of a lan-
guage with a dynamic semantics that is recursively defined as a total evaluation function. This problem
can be reformulated with respect to our concrete example in Section 2, using our definition of eval (12).

Γ,e : Trm, t : Typ ` k : TypOf (e, t)→ TypOf (lit◦ vv (eval e), t) (56)

Using the MTC approach, (56) can be proved by dependent induction on the structure of term e. Given
dt def Typ = N and assuming for simplicity TypOf is a conventional inductive predicate

dt def TypOf : Trm∗Typ→ P =
tof1 : ∀v : Val. TypOf (lit◦ vv v, N)
tof2 : ∀e1 e2 : Trm. TypOf (e1,N)∧TypOf (e2,N)→ TypOf (add(e1,e2),N)

(57)

the proof is ultimately based on a proof algebra of type AlgC TrmG (Σe. ∀t : Typ. TypOf (e, t)→
TypOf (lit◦vv (eval e), t)), although as already noticed, folding this algebra only gives us the backbone
of the whole proof.

This is not possible using our Mendler-style approach, as we cannot deal with the dependency of the
goal on the inductive argument e. What we can do instead, is to rely on the relational formulation of
evaluation given by Eval (50), which can be shown to satisfy (30), and prove

Γ,e : Trm,v : Val, t : Typ, h : Eval (e,v) ` l : TypOf (e, t)→ TypOf (lit◦ vv v, t) (58)

reasoning by induction on the structure of Eval. This reformulation of the goal essentially matches (31).
In this case, a proof can be obtained by simply folding an indexed Mendler algebra of type AlgMI (Trm∗
Val) EvalG (λ (e,v). ∀t : Typ. TypOf (e, t)→ TypOf (lit◦vv v, t)), which provides our instance of (53).

An alternative way to obtain a relational equivalent of (56) is to lift the modular datatype Trm to a
modular predicate IsTrm : (TrmG Trm)→ P, with IsTrm =d f FixMI (TrmG Trm) IsTrmG, where

dt def IsTrmG A = isLit : ∀x : Int. IsTrmG A (lit x)
| isAdd : ∀e1 e2 : Trm. A e1 ∧ A e2 → IsTrmG A (add (e1,e2))

(59)

and then prove

Γ,e : Trm,w : IsTrm e, t : Typ ` k : TypOf (e, t)→ TypOf (lit◦ vv (eval e), t) (60)

reasoning by Mendler induction on w. Notice that eval in the MTC example [7] is actually defined as
the fold of a Mendler algebra, rather than a conventional one, in order to allow for control over the
evaluation order – this is related to the form of their semantics though, and completely unrelated to our
use of Mendler-style induction.
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5 Case study

The use of relational formulations appears particularly natural in specifications based on small-step rules
in the style of SOS, originally introduced by Plotkin [14]. Yet in order to formulate each relation mod-
ularly, we need to build encodings based on functors that reflect the structure of those relations. This
inevitably makes things more complex, especially when we have to deal with mutually inductive defi-
nitions. In order to test the applicability of Mendler proof algebras to the formalisation of a semantic
framework, we have formalised a language L with a comparatively rich syntactic structure, including
types (Typ), patterns (Pat), declarations (Dec) and expressions (Exp), as well as value environments
(EnvE) and typing environments (EnvT). We rely on SOS to give a partial specification of the language:
partial, insofar as we do not specify any behaviour in case of pattern matching failure – therefore, we
cannot prove type soundness, which in fact does not hold. However, we can still prove type preservation
– and this suffices for us, as an example of the structural complexity we are aiming at.

The full language specification is available with the Coq formalisation in the companion code at
[17]. Here we outline the specification using conventional dataytpes. The Coq formalisation is entirely
based on modular datatypes, although for simplicity we rely on monolithic functors (we have not yet
implemented the smart constructor mechanism that facilitates the use of coproducts).

dt def Typ = ty(IdT) | Typ⇒Typ | type env(EnvT)
dt def Pat = vrp(Id,Typ) | cnp(Id,Typ) | applyp(Pat,Pat)
dt def Dec = env(EnvE) |match(Pat,Exp) | join(Dec,Dec)
dt def Exp = vr(Id) | cn(Id,Typ) | closure(EnvE,Pat,Exp)

| apply(Exp,Exp) | scope(Dec,Exp)

(61)

Env A =d f Id→ option A EnvT =d f Env Typ EnvE =d f Env Exp (62)

The language L is based on simply typed lambda calculus with pattern matching and first class environ-
ments. We use two sets of identifiers – IdT for type variables and Id for object variables and constants.
Constants and pattern variables are annotated with types. ⇒ is the usual function type constructor. We
use closures instead of lambda abstractions to ensure values are closed terms and avoid dealing with sub-
stitution. Abstraction is defined over patterns (rather than simply over variables). Matching patterns with
expressions give declarations, which may evaluate to environments. Declarations can be joined together
and used in scope expressions. Values can be specified as follows.

Data values : h ∈ cn(x,τ) | apply(h,v)
Values : v ∈ closure(ρ, p,e) | h (63)

The typing relations have the following signatures. Notice that patterns and values can be typed in a
context-free way, unlike expressions and declarations.

Patterns : TypOPat : Pat∗Typ→ P
Environments : TypOEnv : EnvE ∗EnvT→ P
Declarations : TypODec : EnvT ∗Dec∗Typ→ P
Expressions : TypOExp : EnvT ∗Exp∗Typ→ P

(64)

The transition relations have the following signatures.

Declarations : DecStep : EnvE ∗Dec∗Dec→ P
Expressions : ExpStep : EnvE ∗Exp∗Exp→ P

(65)
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Expressions and declarations may depend on each other, and therefore can only have a mutually inductive
definition. Analogously, the definitions of the typing relations and of the transition relations for these
two syntactic categories involve mutual induction. Therefore we need to introduce functors to reason
about mutually inductively defined sets, as well as mutually inductively defined relations.

5.1 Mutually inductive sets

Two mutually recursive datatypes in the base category S, can be represented in terms of bi-functors
F1, F2 : S ∗S→ S, where bi-functoriality is expressed as existence of a map fmapD which satisfies the
appropriate form of the usual preservation properties.

fmapD : ∀ {A1 A2 B1 B2 : S} ( f1 : A1→ B1) ( f2 : A2→ B2). F (A1,A2)→ F (B1,B2) (66)

fmapD g1 g2 (fmapD f1 f2) = fmapD (g1 · f1) (g2 · f2)
fmapD idA idB = idFAB

(67)

The definitions of Mendler bi-algebra, fixpoint and fold operators can be given using pairs.

AlgD (F1,F2) (C1,C2) =d f (∀A1 A2. (A1→C1)→ (A2→C2)→ F1 (A1,A2)→C1,
∀A1 A2. (A1→C1)→ (A2→C2)→ F2 (A1,A2)→C2)

(68)

FixD (F1,F2) =d f (∀A1 A2. Alg
D (F1,F2) (A1,A2)→ A1,

∀A1 A2. Alg
D (F1,F2) (A1,A2)→ A2)

(69)

foldD1 (F1,F2) (C1,C2) ( f : AlgD (F1,F2) (C1,C2)) :
fst (FixD (F1,F2))→C1 =d f λe. e C1 C2 f

(70)

foldD2 (F1,F2) (C1,C2) ( f : AlgD (F1,F2) (C1,C2)) :
snd (FixD (F1,F2))→C2 =d f λe. e C1 C2 f

(71)

All the syntactic categories of L can then be represented as MDTs, using bi-functors for mutually
defined Decl and Exp.

dt def TypG T = ty(IdT) | T⇒T | type env (EnvT T ) Typ =d f FixM TypG
dt def PatG P = vrp(Id,T ) | cnp(Id,T ) | applyp(P,P) Pat =d f FixM PatG
dt def DecG D E = env(Env E) |match(Pat,E) | join(D,D)
dt def ExpG D E = vr(Id) | cn(Id,Typ) | closure(Env E,Pat,E) | apply(E,E) | scope(D,E)

Dec =d f fst (FixD (DecG,ExpG)) Exp =d f snd (FixD (DecG,ExpG))

(72)

5.2 Mutually inductive relations

Given types K1,K2, two mutually recursive relations depending on such types in base categories K1→ P,
K2→ P, can be represented by indexed bi-functors R1,R2, with

R1 K1 : (K1→ P)∗ (K2→ P)→ (K1→ P) R2 K1 : (K1→ P)∗ (K2→ P)→ (K2→ P) (73)
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characterised by maps

fmapH1 (K1,K2) R1 : ∀ {A1 A2 : K1→ P} {B1 B2 : K2→ P}.
(∀w : K1. A1 w→ B1 w)→ (∀w : K2. A2 w→ B2 w)→

∀w : K1. R1 (A1,A2) w→ R1 (B1,B2) w
(74)

fmapH2 (K1,K2) R2 : ∀ {A1 A2 : K1→ P} {B1 B2 : K2→ P}.
(∀w : K1. A1 w→ B1 w)→ (∀w : K2. A2 w→ B2 w)→

∀w : K2. R2 (A1,A2) w→ R2 (B1,B2) w
(75)

Given carriers D1 : K1 → P, D2 : K2 → P, we can now define indexed Mendler bi-algebras and the
associated notions (see [17] for more details).

AlgH (K1,K2) (R1,R2) (D1,D2) =d f
(∀A1 A2. (∀w : K1. A1 w→ D1 w)→ (∀w : K2. A2 w→ D2 w)→
∀w : K1. R1 (A1,A2) w→ D1 w,

∀A1 A2. (∀w : K1. A1 w→ D1 w)→ (∀w : K2. A2 w→ D2 w)→
∀w : K2. R2 (A1,A2) w→ D2 w)

(76)

FixH (K1,K2) (R1,R2) =d f
(λw : K1. ∀A1 A2. Alg

H (K1,K2) (R1,R2) (A1,A2)→ A1 w,
λw : K2. ∀A1 A2. Alg

H (K1,K2) (R1,R2) (A1,A2)→ A2 w)
(77)

foldH1 (K1,K2) (R1,R2) (D1,D2) ( f : AlgH (K1,K2) (R1,R2) (D1,D2)) (w : K1) :
fst (FixH (K1,K2) (R1,R2)) w→ D1 w =d f λw e. e D1 D2 f

(78)

foldH2 (K1,K2) (R1,R2) (D1,D2) ( f : AlgH (K1,K2) (R1,R2) (D1,D2)) (w : K2) :
snd (FixH (K1,K2) (R1,R2)) w→ D2 w =d f λw e. e D1 D2 f

(79)

While the typing relations for patterns TypOPat can be represented modularly using an indexed functor
and FixI, the corresponding relations for declarations and expressions, i.e. TypODec and TypOExp
respectively, are mutually defined and therefore need to be represented as indexed bi-functors closed
by FixH. Such is also the case for DecStep and ExpStep, which can be defined as follows, given the
corresponding indexed bi-functors DecStepG : (EnvE∗Dec∗Dec→P, EnvE∗Exp∗Exp→P)→ EnvE∗
Dec∗Dec→P, and ExpStepG : (EnvE∗Dec∗Dec→P, EnvE∗Exp∗Exp→P)→EnvE∗Exp∗Exp→P.

DecStep =d f fst (FixH (EnvE ∗Dec∗Dec, EnvE ∗Exp∗Exp) (DecStepG, ExpStepG)) (80)

ExpStep =d f snd (FixH (EnvE ∗Dec∗Dec, EnvE ∗Exp∗Exp) (DecStepG, ExpStepG)) (81)

5.3 Type preservation

Type preservation in L can be expressed as follows

Γ,ρ : EnvE ` (∀(d1 d2 : Dec). DecStep (ρ,d1,d2)→ DecTSafe (ρ,d1,d2)
∧ (∀(e1 e2 : Exp). ExpStep (ρ,e1,e2)→ ExpTSafe (ρ,e1,e2)

(82)
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where

DecTSafe (ρ,d1,d2) =d f ∀(t : Typ) (γ : EnvT).
TypOEnv (ρ,γ)→ TypODec (γ,d1, t)→ TypODec (γ,d2, t)

ExpTSafe (ρ,e1,e2) =d f ∀(t : Typ) (γ : EnvT).
TypOEnv (ρ,γ)→ TypOExp (γ,e1, t)→ TypOExp (γ,e2, t)

(83)

The context Γ includes premises of shape

(IN x = IN y) → (x = y) (84)

where IN is the in-map for one of the datatypes – such premises can be discharged when the correspond-
ing initiality conditions (43) are proven. It also includes premises of shape

∀x : DG, IsDG x. (85)

where DG is the unfolding of a modular datatype D, and IsDG is the unfolding of a modular predicate IsD
that represents the relational lifting of D, in the sense of our example (59). Such premises are needed,
as the proof involves sublemmas that are proved by induction on the syntactic categories – and so, for
instance, TypG Typ has to be lifted to IsTypG : (TypG Typ→ P)→ TypG Typ→ P.

Crucially, the pair of DecTSafe and ExpTSafe can be a carrier for the indexed bi-functor determined
by DecStep and ExpStep. In order to prove type preservation by mutual induction on the structure
of DecStep and ExpStep, we define an indexed Mendler bi-algebra that has (DecTSafe,ExpTSafe) as
indexed carrier, where the index types are EnvE ∗Dec∗Dec and EnvE ∗Exp∗Exp

TPAlg =d f AlgH (EnvE ∗Dec∗Dec, EnvE ∗Exp∗Exp)
(DecStepG, ExpStepG) (DecTSafe, ExpTSafe)

(86)

After finding proofs f1 : fst TPAlg and f2 : snd TPAlg, we can construct a proof of (82) by applying to
them foldH1 and foldH2 , respectively (see [17] for details).

6 Conclusion

Motivated by the importance of modularity in program development, semantics and verification, we have
discussed the use of MDTs, their semantic foundations and their impredicative encoding along the lines
of existing work [7, 11, 16]. We have shown how impredicative MDT encodings based on Mendler
algebras can be used to reason about inductively defined relations, in a way that is comparatively close to
a more conventional style of reasoning based on closed datatypes, by providing a simpler notion of proof
algebra, if less general, than the one proposed by Delaware et al. [7]. Our approach can be regarded as a
novel application of Mendler-style induction [12, 1, 18], as well as a technique that could be integrated in
existing frameworks based on the impredicative encoding, such as MTC/3MT [7, 6]. Mendler’s original
insight [12] was in the semantics of inductive datatypes – the case made here, is for using that insight as
a modular proof technique. From the point of view of possible applications to semantics and verification
in frameworks such as OTT [15], the relational style that can be supported seems to fit in well with SOS
and in particular with component-based approaches, such as the one proposed by Churchill, Mosses,
Sculthorpe and Torrini [4]. Our plans for future work include integrating our technique in MTC/3MT,
and comparing this approach with the container-based one proposed by Keuchel and Schrijvers [11].
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