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This paper shows an application of Bloom andÉsik’s iteration algebras to model graph data in a graph
database query language. About twenty years ago, Buneman etal. developed a graph database query
language UnQL on the top of a functional meta-language UnCALfor describing and manipulating
graphs. Recently, the functional programming community has shown renewed interest in UnCAL,
because it provides an efficient graph transformation language which is useful for various applica-
tions, such as bidirectional computation. However, no mathematical semantics of UnQL/UnCAL
graphs has been developed. In this paper, we give an equational axiomatisation and algebraic seman-
tics of UnCAL graphs. The main result of this paper is to provethat completeness of our equational
axioms for UnCAL for the original bisimulation of UnCAL graphs via iteration algebras. Another
benefit of algebraic semantics is a clean characterisation of structural recursion on graphs using free
iteration algebra.

1 Introduction

Graph database is used as a back-end of various web and net services, and therefore it is one of the
important software systems in the Internet society. About twenty years ago, Buneman et al. [6, 7, 8]
developed a graph database query language UnQL (Unstructured data Query Language) on top of a
functional meta-languageUnCAL (Unstructured Calculus) for describing and manipulating graph data.
The term “unstructured” is used to refer to unstructured or semi-structured data, i.e., data having no
assumed format in a database (in contrast to relational database). Recently, the functional programming
community found a new application area of UnCAL in so-calledbidirectional transformations on graph
data, because it provides an efficient graph transformation language. The theory and practice of UnCAL
have been extended and refined in various directions (e.g. [18, 19, 17, 1]), which has increased the
importance of UnCAL.

In this paper, we give a more conceptual understanding of UnCAL using semantics of type theory
and fixed points. We give an equational axiomatisation and algebraic semantics of UnCAL graphs. The
main result of this paper is to prove completeness of our equational axioms for UnCAL for the original
bisimulation of UnCAL graphs via iteration algebras. Another benefit of algebraic semantics is a clean
characterisation of the computation mechanism of UnCAL called “structural recursion on graphs” using
free iteration algebra.

UnCAL Overview. We begin by introducing UnCAL. UnCAL deals with graphs in a graph database.
Hence, it is better to start with viewing how concrete semi-structured data is processed in UnCAL.
Consider the semi-structured datasd below which is taken from [8].
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It contains information about country, e.g. geography, people, government, etc.

sd ⊳ country:{name:"Luxembourg",
geography:{coordinates:{long:"49 45N", lat:"6 10E"},

area:{total:2586, land:2586}},

people:{population:425017,
ethnicGroup:"Celtic",

ethnicGroup:"Portuguese",

ethnicGroup:"Italian"},
government:{executive:{chiefOfState:{name:"Jean",..}}}}

It is depicted as a tree above,
in which edges and leaves are
labelled. Using UnCAL’s term
language for describing graphs
(and trees), this is defined by
sd shown at right. Then we can
define functions in UnCAL to
process data. For example, a
function that retrieves all ethnic groups in the graph can bedefined simply by

sfun f1(L:T) = if L = ethnicGroup then (result:T) else f1(T)

The keywordsfun denotes a function definition bystructural recursion on graphs, which is the compu-
tational mechanism of UnCAL. Executing it, we can certainlyextract:

f1(sd)  {result:"Celtic", result:"Portuguese", result:"Italian"}

G

x G

x

( )

x1...xm

y1...yn

x'1...x'm'

y1...yn

G G'

G , G'

G � G'

G G'

x1...xm

cycle(G)

x1...xm

x1...xm

G
y1...yn

y

y

&

� �

&

G G'

x1...xk

y1...ym
G

z1...zn

y1...ym

G'

� G

G

&

Figure 1:Graph theoretic definitions of constructors[8]

Slightly changed notation. Correspondence between the original and this paper’s:

&y= y, @= ⋄, ⊕ = 〈−,−〉, (− := −) = − ⊳ −.

The notation{· · ·:· · · , · · ·} is a part
of the UnCAL’s term language for rep-
resenting graphs. It consists of mark-
ersx, labelled edgesℓ: t , vertical com-
positionss⋄ t, horizontal compositions
〈s, t〉, other horizontal compositions
s∪ t merging roots, forming cycles
cycle(t), constants{ },( ), and defini-
tions (x ⊳ t). These term constructions
have underlying graph theoretic mean-
ing shown at th right. Namely, these
are officially defined as operations on
the ordinary representations of graphs:
(vertices set, edges set, leaves, roots)-
tuples (V,E, {y1, . . .ym}, {x1, . . . , xn}), but
we do not use the graph theoretic definitions of these operations in this paper.
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UnCAL deals with graphsmodulo bisimulation(i.e. not only modulo graph isomorphism).

〜

Figure 2:GraphG and bisimilar one

An UnCAL graph is directed and have (possibly multiple) root(s)
written & (or multiple x1 · · · xn) and leaves (writteny1 · · ·ym), and
with the roots and leaves drawn pictorially at the top and bottom,
respectively. The symbolsx,y1,y2,& in the figures and terms are
called markers, which are the names of nodes in a graph and are
used for references for cycles. Also, they are used as port names
to connect two graphs. A dotted line labelledε is called anε-edge,
which is a “virtual” edge connecting two nodes directly. This is
achieved by identifying graphs byextended bisimulation, which
ignoresε-edges suitably in UnCAL. The UnCAL graphG shown
at the left is an example. This is extended bisimilar to a graph that
reduces allε-edges. Using UnCAL’s language,G is represented
as the following termtG

tG = a :({b: x} ∪ {c: x}) ⋄ cycle(x ⊳ d :({p: y1} ∪ {q: y2} ∪ {r: x}) ).

UnCAL’s structural recursive function works also on cycle.For example, define another function

sfun f2(L:T) = a:f2(T)

that replaces every edge witha. As expected,

f2( tG )  a :({a: x} ∪ {a: x}) ⋄ cycle(x ⊳ a :({a: y1} ∪ {a: y2} ∪ {a: x}) )

where all labels are changed toa.
Another characteristic role of bisimulation is that it identifies expansion of cycles. For example, a

term cycle(& ⊳ a: &) corresponds to the graph shown below at the leftmost. It is bisimilar to the right
ones, especially the infinitely expanded graph shown at the rightmost, which has no cycle.

〜 〜 〜

These are in term notation:

cycle(& ⊳ a: &) ∼ a: cycle(& ⊳ a: &) ∼ a: a: cycle(& ⊳ a: &)

Problems. There have been no algebraic laws that establish the above expansion ofcycle. Namely,
these are merely bisimilar, and not a consequence of any algebraic law. But obviously, we expect that it
should be a consequence of the algebraic law offixed point propertyof cycle.

In the original and subsequent formulation of UnCAL [8, 17, 18, 1], there are complications of this
kind. The relationship between terms and graphs in UnCAL is not a one-to-one correspondence. No term
notation exits forε-edges and infinite graphs (generated by the cycle construct), thus the rightmost infinite
graphs of the above expansion cannot be expressed in syntax.But such an infinite graph is allowed as
a possible graph in the original formulation of UnCAL. Consequently, instead of terms, one must use
graphs and graph theoretic reasoning with care of bisimulation to reason about UnCAL. Therefore, a
property in UnCAL could not be established only using induction on terms. That fact sometime makes
some proofs about UnCAL quite complicated.
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Because UnCAL graphs are identified by bisimulation, it is necessary to use a procedure or algorithm
to check the bisimilarity as in the cycle example above. Listing some typical valid equations for the
bisimulation can be a shortcut [8, 19], but it was only sound and not completefor bisimulation.

Hence, we give an algebraic and type-theoretic formulationof UnCAL by giving equational axioms
of UnCAL graphs. In this paper, we prove completeness of our proposed axioms using iteration algebra
[4]. Thus we have acompletesyntactic axiomatisations of the equality on UnQL/UnCAL graphs, as a
set of axioms capturing the original bisimulation, withouttouching graphs,ε-edges, and the notion of
bisimulation explicitly. We prove it by connecting it with the algebraic axiomatisations of bisimulation
[3, 12].

How to model UnCAL and structural recursion. The first idea to understand UnCAL is to interpret
it as a categorical structure. We can regard edges asmorphisms(of the opposite directions), the vertical
composition⋄ as thecomposition of arrows, andcycle as afixpoint operatorin a suitable category.
Thus the target categorical structure should have a notion of fixpoint, which has been studied in iteration
theories of Bloom and́Esik [3]. In particular, iteration categories [10] are suitable, which are traced
cartesian categories [20] (monoidal version is used in Hasegawa’s modelling of cyclic sharing theories
[16, 15]) additionally satisfying the commutative identities axiom [3] (see also [25] Section 2 for a useful
overview around this).

We also need to model UnCAL’s computational mechanism: “structural recursion on graphs”. The
general form of the definition of structural recursive function is

sfun F(ℓ: t) = e (⋆)

wheree can involveF(t). The graph algorithm in [8] provide a transformation of graphs that produces
some computed graphs using the definition (⋆). It becomes a functionF satisfying the equations ([8]
Prop. 3):

F( yi ) = yi

F( ( ) ) = ( )
F( { } ) = { }

F( (x ⊳ t) ) = (x ⊳ F(t))
F( s∪ t ) = F(s) ∪ F(t)
F( 〈s, t〉 ) = 〈F(s) , F(t)〉

F( ℓ: t ) = e
F( s⋄ t ) = F(s)⋄F(t) · · · (⊲⊳) (1)
F( cycle(t) ) = cycle(F(t)) · · · (⊲⊳)

whene does not depend1 on t. This is understandable naturally as the examplef2 recurses structurally
the termtG. Combining the above categorical viewpoint,F can be understood as a functor that preserves
cycle and products (thus a traced cartesian functor). A categorical semantics of UnCAL can be given
along this idea, which will be reported elsewhere. This ideaworks for simple cases of structural recursion
such asf2.

However, there is a critical mismatch between the above categorical view and UnCAL’s structural
recursion of more involved cases. Buneman et al. mentioned acondition that the above nine equations
hold only whene does notdepend ont in (⋆). Two equations marked (⊲⊳) do not hold in general ife does
depend ont (other seven equations do hold). Crucially,f1 is already this case, whereT appears as not
of the formf1(T). The following another example shows why (⊲⊳) do not hold: the structural recursive
functionaa? tests whether the argument contains “a:a:”.

sfun a?(L:T) = if L=a then true:{} else {}

sfun aa?(L:T) = if L=a then a?(T) else aa?(T)

The definition ofaa? doesdepend onT at the “then”-clause. Then we have the inequalities:

1Here “e depends ont” means thate containst other than the formF(t).



M. Hamana 79

aa?( (a:&)⋄(a:{})) = aa?( a:a:{} ) = true:{} , {} = {}⋄{} = aa?(a:&) ⋄ aa?(a:{})

aa?( cycle(a:&) ) = aa?( a:a:cycle(a:&) ) = true:{} , {} = cycle({}) = cycle(aa?(a:&))

This means thatF does not preservecycle in general, and evenis not functorial, thus the categorical
view seems not helpful to understand this pattern of recursion.

In this paper, we consideralgebraic semanticsof UnCAL using the notion of iterationΣ-algebras
[4, 12] in §3. It solve the problem mentioned above, i.e. we derive the structural recursion even when
the case thatedepends ont within the algebraic semantics.

Organisation. This paper is organised as follows. We first give a framework of equational theory for
UnCAL graphs by reformulating UnCAL graph data in a type theoretic manner in Section 2. We then
give algebraic semantics of UnCAL using iterationΣ-algebras in Section 3. We prove completeness of
our axioms for UnCAL graphs for bisimulation in Section 3.3.We further derive structural recursion
on UnCAL graphs in Section 3.5. Finally, in Section 3.6. we show several examples how structural
recursive functions on graphs are modeled.

2 UnCAL and its Equational Theory

We give a framework of equational theory for UnCAL graphs. Wereformulate UnCAL graph data in a
type theoretic manner. We do not employ the graph theoretic and operational concepts (such asε-edges,
bisimulation, and the graph theoretic definitions in Fig. 1). Instead, we give an algebraic axiomatisation
of UnCAL graphs following the tradition of categorical typetheory [9]. The syntax in this paper is
slightly modified from the original presentation [8] to reflect the categorical idea, which may be more
readable for the reader familiar with categorical type theory.

2.1 Syntax

Markers and contexts. We assume an infinite set of symbols calledmarkers, denoted by typically
x,y,z, . . .. One can understand markers as variables in a type theory. The marker denoted by& is called
the default marker, which is just a default choice of a markerhaving no special property. LetL be a
set of labels. A label ℓ is a symbol (e.g.a,b,c, . . . in Fig. 2). A context, denoted by〈〈x1, x2, . . .〉〉, is a
sequence of pairwise distinct markers . We typically useX,Y,Z, . . . for contexts. We use〈〈〉〉 for the empty
contexts,X,Y for the concatenation, and|X| for its length. We may use the vector notation~x for sequence
x1, . . . , xn. The outermost bracket〈〈 〉〉 of a context may be omitted. We may use the abbreviations for
the empty context 0= 〈〈〉〉. Note that the concatenation may need suitable renaming to satisfy pairwise
distinctness of markers.

Raw terms.

t ::= yY | ℓ: t | s⋄ t | 〈s, t〉 | cycleX(t) | { }Y | ( )Y | f | (x ⊳ t)

We assume several conventions to simplify the presentationof theory. We often omit subscripts or
superscripts such asY when they are unimportant or inferable. We identify〈〈s, t〉 , u〉 with 〈s, 〈t , u〉〉;
thus we will freely omit parentheses as〈t1 , . . . , tn〉. A constantf express a branch in a tree, and we call
the symbolf a man, because it is similar to the shape of a kanji or Chinese character meaning a man,
which is originated from the figure of a man having two legs (and the top is a head).
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(Nil)
Y ⊢ {}Y : &

(Emp)
Y ⊢ ( )Y : 〈〈〉〉

(Man)
y1,y2 ⊢f〈〈y1,y2〉〉 : &

(Com)
Y ⊢ s : Z X ⊢ t : Y

X ⊢ s⋄ t : Z
(Label)

ℓ ∈ L Y ⊢ t : &

Y ⊢ ℓ: t : &
(Mark)

Y= 〈〈y1, . . . ,yn〉〉

Y ⊢ yiY : &

(Pair)
Y ⊢ s : X1 Y ⊢ t : X2

Y ⊢ 〈s, t〉 : X1,X2
(Cyc)

Y,X ⊢ t : X

Y ⊢ cycleX(t) : X
(Def)

Y ⊢ t : &

Y ⊢ (x ⊳ t) : x

Figure 3: Typing rules

Abbreviations. We use the following abbreviations.

{s} ∪ {t} , f⋄ 〈s, t〉
π1 , x〈〈x,y〉〉
π2 , y〈〈x,y〉〉

s× t , 〈s⋄π1 , t⋄π2〉

id〈〈x〉〉 , x〈〈x〉〉
id〈〈x1,...,xn〉〉 , x1 〈〈x1〉〉× · · ·× xn 〈〈xn〉〉

∆X , 〈idX , idX〉

c , 〈π2 , π1〉

Inheriting the convention of〈−,−〉, we also identify (s× t)×u with s× (t×u), thus we omit parentheses
ast1× . . .× tn.

2.2 Typed syntax

For contextsX,Y, we inductively define a judgment relationY ⊢ t : X of terms by the typing rules in Fig.
3. We call a markerfree in t when it occurs int other than the left hand-side of a definition (x ⊳ s). In
a judgment, free markers int are always taken fromY. ThusY is a variable context (which we call the
source context) in ordinary type theory, andX is the roots (which we call thetarget contextor type). For
example, the termtG in §1 is well-typed y1,y2 ⊢ tG : &, which corresponds a graph in Fig. 2, where
the marker&is the name of the root. Whent is well-typed by the typing rules, we callt a (well-typed
UnCAL) term. We identifyt of type& with (& ⊳ t).

Definition 2.1 (Substitution) Let Y = 〈〈y1 · · · ,yk〉〉,W be contexts such that|Y| ≤ |W| andY can be em-
bedded intoW in an order-preserving manner, andY′ is the subsequence ofW deleting all ofY (NB.
|W| = |Y|+ |Y′|, Y′ is possibly empty). SupposeW ⊢ t : X, Z ⊢ si : 〈〈yi〉〉 (1 ≤ i ≤ k). Then a
substitutionZ,Y′ ⊢ t [~y 7→ ~s] : X is inductively defined as follows.

yi [~y 7→ ~s] , si

x [~y 7→ ~s] , x (if x in Y′)
{ }Y [~y 7→ ~s] , { }Z+Y′

( )Y [~y 7→ ~s] , ( )Z+Y′

(ℓ: t) [~y 7→ ~s] , ℓ: ( t [~y 7→ ~s] )

(t1 ⋄ t2) [~y 7→ ~s] , t1⋄ (t2 [~y 7→ ~s])
〈t1 , t2〉 [~y 7→ ~s] , 〈(t1 [~y 7→ ~s]) , (t2 [~y 7→ ~s])〉

cycle(t) [~y 7→ ~s] , cycle(t [~y 7→ ~s])
(x ⊳ t) [~y 7→ ~s] , (x ⊳ t [~y 7→ ~s])

f〈〈y1,y2〉〉 [y1 7→ s1,y2 7→ s2] , f〈〈y1,y2〉〉 ⋄ (s1 , s2)

Note thatt [~y 7→ ~s] denotes a meta-level substitution operation, not an explicit substitution.

2.3 Equational theory
For termsY ⊢ s : X andY ⊢ t : X, an (UnCAL) equationis of the formY ⊢ s= t : X. Hereafter, for
simplicity, we often omit the sourceX and targetY contexts, and simply writes= t for an equation, but
even such an abbreviated form, we assume that it has implicitly suitable source and target contexts and
is of the above judgemental form.
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Composition
(sub1) t ⋄ (y ⊳ s) = t [y 7→ s]

for y ⊢ t : X
Parameterised fixpoint
(fix) cycle(t) = t⋄ 〈idY,cycle(t)〉
(Bekic̆) cycle(〈t, s〉) = 〈π2,cycle(s)〉⋄

〈idY,cycle(t⋄ 〈idY,X,cycle(s)〉)〉
(natY) cycle(t)⋄ s= cycle(t⋄ (s× idX))
(natX) cycle(s⋄ t) = s⋄ cycle(t⋄ (idY× s))
(CI) cycle(〈t⋄ (idX×ρ1) , . . . , t⋄ (idX×ρm)〉)

= ∆m⋄ cycle(t⋄ (idX×∆m))

Deleting trivial cycle
(c2) cycle(f) = id
Commutative monoid
(unitLf) f⋄ ({ }0× id) = id
(assocf) f⋄ (id×f) = f⋄ (f× id)
(comf) f⋄ c = f
Degenerated bialgebra
(compa)∆⋄f = (f×f)⋄ (id× c× id)⋄ (∆×∆)
(degen) f⋄∆ = id

Figure 4: AxiomsAxGr for UnCAL graphs

Fig. 4 showsour proposed axiomsAxGr to characterise UnCAL graphs. These axioms are chosen
to soundly and completely represent the original bisimulation of graphs by the equality of this logic.
Actually, it is sound: for every axioms= t, sandt are bisimilar. But completeness is not clear only from
the axioms. We will show it in§3.

The axiom (sub1) is similar to theβ-reduction in theλ-calculus, which induces the axioms for carte-
sian product (cf. thederived theory below). The cartesian structure provides a canonical commutative
comonoid with comultiplication∆.

Two terms are paired with a common root by{s} ∪ {t} = f⋄ (s, t). The commutative monoid axioms
states that this pairing{−} ∪ {−} can be parentheses free in nested case. The degenerate bialgebra axioms
state the compatibility between the commutative monoid andcomonoid structures. The degenerated
bialgebra is suitable to model directed acyclic graphs (cf.[14] §4.5), where it is stated within a PROP
[21]. The monoid multiplicationf expresses a branch in a tree, while the comultiplication∆ expresses
a sharing. Commutativity expresses that there is no order between the branches of a node, cf. (commu∪)
in the derived theory below, and degeneration expresses that the branches of a node form a set (not a
sequence), cf. (degen’).

Parameterised fixpoint axioms axiomatise a fixpoint operator. They (minus (CI)) are known as the
axioms for Conway operators of Bloom andÉsik [3], which ensures that all equalities that holds in
cpo semantics do hold. It is also arisen in work independently of Hyland and Hasegawa [15], who
established a connection with the notion of traced cartesian categories [20]. There are equalities that
Conway operators do not satisfy, e.g.cycle(t) = cycle(t ⋄ t) does not hold only by the Conway ax-
ioms. The axiom (CI) fills this gap, which corresponds to the commutative identities of Bloom and
Ésik [3]. This form is taken from [25] and adopted to the UnCALsetting, where∆m , 〈id& , · · · , id&〉,
Y = 〈〈y1, . . . ,ym〉〉, & ⊢ ∆m : Y, X+Y ⊢ t : &, Y ⊢ ρi : Y such thatρi = 〈qi1 , . . . , qim〉 where eachqi j is
one ofY ⊢ πi : & for i = 1, . . . ,m. The axiom (c2) (and derived (c1) below) have been taken as necessary
ones for completeness for bisimulation used in several axiomatisations, e.g. [23, 5, 12].

The equational logicEL-UnCAL for UnCAL is a logic to deduce formally proved equations, called
(UnCAL) theorems. The equational logic is almost the same as ordinary one for algebraic terms. The
inference rule of the logic consists of reflexivity, symmetricity, transitivity, congruence rules for all
constructors, with the following axiom and the substitution rules.

(Ax)
(Y ⊢ s= t : X) ∈ E

Y ⊢ s= t : X
(Sub)

W ⊢ t = t′ : X Z ⊢ si = s′i : yi (1≤ i ≤ k)

Z+Y′ ⊢ t [~y 7→ ~s] = t′ [~y 7→ ~s′] : X

The set of all theorems deduced from the axiomsAxGr is called a(UnCAL) theory.
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Derived theory. The following are formally derivable from the axioms, thus are theorems.

(tmnl) t = ( )Y for all Y ⊢ t : 〈〈〉〉
(fst) π1⋄ 〈s, t〉 = s
(snd) π2⋄ 〈s, t〉 = t

(dpair) 〈t1, t2〉 ⋄ s = 〈t1 ⋄ s, t2⋄ s〉
(fsi) 〈π1,π2〉 = id
(SP) 〈π1⋄ t , π2⋄ t〉 = t

(bmul) ( )&× ( )& = ( )& ⋄f

(unitRf) f⋄ (id× {}0) = id
(c1) cycle(id) = { }0

(unR⋄) t⋄ id = t
(unL⋄) id⋄ t = t
(assoc⋄) (s⋄ t)⋄u = s⋄ (t⋄u)

(bcomul) ∆⋄ {}0 = ({ }0× {}0)
(bunit) ( )& ⋄ {}0 = id
(comm∪) {s} ∪ {t} = {t} ∪ {s}
(unit∪) {{ }} ∪ {t} = t = {t} ∪ {{ }}
(assoc∪) {{s} ∪ {t}} ∪ {u} = {s} ∪ {{t} ∪ {u}}
(degen’) {t} ∪ {t} = t

Because of the first three lines, UnCAL has the cartesian products. For (c1), the proof is

cycle(id) =(unitLf) cycle(f⋄ ({ }0× id)) =(natY) cycle(f)⋄ {}0 =
(c2) id⋄ {}0. = { }0.

Lemma 2.2 Under the assumption of Def. 2.1, the following is an UnCAL theorem.

(sub) t⋄ 〈s1 , · · · , sk, idY′〉 = t [~y 7→ ~s]

3 Algebraic Semantics of UnCAL

In this section, we consider algebraic semantics of UnCAL. We also give a complete characterisation of
the structural recursion, whereecan depend ont in (⋆).

3.1 Iteration Σ-Algebras

We first review the notion of iterationΣ-algebras and various characterisation results by Bloom and Ésik.
Let Σ be a signature, i.e. a set of function symbols equipped with arities. We defineµ-terms by

t ::= x | f (t1, . . . , tn) | µx. t,

wherex is a variable. We use the convention that a function symbolf (n) ∈ Σ denotesn-ary. For a setV
of variables, we denote by T(V) the set of allµ-terms generated byV. We defineConwayCI as the set of
following equational axioms:

Conway equations µx. t[s/x] = t[ µx. s[t/x] /x],

µx.µy. t = µx. t[x/y]

Group equations associated with a groupG

µx. (t[1 · x/x], . . . , t[n · x/x])1 = µy. (x[y/x], . . . , [y/x])

Note thatthe fixed point law
µx. t = t[µx. t/x]

is an instance of the first axiom of Conway equations by takings= x. The group equations [11] known as
an alternative form of the commutative identities, are an axiom schema parameterised by a finite group
(G, ·) of ordern, whose elements are natural numbers from 1 ton. We also note that theµ-notation is
here extended on vectors (t1, . . . , tn), and (−)1 denotes the first component of a vector. Given a vector
x= (x1, . . . , xn) of distinct variables, the notationi · x= (xi·1, . . . , xi·n) is used.
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Definition 3.1 ([4]) A pre-iterationΣ-algebra(A, (| − |)A) consists of an nonempty setA and an interpre-
tation function (| − |)(−)

A : T(V)×AV→ A satisfying

(i) (| x|)ρA = ρ(x) for eachx∈ V (iii) (| t |)A = (| t′ |)A =⇒ (|µx. t |)A = (|µx. t′ |)A.

(ii) (| t[t1/x1, · · · , tn/xn] |)ρA = (| t |)ρ
′

A with ρ′(xi) = (| ti |)
ρ
A, ρ

′(x) = ρ(x) for x, xi

A pre-iterationΣ-algebra can be seen as aΣ-algebra (A, { fA | f ∈ Σ}) with extra operations (|µx. t |)A
for all t. A pre-iterationΣ-algebraA satisfiesan equations= t over µ-terms, if (| s|)A = (| t |)A. Let E
be a set of equations overµ-terms. Aniteration Σ-algebra is a pre-iterationΣ-algebra that satisfies all
equations inConwayCI. An iteration (Σ,E)-algebra is an iterationΣ-algebra that satisfies all equations
in E. A homomorphism of iterationΣ-algebrash : A→ B is a function such thath◦ (| t |)A = (| t |) ◦ hV

for all t. Since the variety of iterationΣ-algebras is exactly the variety of all continuousΣ-algebras ([4]
Introduction), the interpretation ofµx. t in an iterationΣ-algebra can be determined through it.

We now regard each labelℓ ∈ L as an unary function symbol. Then we consider an iterationL∪
{0(0),+(2)}-algebra. We define the axiom setAxBR by

s+ (t+u) = (s+ t)+u s+ t = t+ s t+0= t
µx. x = 0 µx. (x+y) = y for y not containingx

andAxCBR , ConwayCI ∪AxBR. We write AxCBR ⊢µ s= t if an equations= t is derivable from
AxCBR by the standard equational logicEL-µ for µ-terms. For example, idempotency is derivable:

AxCBR ⊢µ t+ t = t

The proof ist = µx.(x+ t) = (µx.(x+ t))+ t = t+ t, which uses the last axiom inAxBR and the fixed point
law. Sinceµ-terms can be regarded as a representation of process terms of regular behavior as Milner
shown in [23] (or synchronization trees [3]), the standard notion of strong bisimulation between two
µ-terms can be defined. We writes∼ t if they are bisimilar.

Theorem 3.2 ([3, 4, 12, 13])

(i) The axiom setAxCBR completely axiomatises the bisimulation, i.e.,AxCBR ⊢µ s= t ⇐⇒ s∼ t

(ii) The setT(V) of all µ-terms forms a free pre-iterationΣ-algebra over V.

(iii) The setBR of all regular L-labeled trees having V-leaves modulo bisimulation forms a free itera-
tion (L∪{0,+},AxBR)-algebra over V ([12] below Lemma 2, [24] Thm. 2).

Note thatBR stands forRegular trees moduloBisimulation, andAxBR stands for the axioms for regular
trees modulo bisimulation.

3.2 Characterising UnCAL Normal Forms

UnCAL normal forms. Given an UnCAL termt of type &, we compute thenormal formof t by the
following three rewrite rules (N.B. we do not here use the other axioms) as a rewrite system [2], which
are oriented equational axioms taken from the derived theory, AxGr and abbreviations.

(sub) t⋄ 〈s1 , · · · , sk, id〉 = t [~y 7→ ~s]
(Bekic̆) cycle(〈t, s〉) = 〈π2,cycle(s)〉 ⋄ 〈idA,cycle(t⋄ 〈idA×V,cycle(s)〉)〉
(union) f⋄ (s, t) = {s} ∪ {t}
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LetM be the set of all rewriting normal forms by the above rules, which finally erases all〈− , −〉 and⋄ in
a givent. Normal forms are uniquely determined because the rewrite rules are confluent and terminating,
hence have the unique normal form property [2]. Then by induction on terms we have that terms inM
follow the grammar

M∋ t ::= y | ℓ: t | cycleX(t) | { } | {s} ∪ {t} | (x ⊳ t).

Any outermost definition must be of the form (& ⊳ t′) by the assumption that the original givent is of
type&, thus we identity it witht′. Other definitions appear inside oft, as the following cases:

• Case{(x1 ⊳ t1)} ∪ {(x2 ⊳ t2)}. We identify it with merely{t1} ∪ {t2}, because marker namesx1, x2

are hidden by this construction.

• CaseY ⊢ cyclex(x ⊳ t′) : x. We identify it with merelycycle&(t′), because these are equivalent by
renaming of free makerx.

TheUnCAL normal formsN are obtained fromM by these identifications. It is of the form

N ∋ t ::= y | ℓ: t | cycleX(t) | { } | {s} ∪ {t}
T(V) ∋ t ::= y | ℓ(t) | µx1. . . .µxn.t | 0 | s+ t

Every normal form bijectively corresponds to aµ-term in T(V), i.e. N � T(V), because each the above
construct corresponds to the lower one, whereX= 〈〈x1, . . . , xn〉〉. Hereafter, we may identify normal forms
andµ-terms as above. Define the pair of signature and axioms by

UnC , (L∪{0,+}, AxBR).

We regard an arbitraryUnC-algebraA as analgebraic modelof UnCAL graphs. First, we show the
existence of a free model. DefineNCBR to be the quotient ofN by the congruence generated byAxCBR.

Proposition 3.3
V

η ✲ NCBR
◗◗◗◗◗ψ s

A

ψ♯

❄

NCBR forms a free iterationUnC-algebra over V. Thus for any function
ψ : V→A, there exists an uniqueUnC-algebra homomorphismψ♯ such that
the right diagram commutes, whereη is an embedding of variables.

Proposition 3.4 NCBR � BR.

Proof. By Theorem 3.2 (iii). �

3.3 Completeness of the Axioms for Bisimulation

Buneman et al. formulated that UnCAL graphs were identified by extended bisimulation, which is a
bisimulation on graphs involvingε-edges. As discussed in§1, since our approach is to use only UnCAL
terms, it suffices to consider only the standard (strong) bisimulation between UnCAL terms, as done in
[23, 3, 12, 13]. We denote by∼ bisimulation for UnCAL term.

In this subsection, we show the completeness ofAxGr for bisimulation, using the following Lemma
3.5 that reduces the problem ofEL-UnCAL to that ofEL-µ through UnCAL normal forms.AxCBR has
been shown to be complete for the bisimulation [3].

Lemma 3.5 For UnCAL normal forms n,m∈N , AxCBR ⊢µ n=m⇐⇒ Y ⊢ n=m : X is derivable from
AxGr in EL-UnCAL.
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Proof. [⇒] : By induction on proofs ofEL-µ. For every axiom inAxCBR, there exists the corresponding
axiom inAxGr or anEL-UnCAL theorem, hence it can be emulated.
[⇐] : By induction on proofs ofEL-UnCAL. Let s= t is an axiom ofEL-UnCAL. It easy to see that taking
normal forms of both side, they are equal term, or correspondto an axiom inAxCBR or EL-µ theorem.

�

Theorem 3.6 (Completeness)AxGr is sound and complete for the bisimulation, i.e.,
Y ⊢ s= t : X is derivable fromAxGr in EL-UnCAL iff s∼ t.

Proof. [⇒] : Because every axiom inAxGr is bisimilar, and the bisimulation is closed under contexts
and substitutions [8].
[⇐] : Supposes∼ t. Since for each rewrite rule for the normalisation functionnf, both sides of the rule is
bisimilar,nf preserves the bisimilarity. So we haves∼ nf(s)∼ nf(t)∼ t. SinceAxCBR is complete axioms
of bisimulation [3, 12],AxCBR ⊢µ nf(s) = nf(t). By Lemma 3.5, we have a theoremY ⊢ nf(s) = nf(t) : X.
Thuss= t is derivable. �

3.4 Interpretation in Algebraic Models

To interpret UnCAL terms and equations, we connect two freeness results in Thm. 3.2.
Since UnCAL normal formsN is isomorphic to a free pre-iteration algebra T(V), it has the
universal property. DefineT& to be the set of all well-typed UnCAL terms of type&.

T&

V
η′✲ T(V) �N

nf
❄

◗◗◗◗◗

η

s

❙
❙
❙
❙
❙
❙
❙
❙

ψ

✇

NCBR

(| − |)η
❄
� BR

A

ψ♯

❄

We definenf : T&→N by the function to compute the UnCAL normal form
of a term. Then for any derivable equationY ⊢ s= t : X in EL-UnCAL, we
haveAxCBR ⊢ nf(s) = nf(t) by Lemma 3.5, thus for all assignmentψ : V→
A,

ψ♯(|nf(s) |)η = ψ♯(|nf(t) |)η

whereη andη′ are embedding of variables.
SinceNCBR � BR, we name the isomorphisms (−) : NCBR → BR and

(−) : BR → NCBR. We write simply a normal formt to denote a represen-
tative [t] in NCBR. Thus given a normal formt (which is a syntactic term,
always finite), t is a (possibly infinite) regular tree by obtained by expand-
ing cycles int using fixpoints. Conversely, notice that sincet is a tree, there are no cycles and the original
cycles int are infinitely expanded. SinceN � T(V), the functions (−) may also be applied toµ-terms.
The iterationUnC-algebraBR has operations 0BR = { }, +BR(r, s) = { r } ∪ { s}, ℓBR(r) = ℓ(r).

3.5 Deriving structural recursion of involved case

Next we model UnCAL’s structural recursion of graphs. We usepairs of “the recursive computation” and
the history of data structure. This is similar to the technique of paramorphism [22], which is a way to
represent primitive recursion in terms of “fold” in functional programming. Our universal characterisa-
tion of graphs is the key to make this possible by the unique homomorphism from the free pre-iteration
UnC-algebraN using the above analysis.

We take a termX ⊢ eℓ(v, r) : X involving metavariablesv andr, whereeℓ(F(t), t) is the right-hand
sidee of F(ℓ: t) in (⋆) . For example, in case of the examplef1 in Introduction (see also Example 3.9),
we take

eℓ(v, r) , result: r, eℓ(F(t), t) = result: t if ℓ = ethnicGroup
eℓ(v, r) , v, eℓ(F(t), t) = F(t) if ℓ , ethnicGroup
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We construct aspecificiteration UnC-algebraBRe for {eℓ(v, r)}ℓ∈L. Let k , |X|. Without loss of
generality, we can assume thateℓ(v, r) is of the form〈t1 , · · · , tk〉 where everyti is a normal form. We
define the iterationUnC-algebraBRe= BRk×BR having operation

ℓBRe(v, r) = (eℓ(v, r), ℓ: r ), 0BRe= (~{ }, { })

and +BRe is an obvious tuple extensions of+BR. Here ~{} is the k-tuple of {}. Hereafter, we will
use this convention~o of tuple extension of an operatoro.

V
η′′✲ T(V) �N

◗◗◗◗◗

η′

s

❙
❙
❙
❙
❙
❙
❙
❙

η

✇

BR

(| − |)η
′

BR
❄

BRe

η♯

❄

BRk

π1
❄
�Nk

CBR

Then, two freeness results in Thm. 3.2 are depicted in the right diagram,
whereη(x) = ( x1 , · · · , xk, x). Since T(V) �N , the interpretation inBRe is
described as

(| x|)η
BRe= η(x), (| { } |)η

BRe= 0BRe, (| {s} ∪ {t} |)η
BRe= (| s|)BRe+BRe(| t |)BRe

(|ℓ: t |)η
BRe= ℓBRe((| t |)

η
BRe), (|cycle(t) |)η

BRe= η
♯(cycle(t))

Now (| − |)η
BRe is characterised as the unique pre-iterationL∪ {0,+}-algebra

homomorphism from T(V) that extendsη. Defining

φ , π1◦ (| − |)η
BRe :N ✲ BRk

�Nk
CBR,

it is the unique function satisfying

φ(x) = (x1, . . . , xk), φ({ }) = ~{ }, φ({s} ∪ {t}) = φ(s) ~∪ φ(t),

φ(ℓ: t) = eℓ(v, t), φ(cycle(t)) = π1◦η
♯(cycle(t))

The functionφ takes normal forms of the type&. For non-normal forms, just precomposenf, i.e., define
the functionΦ :T&→N

k
CBR byΦ(s) , φ(nf(s)), thus,Φ|X| : TX→NCBR

k|X|→T k
X, becauseTX �T

|X|
& . In

summary, we have the following, wheres is a possibly non-normal form

Φ(s) =φ(nf(s) ) φ(x) = 〈x1 , · · · , xk〉 φ({ }) = ~{ }
Φ|X|+|Y|(〈t1 , t2〉)=Φ|X|(t1) ~× Φ|Y|(t2) φ(ℓ: t) =eℓ(φ(t), t) φ(t1∪ t2) = φ(t1) ~∪ φ(t2) (2)
Φ0(( )) = ( ) φ(cycle(t))=π1◦η

♯(cycle(t))

where~× is the “zip” operator of two tuples. Here we use a mapNCBR→ Tm(V) to regard a normal form
moduloAxCBR as a term, for which any choise of representative is harmless, because UnCAL graphs
are identified by bisimulation andAxCBR axiomatises it. Identifying three kinds functionsΦ,Φ|X|,φ as
a single function (also denoted byΦ, by abuse of notion) on Tm(V), thisΦ is essentially what Buneman
et al. [8] called the structural recursion on graphs for the case thate depends ont. Actually, we could
make the characterisation more precise than [8], i.e., we obtain also the laws for the cases of⋄ (by the
caseΦ(s) = φ(nf(s))) andcycle, which tells how to compute them.

This is not merely rephrasing the known result, but also a stronger characterisation, which gives
precise understanding of the structural recursion on graphs:

(i) Buneman et al. stated that (1) without (⊲⊳) is a property ([8] Prop. 3) of a “structural recursive
function on graphs” defined by the algorithms in [8]. This property (i.e. soundness) is desirable,
but unfortunately, no completeness was given. There may be many functions that satisfy the prop-
erty. In contrast to it, our characterisation is sound andcomplete: (2) determines auniquefunction
by the universality.
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(ii) This derivation does not entailΦ(s⋄ t) =Φ(s)⋄Φ(t). It tells us that the only way to computeΦ(s⋄ t)
is to compute the normal form ofs⋄ t and then applyφ.

(iii) This analysis does not entailΦ(cycle(t)) = cycle(Φ(t)) either. The iteration algebra structure tells
us that the homomorphismφ maps a termcycle(t) to its interpretation inBRe where the cycles
are expanded in a regular tree and at the same time, labelsℓ are interpreted using the operations of
BRe.

(iv) The structure preserved by structural recursion is the(pre-)iteration algebra structure. The struc-
tural recursive functionφ is the composition of a pre-iteration algebra homomorphism, an a itera-
tion algebra homomorphism and a projection.

3.6 Examples

We may use the notation{t1, t2, . . .} as the abbreviation of{t1} ∪ {t2} ∪ · · · .

Example 3.7 ([8] Replace all labels witha) This is the example considered in Introduction.

sfun f2(L:T) = a:f2(T)

In this case, the recursion doesnot depend onT (because the right-hand side uses merelyf2(T)). We
define the iterationUnC-algebraBReby

ℓBRe(v, r) = (a: v, ℓ: r).

(We may omit over and underlines to denote the isomorphisms for simplicity). ThenΦ is the desired
structural recursive functionf2. E.g.

Φ(b: cycle(c: &)) = a:φ(cycle(c: &)) = a: π1◦η
♯(c: c: · · · ) = a: (a: a: · · ·) = a: cycle(a: &)

Example 3.8 ([8] Double the children of each node)

sfun f4(L:T) = {a:f4(T)} ∪ {b:f4(T)}

Example of execution.

f4(a:b:c:{})

 {a:{ a:{a:{}, b:{}}, b:{a:{}, b:{}} }} ∪ {b:{ a:{a:{}, b:{}}, b:{a:{}, b:{}} }}

This case doesnot depend onT. We define the iterationUnC-algebraBReby

ℓBRe(v, r) = ({a: v} ∪ {b: v}, ℓ: r).

ThenΦ gives the structural recursive function defined byf4.

Example 3.9 ([8] Retrieve all ethnic groups)We revisit the example given in§1.
For the structural recursive recursive definition off1,

sfun f1(L:T) = if L = ethnicGroup then (result:T) else f1(T)

This casedoesdepend onT. Example of execution:

f1(sd)  {result:"Celtic":{}, result:"Portuguese":{}, result:"Italian":{}}
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We define the iterationUnC-algebraBReby

ethnicGroupBRe(v, r) , (result: r, ethnicGroup: r)

ℓBRe(v, r) , (v, ℓ: r) for ℓ , ethnicGroup

ThenΦ is the structural recursive function defined byf1:

Φ (sd) = {result:"Celtic":{}, result:"Portuguese":{}, result:"Italian":{}}

Example 3.10 Consider another example in§1 of aa?. This casedoesdepend onT. We define the
iterationUnC-algebraBReby

aBRe(v, r) , (a?(r), a: r)

ℓBRe(v, r) , (v, ℓ: r) for ℓ , a.

ThenΦ gives the structural functionaa?

Φ((a:&)@(a:{})) = φ( nf((a:&)@(a:{})) ) = φ(a:a:{}) = true:{}

Φ(cycle(a:&)) = π1◦η
♯(cycle(a:&)) = π1◦η

♯(a:a: · · ·) = π1 (a?(a: · · ·),a: · · ·) = true : { }

4 Conclusion

In this paper, we have shown an application of Bloom andÉsik’s iteration algebras to model graph data
used in UnQL/UnCAL for describing and manipulating graphs. We have formulated UnCAL and given
an axiomatisation of UnCAL graphs that characterises the original bisimulation. We have given algebraic
semantics using Bloom and́Esik’s iteration iteration algebras. The main result of this paper was to show
that completeness of our equational axioms for UnCAL for theoriginal bisimulation of UnCAL graphs
via iteration algebras. As a consequence, we have given a clean characterisation of the computation
mechanism of UnCAL, called “structural recursion on graphs” using free iteration algebra.

Acknowledgments. I am grateful to Kazutaka Matsuda and Kazuyuki Asada for discussions about
UnCAL and its interpretation, and their helpful comments ona draft of the paper. A part of this work
was done while I was visiting National Institute of Informatics (NII) during 2013 – 2014.
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[5] S. L. Bloom, Z.Ésik & D. Taubner (1993):Iteration Theories of Synchronization Trees. Inf. Comput.102(1),
pp. 1–55, doi:10.1006/inco.1993.1001.

[6] P. Buneman, S. Davidson, G. Hillebrand & D. Suciu (1996):A query language and optimization techniques
for unstructured data. In: Proc. of ACM-SIGMOD’96, doi:10.1145/233269.233368.

http://dx.doi.org/10.1145/2505879.2505903
http://dx.doi.org/10.1007/3-540-58338-6_58
http://dx.doi.org/10.1006/inco.1993.1001
http://dx.doi.org/10.1145/233269.233368


M. Hamana 89

[7] P. Buneman, S. B. Davidson, M. F. Fernandez & D. Suciu (1997): Adding Structure to Unstructured Data.
In: Proc. of ICDT ’97, pp. 336–350, doi:10.1007/3-540-62222-555.

[8] P. Buneman, M. F. Fernandez & D. Suciu (2000):UnQL: A Query Language and Algebra for Semistructured
Data Based on Structural Recursion. VLDB J. 9(1), pp. 76–110, doi:10.1007/s007780050084.

[9] R.L. Crole (1993):Categories for Types. Cambridge Mathematical Textbook.
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