
C. Dubois, P. Masci, D. Méry (Eds): 2nd International Workshop
on Formal Integrated Development Environment (F-IDE 2015)
EPTCS 187, 2015, pp. 56–71, doi:10.4204/EPTCS.187.5

Formal Reasoning Using an Iterative Approach with an
Integrated Web IDE

Nabil M. Kabbani, Daniel Welch, Caleb Priester, Stephen Schaub,
Blair Durkee, Yu-Shan Sun, and Murali Sitaraman

Clemson University,
Clemson SC 29631, USA

{nkabban,dtwelch,cpriest,sschaub,bdurkee,yushans,msitara}@clemson.edu

This paper summarizes our experience in communicating the elements of reasoning about correct-
ness, and the central role of formal specifications in reasoning about modular, component-based
software using a language and an integrated Web IDE designed for the purpose. Our experience
in using such an IDE, supported by a ‘push-button’ verifying compiler in a classroom setting, re-
veals the highly iterative process learners use to arrive at suitably specified, automatically provable
code. We explain how the IDE facilitates reasoning at each step of this process by providing human
readable verification conditions (VCs) and feedback from an integrated prover that clearly indicates
unprovable VCs to help identify obstacles to completing proofs. The paper discusses the IDE’s usage
in verified software development using several examples drawn from actual classroom lectures and
student assignments to illustrate principles of design-by-contract and the iterative process of creating
and subsequently refining assertions, such as loop invariants in object-based code.

1 Introduction

An IDE equipped with a formal verification system at its back end can facilitate an alternative style of
developing software that involves using feedback from the verifier to locate and correct errors statically,
instead of a more classical testing and debugging approach. This paper illustrates how such an approach
can work in practice based on our experience in employing it to teach a software engineering course,
where students are asked to develop software components that are provably correct with respect to a set
of given specifications.

The discussion in this paper is in the context of teaching analytical reasoning to undergraduate CS
students. The overall details of our educational approach for teaching mathematical reasoning, including
an evaluation of student learning over multiple years in two required courses at Clemson, may be found
in [11, 12]. Details of the types of software component development and reasoning assignments given
to students are the topic of [7]. The purpose of the present paper is to explain the iterative approach that
students and software engineers, in general, can employ for developing verifiably correct software using
the feedback from the Web IDE and its integrated prover.

The IDE discussed in this paper is web-integrated, easy to use, and freely available online. It has been
used at multiple institutions over the span of several years for teaching [9] and research [36] purposes,
and is designed for RESOLVE, an integrated specification and programming language supported by a
push-button verifying compiler [31]. The characteristics that distinguish the RESOLVE language and
approach from most others include the following [21]:

• Mathematical theories used in specifying programming concepts are extensible and they are de-
scribed in reusable mathematical units; The theories are purely mathematical and do not involve

http://dx.doi.org/10.4204/EPTCS.187.5

Nabil M. Kabbani, Daniel Welch, et al. 57

any computational considerations. They are carefully engineered to ease automated proving. Num-
ber theory and a theory of strings over arbitrary types (used in this paper) are some examples.

• Specifications of programming concepts that encapsulate abstract data types are kept strictly sep-
arate from implementations to facilitate design-by-contract [26] and to allow for multiple ways of
realizing the same concept and permit efficiency trade-offs. Examples of such concepts include
programming integers with computational bounds, arrays, stacks, queues, and lists.

• The notion of clean semantics [21] makes it inessential to introduce and reason about object refer-
ences explicitly in typical user code.

While the literature includes several integrated development environments based on formal tech-
niques related to ours (see section 6 for a complete description), the one closest in spirit to the IDE
discussed in this paper is the online Dafny IDE [24]. For most of the exercises discussed in this paper,
Dafny could be used as well. However, the key difference that manifests itself the most for the purposes
of this paper is our system’s usage of a VC generation system [15] that underlies the integrated Web IDE.
Using the VCs and a supporting prover capable of revealing which VCs fail to prove, it is possible to de-
termine why a proof was unsuccessful from givens in the context. However, unlike the Dafny approach,
which is backed by Z3 [23], the IDE presented here cannot be used to provide counter examples when
verification fails. The integrated prover does not use the proof-by-refutation technique, thus requiring a
different sort of debugging to take its place. For example, a user contrasts what goal needs to be proved
from the givens, tries to understand which givens would be more useful in attempting to prove the goal,
and then adjusts the code or assertions as needed.

The reasoning process using the RESOLVE Web IDE is quite similar to what might be employed by
one using a Coq-style proof assistant, except that the proofs to be done are mostly ‘obvious’ due to the
simple nature of VCs arising from well-designed software [19]. This characteristic has allowed us thus
far to forego the need for manual proof assistance for VCs.1

To illustrate how the IDE helps produce correct code based on realtime feedback, we begin with a
simple example that involves only the use of the Integer datatype. This is followed by two object-
based erroneous code examples: one that is recursive, and another that is iterative. These are examples
presented to students as part of a software engineering course at Clemson. In all cases, we follow
an iterative approach that eventually leads to the correct code or adequate annotations. The discussion
concludes with a non-trivial queue copy example code with invariants that students were asked to develop
for an assignment using the iterative approach. We note that the examples discussed in this paper are
meant to give an idea of the iterative process. Several more complex components are available at the
Web IDE; even more can be created by logging in to the site. We conclude the paper with a discussion
of the most related work and a summary.

2 Understanding Design by Contract Using the IDE

In this and following sections, we provide several illustrative examples, each building in complexity,
that demonstrate the iterative process we envision when using the Web IDE to develop provably correct
code. All examples discussed have a shared emphasis on the debugging aspect: that is, each requires

1A proof assistant such as Coq or Isabelle [29] is indeed necessary for proving the results in reusable mathematical units
employed by the automated prover, but the focus of this paper is on code correctness and VCs, assuming that the necessary
theorems have been established previously [20].

58 Formal Reasoning Using an Integrated Web IDE

sufficient knowledge of design by contract to correctly identify and amend a variety of errors in code or
annotations based on interactive feedback from the prover in the form of VCs.

The first, relatively simple example presents an operation that arithmetically swaps the values of
two Integer objects. Taking advantage of the conceptual simplicity of the code comprising this initial
example, we also use this as an opportunity to familiarize readers with RESOLVE style specifications,
syntax, and layout of the Web IDE. More details on the design of the RESOLVE language and its IDE
may be found elsewhere [9, 31, 32].

Upon opening our first example, Int_Swap_Example_Fac (Fig. 1), students are presented with code
for a single operation, Exchange, that takes two Integer objects, denoted I and J. The essence of the
specifications that formally communicate what exactly Exchange does can be found in the ensures
clause (the postcondition), where we formally assert that I = #J∧J = #I. This assertion, when stated
informally, can simply be read as “the outgoing value of I is equal to the incoming value of J and the
outgoing value of J is equal to the incoming value of I.”2 Notice also that there is no return value for the
Exchange operation. Instead, we prefix each parameter with mode updates to indicate to clients that
each of the Integer values passed will contain a purposeful value as specified by the conclusion of the
operation.

Figure 1: Exchange operation with missing requires clause.

Software developers are free to edit both the specifications (formal contracts) of Exchange, as well
as its executable body (sandwiched between the Procedure and end keywords). When ready to verify
the operation, students may invoke an integrated prover. The exact prover used is of less importance to
the discussion in this paper. It’s worth noting here, however, that our system is supportive of three ap-
proaches: one based on term-rewriting (accessible via the RWVerify button) [34], another that is currently
under development and uses a congruence closure algorithm in conjunction with a matcher for quanti-
fied expressions (accessible via CCVerify button), and (optionally) an external SMT solver.3 The second
one that is designed to be just sufficient to prove VCs arising from program correctness (as opposed to
arbitrary mathematical assertions) is summarized in section 5, and that is the one used for the examples
in this paper.

Upon attempting to verify the Exchange operation, students are presented with a screen summarizing
proof results, as shown in Fig. 2. The system generates eight distinct VCs [15]. VCs are mathematical

2In RESOLVE ensures clauses, # denotes the incoming value of a formal parameter.
3Z3 [27] is currently being incorporated as a proving option.

Nabil M. Kabbani, Daniel Welch, et al. 59

assertions that are both necessary and sufficient for the code to be proven correct. To understand why
there are eight VCs, we briefly describe the design-by-contract idea in this setting. Two VCs arise from
the two conjuncts of the ensures clause of the Exchange operation, guarantees to be provided by the
implementer of the code. Six VCs, two each for the requires clauses (preconditions) of each of the
three statements in the code, namely that the sum or differences do not go outside computational integer
bounds (i.e., min_int and max_int), for a total of eight VCs. This is because preconditions of called
operations are the responsibility of the calling code in design-by-contract. Placing the cursor near the
line number of a statement causes a box to appear referring to the names of one or more VCs generated
if the statement produces VCs.

Figure 2: Proof attempt of Exchange operation with missing requires clause.

Of the eight VCs, two are unable to be proven, as indicated by the yellow exclamation marks beside
VC_01 and VC_02 (Fig. 3). The line numbers in code corresponding to the VC are given in parentheses.
While VCs in general might arise from any number of sources within a block of executable code, those
unable to be established here arise from the requires clause of the sum operation that is implicitly invoked
when I and J are added via the + operator. We leave it to a reader to convince themselves that an overflow
or an underflow can occur in this code only for the first statement.

To aid students in arriving at the particular insight necessary to debug this code, we encourage them
to interactively explore the unprovable VCs by mousing over context sensitive VC buttons appearing
next to lines of code that generated VCs. Upon clicking any of these buttons, the panel on the right hand
side of the Web IDE updates with relevant, finer grained information about the particular VC queried,
including a succinct description of what must be established (the goal) and the various facts (givens) the
system currently knows.4

In terms of the Exchange example, it is easy to observe that the system is unable to infer from the
givens that min_int <= (I + J) (VC 0_1) and (I + J) <= max_int (VC 0_2). It then becomes
possible to infer that the system currently lacks knowledge suitable to realize that Integer overflow
(or underflow) will not occur when the + operation is carried out. To remedy this, and ‘provide’ the

4A parsimonious approach to the generation of givens is under research and several of the unrelated givens are expected to
disappear in the next version of the IDE.

60 Formal Reasoning Using an Integrated Web IDE

Figure 3: Full display of a VC in the IDE.

system with the assurance that this will not happen, students must defer to their knowledge of design-
by-contract, amending the specification of Exchange with a suitable requires clauses as shown in Fig. 4.
Again, under design-by-contract, the requirements become givens to be used in proofs. The figure shows
that the Web IDE successfully verifies the code using the improved operation specification.

3 Debugging Recursive Code

For the second example, we consider an example operation which inverts the order of items in a queue
(see Fig. 5). The Invert operation is specified in an enhancement (an extension using specification
inheritance) to the Preemptable_Queue concept and implemented in an enhancement realization, using
only operations provided in the Preemptable_Queue concept. This separation of concerns makes it
possible to verify the enhancement realization in a modular fashion without referring to or refining to
any one implementation of Preemptable_Queue concept. A preemptable queue differs from a regular
queue in that it has operations to “inject” new items at the front of the queue (i.e., preempt the regular
queue order), in addition to regular queue operations, such as Enqueue and Dequeue.

A complete specification of the Preemptable_Queue concept is shown in Appendix A. In the
Preemptable_Queue concept, the contents of the queue are conceptualized as a mathematical string
(a structure similar to but simpler than a sequence in Z, because no positions are involved). So for this
operation, the ensures clause (or post-condition) states that the outgoing value of the parameter Q should
be the mathematical reverse of the input parameter (denoted by #Q). Suppose that this operation is im-
plemented using faulty code such as is shown in Fig. 6. Three of the VCs are verified, but VC 0_3 is not.
So as we did before, we encourage students to take a close look at that particular unprovable VC.

In the goal, E’ is the dequeued entry, Q’ is the conceptual string that stands for the value of the queue

Nabil M. Kabbani, Daniel Welch, et al. 61

Figure 4: Int_Swap_Example_Fac verified.

passed into the recursive call of Invert, and Q stands for the value of the queue at the beginning of the
procedure. The goal is that E’ concatenated with the reverse of Q’ is equal to the reverse of Q. In order to
debug this VC a user may first write down the goal and then apply transformations until we can clearly
observe why the goal is unprovable. The purpose here is to show a general process when the problem
with the unprovable VC is less obvious.5

Goal: Q’ = Reverse(Q)

Our first transformation will be to use given #1 and apply it to the left-hand side of the goal. We will
label this transformation Step 1.

Step 1: <E’> o Q’’ = Reverse(Q)

Next, we will apply given #2 to transform the left-hand side once again:

Step 2: <E’> o Reverse(Q’’’) = Reverse(Q)

And then we apply given #3 to the right-hand side:

Step 3: <E’> o Reverse(Q’’’) = Reverse(<E’> o Q’’’)

Next, one can attempt to use a theorem from String_Theory, which defines string notations and re-
sults involving those notations for mathematical strings. The theorem we need here states the following:

5While we show the details of these steps here, in actual debugging, such a detailed analysis may not be necessary; under-
standing of such principles as string concatenation is not commutative is straightforward and the problem may be inferred more
readily.

62 Formal Reasoning Using an Integrated Web IDE

Figure 5: Selection of an enhancement in the Web IDE.

For all u, v : String, Reverse (u o v) = Reverse(v) o Reverse(u)

This transformation will produce the following result:

Step 4: <E’> o Reverse(Q’’’) = Reverse(Q’’’) o Reverse(<E’>)

Finally, we apply a theorem that states that the reverse of a single-length string is itself, which gives
us step 5:

Step 4: <E’> o Reverse(Q’’’) = Reverse(Q’’’) o <E’>

At this point, it is obvious to see that the goal is categorically false, as the concatenation operator is
not commutative. Thus, the problem with the code is that the call to Inject is placing the dequeued entry
on the wrong side of the recursively inverted queue. This example illustrates how the VC can serve as a
guide to pinpoint the source of the error in formal reasoning.

In the case, the correction is to fix the code: Specifically, the call to Inject needs to be replaced
with a call to Enqueue.

4 Loop Invariants

This section outlines creation and iterative development of loop invariants for code using object-based
examples. Stacks and queues are abstract data types represented as objects in RESOLVE. Their behavior
is specified in a Concept, which is an abstract description of the methods all implementations must
contain. It concludes with a discussion of an assignment given to students in a junior level software
engineering course.

Nabil M. Kabbani, Daniel Welch, et al. 63

Figure 6: Inverting Code with Error.

4.1 Learning Iterative Invariant Development

We begin with a simple example involving stacks to highlight the iterative steps we commonly see stu-
dents working through with our Web IDE in reasoning about, and ultimately arriving at, appropriate
assertions for loop invariants. Stacks, like queues, are modeled mathematically using strings; operations
such as Push and Pop are specified using string notations.

Fig. 7 shows an example operation presented in a classroom to teach the idea of invariants. Flip_
onto iteratively transfers entries from a source stack, S, to a destination stack, T, resulting in a version
of T that is prefixed by a ‘flipped’ version of S. As expected, the intuition describing this outcome is
formalized in the operation’s ensures clause by the following succinct assertion: T = Reverse(#S)
o #T. With the operation’s input/output behavior formally expressed, students must turn to the task of
deriving a suitable invariant for the while loop, expressed in RESOLVE using the maintaining clause.
(The decreasing clause is used to document the progress metric necessary to prove termination.)

Starting with a maintaining clause that simply reads “true”—which is an appropriate starting
point for beginners to understand the process of developing adequate invariants—the system (unsurpris-
ingly) fails to establish correctness. Aside from the obvious inability to prove VCs corresponding to the
operation’s overall ensures clause, students using the Web IDE are able to see—with the help of the
interactive VC buttons next to the line numbers—that VC 1_1 and 1_2 arising from calls to Pop and
Push within the body of the loop are currently unprovable, as shown in Fig. 7.

Examining VC 1_1, students are immediately informed that the requires clause of Pop (|S”| /=
0) cannot be established. Referring to the list of available givens, students can see that while the system
is aware that D’ /= 0, it still lacks any knowledge relating the length of S to the current depth, D. To
address this roadblock and provide the prover with the information it needs to meet the precondition
criteria of Pop, students might start by amending the maintaining clause with the assertion that |S| = D.

64 Formal Reasoning Using an Integrated Web IDE

Figure 7: Loop with insufficient invariant.

Sure enough, upon re-running the prover, students are given validation in the form of a green checkmark,
indicating that one roadblock to verification of the current operation has been successfully dealt with.

In motivating further construction of the maintaining clause, students once again look to unproven
VCs as a guide to development. In this case, looking specifically to VC 2_2, students can see that the
ensures clause to the overall operation is still unable to be established. Using this insight, combined with
the goal this VC is attempting to establish—specifically, that T’ = (Reverse(S) o T)—one way for
students to proceed is to simply append this assertion to the evolving maintaining clause, yielding |S|
= D and T = (Reverse(#S) o #T). Upon doing so, students can indeed see that the prover is now
able to establish the ensures clause of the operation (indicated by VC 2_3), but is unable to establish the
VC corresponding to the invariant of the while statement—suggesting that something is still lacking from
the assertion. However, in examining the (now provable) goal of the overall ensures clause addressed
in the previous step, students can see that it reads as follows: (Reverse(S) o T) = (Reverse(S)
o T). Thus, mirroring the same technique and intuition employed to make the ensures clause provable
earlier—that is, adding T = (Reverse(#S) o #T)—students can now make the necessary cognitive
leap to realize the clause must be changed to read: Reverse(S) o T = Reverse(#S) o #T, resulting
in a final, provable assertion that reads: D = |S| and Reverse(S) o T = Reverse(#S) o #T.

4.2 Applying Iterative Invariant Development

Following an introduction to the iterative development of loop invariants and discussion, students used
the Web IDE to complete reasoning assignments. The assignments required students to write verified

Nabil M. Kabbani, Daniel Welch, et al. 65

code for pre-specified concepts and enhancement operations. The specification of one such operation to
copy a generic Preemptable_Queue is given below.

Operation Copy_Queue
(restores Q: P_Queue; replaces Q_Copy: P_Queue);
ensures Q_Copy = Q;

Table 1 is a summary of student performance for each of the invariant writing assignments. In ad-
dition to copying a queue, students wrote code for outputting a queue, reversing a sequence, and an end
user application assignment that involved use of custom-made mathematical definitions and operations
involving non-trivial types. The definitions in the end user assignment were not complemented by nec-
essary results and hence, the prover was not of use in establishing the invariants. The complexity of the
assignment, the mathematics involved, and the absence of prover support are among possible reasons for
the low success rate of students in developing appropriate invariants for those operations.

Writing (Queue) Copying (Queue) Reversal (Sequence) Facility Operations

Correct 70% 90% 60% 30%
Insufficient Invariant 20% 10% 30%
Other 10% 10% 70%

Table 1: Evaluation of Invariant Assignments

Fig. 8 is an example of code developed by a student for the Copy_Queue assignment.6 Neither the
code nor the invariant is necessarily optimal. Proofs of all 18 VCs generated for this copy operation are
completed in an average time of 3 seconds (total) on the server that hosts the Web IDE. As noted earlier
in the introduction, other provers, such as Z3, could be used to discharge the VCs.

5 Summary of the Prover Underlying the Web IDE

The verifying compiler that serves as the back end of the web interface contains a modular VC gen-
eration subsystem [8, 15] which provides input to an automated prover. The automated prover relies
on previously proven results in a library of mathematical theories that are reused in the specification of
programming concepts [34].

At the core of the CCVerify automated VC prover is a congruence closure algorithm that incorporates
the Theory of Equality, similar in spirit to that described in [28]. An outer layer that incorporates pattern
matching techniques for expressions containing universally quantified variables is engaged, similar to the
matcher described in [10]. In this way, a single component can handle problems from multiple domains.
CCVerify, which contains fewer than 2000 lines of Java code, is designed to be fast, simple, and effective.
As it is fully integrated into the compiler, there are no issues with portability, licensing, or translation of
the assumptions to other formats as there might be if an external tool were used.

There is an implied division of labor in the production of proofs. Specifications must be written
so that the consequent of the VC eventually produced is a predicate with constants as arguments. It

6In the figure, changing clause is optional and it lists variables potentially affected by the loop; variables not mentioned
are assumed to be unchanging. In the absence of this clause, all variables are assumed to be affected. This clause is useful to
simplify some routine invariants [15].

66 Formal Reasoning Using an Integrated Web IDE

Figure 8: Student code for the Queue copy assignment.

turns out that typically it is sufficient to use only instances of previously proven universally quantified
statements (these are members of a reusable theorem library) to construct a proof, assuming that the
specifications used to generate the VC make such a proof relatively obvious. Sophisticated techniques
used in automated theorem provers may not be required to discharge the VCs. We are currently testing
this hypothesis using a limited version of Z3 as well.

Our mathematical specification system is feature–rich. It allows for polymorphic types and first class
functions. These features make a direct translation of some of our mathematical theories to the standard
many-sorted first-order logic language [2] used in SMT proving impossible, though it is possible to sup-
port these features relatively simple (in a sound, but not complete way) within the matching component
of the integrated prover.

6 Related Work

A summary of related specification/verification languages may be found in [16], and tools or IDEs to
facilitate their usage are discussed in the first proceedings of this workshop [13]. We discuss only the
most related work in this section.

Like RESOLVE that underlies the Web IDE discussed in this paper, Dafny is a programming and
specification language intended for verification of functional correctness [24]. The Eiffel integrated lan-
guage effort [25], though initially focused on runtime assertion checking, is now supported by Eve [14],
the Eiffel Verification Environment, which includes the AutoProof [35] tool for static verification. Both
Dafny and AutoProof translate code and specifications into Boogie [1], an intermediate verification lan-

Nabil M. Kabbani, Daniel Welch, et al. 67

guage. The Boogie tool can create VCs suitable as input to an SMT solver. An important distinction is
that the RESOLVE compiler handles VC generation internally, and displays them in a format that makes
it easy for users to connect problematic VCs with the code and specifications that produced them.

Java Modeling Language (JML) is a specification/verification language for Java programs, and tools
for the language include the ability to do runtime assertion checking [22]. JML does not have an IDE, but
there are efforts to integrate JML as plugin to Eclipse [4, 5]. Tools are available for ProB, an animation
and a model checker for the B-Method, which is a formal method based on abstract machine notation
[3, 37]. The VeriFast effort is aimed at verifying single/multi-threaded C and Java programs [17, 33].
VeriFast also includes a GUI that is packaged into their code distribution.

We are not alone in employing a formal methods IDE in education. Whereas our educational focus
is mostly on software engineering aspects (though we have used the Web IDE to a limited extent in a
discrete mathematics course), teaching discrete mathematics and specifications using an IDE is the focus
of FoCaLiZe—an IDE that takes source code, specification properties, and machine-checkable proofs to
produce executable OCaml code and checkable Coq input values [18, 30]. Though our Web IDE does
not support inferring loop invariants, invariant inference is a useful feature; an Eclipse plugin with a goal
to infer object and loop invariants for C programs is discussed in [6].

7 Conclusions

This paper has detailed an iterative approach for creating, debugging, and developing components that
are correct with respect to their specifications, using an IDE equipped with a verification system. Us-
ing several illustrative examples drawn from lectures and student assigments, we have explained how
students and software engineers, in general, can develop provably correct software iteratively based on
the VCs and feedback received from the RESOLVE Web IDE. Extensive experience with the IDE in
the classroom indicates that students are indeed capable of producing correct software using the the IDE
as discussed in this paper. While the present paper has focused only on functional correctness of code,
the IDE includes features to create and view mathematical units and data abstraction realizations with
representation invariants and abstraction relations, as well as for generating executable Java code from
RESOLVE code [36].

A variety of improvements to the IDE are in progress, ranging from minor visual improvements,
such as highlighting VC buttons that correspond to unprovable VCs, to more significant ones, such as
the creation and development of performance specifications and related correctness checks.

8 Acknowledgements

The RESOLVE verifying compiler is a multi-decade project involving researchers at several universities,
including, but not limited to, Clemson University, Ohio State University, and Denison University. We
acknowledge the ideas and support of members of the group in this endeavor. This research has been
funded in part by the US NSF grants CCF-0811748, CCF-1161916, and DUE-1022941.

References
[1] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs & K. Rustan M. Leino (2005): Boogie:

A Modular Reusable Verifier for Object-Oriented Programs. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf & Willem P. de Roever, editors: Formal Methods for Components and Objects, 4th International

68 Formal Reasoning Using an Integrated Web IDE

Symposium, FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures, Lecture
Notes in Computer Science 4111, Springer, pp. 364–387, doi:10.1007/11804192_17.

[2] Clark Barrett, Aaron Stump & Cesare Tinelli (2010): The SMT-LIB Standard Version 2.0. SMT-LIB.org.
Available at http://SMT-LIB.org.

[3] Jens Bendisposto, Sebastian Krings & Michael Leuschel (2014): Who watches the watchers: Validating the
ProB Validation Tool. In Dubois et al. [13], pp. 16–29, doi:10.4204/EPTCS.149.3.

[4] Patrice Chalin, Perry R. James & George Karabotsos (2008): JML4: Towards an Industrial Grade IVE for
Java and Next Generation Research Platform for JML. In Natarajan Shankar & Jim Woodcock, editors:
Verified Software: Theories, Tools, Experiments, Second International Conference, VSTTE 2008, Toronto,
Canada, October 6-9, 2008. Proceedings, Lecture Notes in Computer Science 5295, Springer, pp. 70–83,
doi:10.1007/978-3-540-87873-5_9.

[5] David R. Cok (2014): OpenJML: Software verification for Java 7 using JML, OpenJDK, and Eclipse. In
Dubois et al. [13], pp. 79–92, doi:10.4204/EPTCS.149.8.

[6] David R. Cok & Scott C. Johnson (2014): SPEEDY: An Eclipse-based IDE for invariant inference. In Dubois
et al. [13], pp. 44–57, doi:10.4204/EPTCS.149.5.

[7] Charles T. Cook, Svetlana Drachova-Strang, Yu-Shan Sun, Murali Sitaraman, Jeffrey C. Carver & Joseph E.
Hollingsworth (2013): Specification and reasoning in SE projects using a Web IDE. In Tony Cowling,
Shawn Bohner & Mark A. Ardis, editors: 26th International Conference on Software Engineering Ed-
ucation and Training, CSEE&T 2013, San Francisco, CA, USA, May 19-21, 2013, IEEE, pp. 229–238,
doi:10.1109/CSEET.2013.6595254.

[8] Charles T. Cook, Heather K. Harton, Hampton Smith & Murali Sitaraman (2012): Specification engineering
and modular verification using a web-integrated verifying compiler. In Martin Glinz, Gail C. Murphy &
Mauro Pezzè, editors: 34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, IEEE, pp. 1379–1382, doi:10.1109/ICSE.2012.6227243.

[9] Charles T. Cook, Yu-Shan Sun & Murali Sitaraman (2015): Experience report: evolution of a web-
integrated software development and verification environment. Softw., Pract. Exper. 45(6), pp. 857–872,
doi:10.1002/spe.2259.

[10] David Detlefs, Greg Nelson & James B. Saxe (2005): Simplify: a theorem prover for program checking. J.
ACM 52(3), pp. 365–473, doi:10.1145/1066100.1066102.

[11] Svetlana Drachova-Strang (2013): Teaching and Assessment of Mathematical Principles for Software Cor-
rectness Using a Reasoning Concept Inventory. Ph.D. thesis, Clemson University. Available at http:
//www.cs.clemson.edu/resolve/research/docs/Dissertation-Drachova-Strang.pdf.

[12] Svetlana Drachova-Strang, Jason Hallstrom, Murali Sitaraman, Joe Hollingsworth, Joan Krone et al. (2015):
Teaching Mathematical Reasoning Principles for Software Correctness and its Assessment. ACM Transac-
tions on Computing Education, pp. accepted, to appear.

[13] Catherine Dubois, Dimitra Giannakopoulou & Dominique Méry, editors (2014): Proceedings 1st Workshop
on Formal Integrated Development Environment, F-IDE 2014, Grenoble, France, April 6, 2014. EPTCS 149,
doi:10.4204/EPTCS.149.

[14] Carlo A. Furia, Julian Tschannen & Bertrand Meyer (2014): The Gotthard Approach: Designing an Inte-
grated Verification Environment for Eiffel. In Dubois et al. [13], pp. 1–2, doi:10.4204/EPTCS.149. Abstract
of invited talk.

[15] Heather Harton (2011): Mechanical and Modular Verification Condition Generation For Object-Based
Software. Ph.D. thesis, Clemson University. Available at http://www.cs.clemson.edu/resolve/
research/docs/Dissertation-Harton_2_1.pdf.

[16] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller & Matthew J. Parkinson (2012): Behavioral
interface specification languages. ACM Comput. Surv. 44(3), p. 16, doi:10.1145/2187671.2187678.

[17] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx & Frank Piessens (2011):
VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. In Mihaela Gheorghiu Bobaru,

http://dx.doi.org/10.1007/11804192_17
http://SMT-LIB.org
http://dx.doi.org/10.4204/EPTCS.149.3
http://dx.doi.org/10.1007/978-3-540-87873-5_9
http://dx.doi.org/10.4204/EPTCS.149.8
http://dx.doi.org/10.4204/EPTCS.149.5
http://dx.doi.org/10.1109/CSEET.2013.6595254
http://dx.doi.org/10.1109/ICSE.2012.6227243
http://dx.doi.org/10.1002/spe.2259
http://dx.doi.org/10.1145/1066100.1066102
http://www.cs.clemson.edu/resolve/research/docs/Dissertation-Drachova-Strang.pdf
http://www.cs.clemson.edu/resolve/research/docs/Dissertation-Drachova-Strang.pdf
http://dx.doi.org/10.4204/EPTCS.149
http://dx.doi.org/10.4204/EPTCS.149
http://www.cs.clemson.edu/resolve/research/docs/Dissertation-Harton_2_1.pdf
http://www.cs.clemson.edu/resolve/research/docs/Dissertation-Harton_2_1.pdf
http://dx.doi.org/10.1145/2187671.2187678

Nabil M. Kabbani, Daniel Welch, et al. 69

Klaus Havelund, Gerard J. Holzmann & Rajeev Joshi, editors: NASA Formal Methods - Third International
Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings, Lecture Notes in Computer
Science 6617, Springer, pp. 41–55, doi:10.1007/978-3-642-20398-5_4.

[18] Mathieu Jaume & Théo Laurent (2014): Teaching Formal Methods and Discrete Mathematics. In Dubois
et al. [13], pp. 30–43, doi:10.4204/EPTCS.149.4.

[19] Jason Kirschenbaum, Bruce M. Adcock et al. (2009): Verifying Component-Based Software: Deep Math-
ematics or Simple Bookkeeping? In Stephen H. Edwards & Gregory Kulczycki, editors: Formal Founda-
tions of Reuse and Domain Engineering, 11th International Conference on Software Reuse, ICSR 2009, Falls
Church, VA, USA, September 27-30, 2009. Proceedings, Lecture Notes in Computer Science 5791, Springer,
pp. 31–40, doi:10.1007/978-3-642-04211-9_4.

[20] Gregory Kulczycki, Murali Sitaraman et al. (2013): A Language for Building Verified Software Components.
In John M. Favaro & Maurizio Morisio, editors: Safe and Secure Software Reuse - 13th International Con-
ference on Software Reuse, ICSR 2013, Pisa, Italy, June 18-20. Proceedings, Lecture Notes in Computer
Science 7925, Springer, pp. 308–314, doi:10.1007/978-3-642-38977-1_23.

[21] Gregory W. Kulczycki (2004): Direct Reasoning. Ph.D. thesis, Clemson University. Available at http:
//www.nvc.vt.edu/gregwk/assets/research-papers/kulczycki04direct.pdf.

[22] Gary T. Leavens, Albert L. Baker & Clyde Ruby (2006): Preliminary design of JML: a behavioral in-
terface specification language for java. ACM SIGSOFT Software Engineering Notes 31(3), pp. 1–38,
doi:10.1145/1127878.1127884.

[23] K. Rustan M. Leino (2010): Dafny: An Automatic Program Verifier for Functional Correctness. In Ed-
mund M. Clarke & Andrei Voronkov, editors: Logic for Programming, Artificial Intelligence, and Reasoning
- 16th International Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers,
Lecture Notes in Computer Science 6355, Springer, pp. 348–370, doi:10.1007/978-3-642-17511-4_20.

[24] K. Rustan M. Leino & Valentin Wüstholz (2014): The Dafny Integrated Development Environment. In
Dubois et al. [13], pp. 3–15, doi:10.4204/EPTCS.149.2.

[25] Bertrand Meyer (1988): Eiffel: A language and environment for software engineering. Journal of Systems
and Software 8(3), pp. 199–246, doi:10.1016/0164-1212(88)90022-2.

[26] Bertrand Meyer (1997): Object-Oriented Software Construction, 2nd Edition. Prentice-Hall.

[27] Leonardo Mendonça de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In C. R. Ramakr-
ishnan & Jakob Rehof, editors: Tools and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, Lecture Notes in
Computer Science 4963, Springer, pp. 337–340, doi:10.1007/978-3-540-78800-3_24.

[28] Greg Nelson & Derek C. Oppen (1980): Fast Decision Procedures Based on Congruence Closure. J. ACM
27(2), pp. 356–364, doi:10.1145/322186.322198.

[29] Tobias Nipkow, Lawrence C. Paulson & Markus Wenzel (2002): Isabelle/HOL - A Proof Assistant for Higher-
Order Logic. Lecture Notes in Computer Science 2283, Springer, doi:10.1007/3-540-45949-9.

[30] François Pessaux (2014): FoCaLiZe: Inside an F-IDE. In Dubois et al. [13], pp. 64–78,
doi:10.4204/EPTCS.149.7.

[31] Murali Sitaraman, Bruce M. Adcock et al. (2011): Building a push-button RESOLVE verifier: Progress and
challenges. Formal Asp. Comput. 23(5), pp. 607–626, doi:10.1007/s00165-010-0154-3.

[32] Murali Sitaraman & Bruce Weide (1994): Component-based Software Using RESOLVE. SIGSOFT Software
Engineering Notes 19(4), pp. 21–22, doi:10.1145/190679.199221.

[33] Jan Smans, Bart Jacobs & Frank Piessens (2013): VeriFast for Java: A Tutorial. In Dave Clarke, James Noble
& Tobias Wrigstad, editors: Aliasing in Object-Oriented Programming. Types, Analysis and Verification,
Lecture Notes in Computer Science 7850, Springer, pp. 407–442, doi:10.1007/978-3-642-36946-9_14.

http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://dx.doi.org/10.4204/EPTCS.149.4
http://dx.doi.org/10.1007/978-3-642-04211-9_4
http://dx.doi.org/10.1007/978-3-642-38977-1_23
http://www.nvc.vt.edu/gregwk/assets/research-papers/kulczycki04direct.pdf
http://www.nvc.vt.edu/gregwk/assets/research-papers/kulczycki04direct.pdf
http://dx.doi.org/10.1145/1127878.1127884
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.4204/EPTCS.149.2
http://dx.doi.org/10.1016/0164-1212(88)90022-2
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/322186.322198
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.4204/EPTCS.149.7
http://dx.doi.org/10.1007/s00165-010-0154-3
http://dx.doi.org/10.1145/190679.199221
http://dx.doi.org/10.1007/978-3-642-36946-9_14

70 Formal Reasoning Using an Integrated Web IDE

[34] Hampton Smith (2013): Engineering Specifications and Mathematics for Verified Software. Ph.D.
thesis, Clemson University. Available at http://www.cs.clemson.edu/resolve/research/docs/
Dissertation-Smith.pdf.

[35] Julian Tschannen, Carlo A. Furia, Martin Nordio & Bertrand Meyer (2011): Verifying Eiffel Programs with
Boogie. CoRR abs/1106.4700. Available at http://arxiv.org/abs/1106.4700.

[36] Daniel Welch, Charles T. Cook, Yu-Shan Sun & Murali Sitaraman (2014): A web-integrated verifying com-
piler for RESOLVE: a research perspective. In Dharanipragada Janakiram, Koushik Sen & Vinay Kulkarni,
editors: 7th India Software Engineering Conference, Chennai, ISEC ’14, Chennai, India - February 19 - 21,
2014, ACM, pp. 12:1–12:6, doi:10.1145/2590748.2590760.

[37] John Witulski & Michael Leuschel (2014): Checking Computations of Formal Method Tools - A Secondary
Toolchain for ProB. In Dubois et al. [13], pp. 93–105, doi:10.4204/EPTCS.149.9.

http://www.cs.clemson.edu/resolve/research/docs/Dissertation-Smith.pdf
http://www.cs.clemson.edu/resolve/research/docs/Dissertation-Smith.pdf
http://arxiv.org/abs/1106.4700
http://dx.doi.org/10.1145/2590748.2590760
http://dx.doi.org/10.4204/EPTCS.149.9

Nabil M. Kabbani, Daniel Welch, et al. 71

A Preemptable_Queue Specification

Figure 9: Partial Preemptable_Queue specification.

	1 Introduction
	2 Understanding Design by Contract Using the IDE
	3 Debugging Recursive Code
	4 Loop Invariants
	4.1 Learning Iterative Invariant Development
	4.2 Applying Iterative Invariant Development

	5 Summary of the Prover Underlying the Web IDE
	6 Related Work
	7 Conclusions
	8 Acknowledgements
	A Preemptable_Queue Specification

